预应力混凝土结构构件计算(精)
- 格式:doc
- 大小:1.28 MB
- 文档页数:10
预应力混凝土预应力损失及计算方法预应力混凝土是一种常用于建筑结构中的高性能材料,其通过在混凝土构件中施加预应力,使其在受力过程中能够更好地承受荷载。
然而,由于各种原因,预应力混凝土中的预应力可能会发生一定的损失,影响结构的整体性能。
本文将就预应力混凝土预应力损失的原因以及计算方法进行探讨。
一、预应力混凝土预应力损失的原因预应力混凝土中的预应力损失主要包括材料损失、摩擦损失和开裂损失三个方面。
1. 材料损失材料损失是指预应力混凝土材料在施工、运输和使用过程中由于外界环境和条件的影响而导致的预应力损失。
常见的材料损失包括钢材弛豫损失、混凝土收缩和徐变等。
(1)钢材弛豫损失:在预应力混凝土构件的初张拉和释放过程中,钢材的初始应力会因为钢材的弛豫现象而逐渐减小,从而导致预应力的损失。
(2)混凝土收缩和徐变:混凝土存在收缩和徐变的现象,这也会导致预应力的损失。
混凝土在干燥过程中会发生收缩,而在受潮后则会发生徐变,这些变形会使得预应力逐渐减小。
2. 摩擦损失摩擦损失是指预应力混凝土构件中由于预应力钢束与混凝土之间的相对滑动而导致的预应力损失。
摩擦损失主要由于摩擦阻力和锚固器件的摩擦而引起。
(1)摩擦阻力:预应力钢束与混凝土之间存在一定的摩擦力,当受力端的锚固器件与混凝土之间的摩擦力大于预应力钢束处的摩擦力时,就会导致预应力损失。
(2)锚固器件的摩擦:锚固器件的摩擦也是导致预应力损失的原因之一。
锚固器件的设计和施工质量会直接影响摩擦损失的大小。
3. 开裂损失开裂损失是指预应力混凝土构件在施加预应力后由于荷载作用而引起的裂缝产生,从而导致预应力损失。
开裂会导致混凝土的强度明显下降,进而使得预应力损失。
二、预应力损失的计算方法为了准确计算预应力混凝土中的预应力损失,可以采用以下方法:1. 钢材弛豫损失的计算常用的计算钢材弛豫损失的方法包括弛豫系数法和易变程度法。
(1)弛豫系数法:根据预应力钢束的特性曲线,通过测量初始应力和一定时间后的应力变化,利用弛豫系数将时间换算积分得到弛豫损失。
预应力盖梁计算在桥梁建设中,预应力盖梁是一种常见的结构形式,它具有高强度、高刚性和良好的耐久性。
预应力盖梁可以显著提高桥梁的性能,包括抵抗车辆载荷、温度变化和地震等。
为了确保预应力盖梁的结构安全和稳定,进行准确的计算和设计是至关重要的。
预应力盖梁的计算步骤1、确定设计参数首先需要确定预应力盖梁的设计参数,包括跨度、宽度、高度、材料类型、预应力钢绞线的规格和数量等。
这些参数将直接影响结构的性能和成本。
2、建立数学模型根据盖梁的结构特点,建立合适的数学模型。
常用的有限元分析软件如ANSYS、ABAQUS等可以用于模拟盖梁的受力状态和变形情况。
3、施加荷载和边界条件根据桥梁的使用要求和实际工况,施加相应的荷载和边界条件。
例如,车辆载荷、风载荷、温度变化等都需要考虑。
4、计算内力和变形通过有限元分析软件,可以计算出盖梁在不同工况下的内力和变形。
根据计算结果,可以评估结构的强度和稳定性。
5、调整设计根据计算结果,如果结构的强度或稳定性不足,需要对设计进行调整。
例如,改变材料的类型或规格、增加预应力钢绞线的数量等。
重复进行计算和调整,直到得到满意的结果。
6、施工监控在盖梁的施工过程中,需要对关键部位进行监控,以确保施工质量和安全。
监控内容包括变形、应力、温度等参数。
通过实时监测数据,可以及时发现问题并采取相应的措施。
结论预应力盖梁计算是桥梁设计中的重要环节。
通过准确的计算和合理的调整,可以确保预应力盖梁的结构安全和稳定。
施工监控也是保证施工质量的关键措施。
通过这些措施的实施,可以进一步提高桥梁的性能和使用寿命。
预应力盖梁计算书6一、引言预应力盖梁是一种广泛应用于桥梁工程中的结构形式,具有高强度、高刚度、耐久性强等特点。
本计算书旨在为预应力盖梁的设计提供计算依据和指导,以确保其结构安全性和稳定性。
本计算书适用于一般桥梁工程中的预应力盖梁设计,不适用于特殊桥梁或特殊工况下的预应力盖梁设计。
二、计算目的本计算书的主要目的是确定预应力盖梁在承受荷载作用下的内力、位移和应力分布情况,以及评估其结构安全性和稳定性。
简介: 对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。
关键字:预应力损失简化计算预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容.引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。
我国新的《混凝土结构设计规范》GB50010—2002经历四年半修订,已顺利完成.此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。
现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。
1。
预应力损失基本计算在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。
全部损失由两部分组成,即瞬时损失和长期损失。
其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失.长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。
我国新规范采用分项计算然后按时序逐项叠加的方法.下面将分项讨论引起预应力损失的原因,损失值的计算方法。
1.1孔道摩擦损失σl2孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。
包括长度效应(kx)和曲率效应(μθ)引起的损失.宜按下列公式计算:σl2=σcon(1—1/ekx+μθ)当(kx+μθ)≤0.2时(原规范GBJ10—89为0。
3),σl2可按下列近似公式计算:σl2=(kx+μθ)σcon式中:X-—张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ——张拉端至计算截面曲线孔道部分切线的夹角(rad);K-—考虑孔道每米长度局部偏差的摩擦系数,按规范取值;μ——预应力钢筋与孔道壁之间的摩擦系数,按规范取值。
对摩擦损失计算用的K,μ值取为定值,是根据当前国内有关试验值确定的,与原规范GBJ10—89不同,与国外相比,μ值较高,是由于铁皮管质量不高或预压力筋与混凝土直接接触,从而增大摩擦力的缘故。
预应力混凝土结构构件计算一、预应力损失值计算 (一)基本公式1.张拉端锚具变形和钢筋内缩引起的预应力损失σl 1 (1)对预应力直线钢筋S1E l al =σ(9-1) 式中 a ——张拉端锚具变形和钢筋内缩值(mm ),按表9-2取用❖;l ——张拉端至锚固端之间的距离(mm );E S ——预应力筋弹性模量(N/mm 2)。
表9-2 锚具变形和钢筋内缩值a注 ①表中的锚具变形和钢筋内缩值也可根据实测数据或有关规范规定;②其他类型(如大型预应力钢索)的锚具变形和钢筋内缩值应根据专门研究或试 验确定。
(2)对于后张法构件的预应力曲线钢筋(预应力筋为圆弧曲线,对应的圆心角θ不大于30o)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛+f c f con 112l x k r l x l μσσ= (9-2)⎪⎪⎭⎫⎝⎛+=k r aE l f c con s1000μσ(9-3)式中l f _____预应力曲线钢筋与孔道壁之间反向摩擦影响长度,m ;r c _____圆弧曲线预应力筋的曲率半径,m ;μ_____预应力筋与孔道壁的摩擦系数,按表9-3取用;κ_____考虑孔道每米长度局部偏差的摩擦系数,按表9-3取用; x _____张拉端至计算截面的距离,m ,且应符合x ≤l f 的规定;其余符号的意义同前。
表9-3 摩 擦 系 数κ、μ注:当采用钢丝束的钢制锥形锚具时,尚应考虑锚环口处的附加摩擦损失,此值可根据实测数据确定。
2.预应力筋与孔道壁之间的摩擦引起的预应力损失σl 2⎪⎭⎫ ⎝⎛-=+μθσσkx l e11con 2 (9-4)式中 x ——张拉端至计算截面的孔道长度,m ,当曲线曲率不大 时也可近似取该段孔道在纵 轴上的投影长度;θ——从张拉端至计算截面曲线 孔道部分切线的夹角,rad 。
当kx +μθ≤0.2时,σl 2可按下列近 似公式计算σl 2 =(kx +μθ)σcon (9-5)3.混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失σl 325s 3N/mm 2100.200001.0t tt E l ∆=∆⨯⨯⨯=∆=ασ(9-6)式中 α——钢筋的温度线膨胀系数,近似取为1×10—5/℃;∆t ——混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差; E s ——预应力钢筋的弹性模量。
(6.1.5-1)第6章预应力混凝土结构构件计算要求6.1 一般规定第6.1.1条 预应力混凝土结构构件,除应根据使用条件进行承载力计 算及变形、抗裂、裂缝宽度和应力验算外,尚应按具体情况对制作、运输及安装 等施工阶段进行验算。
当预应力作为荷载效应考虑时,其设计值在本规范有关章节计算公式中给出。
对承载能力极限状态,当预应力效应对结构有利时,预应力分项系数应取 1.0 ; 不利时应取1.2。
对正常使用极限状态,预应力分项系数应取 1.0。
第6.1.2条 当通过对一部分纵向钢筋施加预应力已能使构件符合裂缝 控制要求时,承载力计算所需的其余纵向钢筋可采用非预应力钢筋。
非预应力钢 筋宜采用HRB40C 级、HRB335级钢筋,也可采用RRB40C 级钢筋。
第6.1.3条 预应力钢筋的张拉控制应力值 (7 con 不宜超过表6.1.3规定 的张拉控制应力限值,且不应小于 0.4f ptk .当符合下列情况之一时,表6.1.3中的张拉控制应力限值可提高0.05f ptk :1要求提高构件在施工阶段的抗裂性能而在使用阶段受压区内设置的预应 力钢筋; 2要求部分抵消由于应力松驰、摩擦、钢筋分批张拉以及预应力钢筋与张拉 台座之间的温差等因素产生的预应力损失。
张拉控制应力限值表6.1.3第6.1.4条 施加预应力时,所需的混凝土立方体抗压强度应经计算确 定,但不宜低于设计混凝土强度等级值的 75%第6.1.5条 由预加力产生的混凝土法向应力及相应阶段应力钢筋的应 力,可分别按下列公式计算:1先张法构件由预加力产生的混凝土法向应力7 pc =N o /A 0 ±N p0e po /l o y o 相应阶段预应力钢筋的有效预应力预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力T p0—T con- T l (6.1.5-3)2 后张法构件由预应力产生的混凝土法向应力T pc—N p/A n±N p e pn/I n y n±M2/I n y n (6.1.5-4) 相应阶段预应力钢筋的有效预应力T pe—T con- T l (6.1.5-5) 预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力T p0—T con- T l +a E T pc (6.1.5-6)式中A n-- 净截面面积,即扣除孔道、凹槽等削弱部分以外的混凝土全部截面面积及纵向非预应力钢筋截面面积换算成混凝土的截面面积之和;对由不同混凝土强度等级组成的截面,应根据混凝土弹性模量比值换算成同一混凝土强度等级的截面面积;A0-- 换算截面面积:包括净截面面积以及全部纵向预应力钢筋截面面积换算成混凝土的截面面积;1 n-- 换算截面惯性矩、净截面惯性矩;e pn-- 换算截面重心、净截面重心至预应力钢筋及非预应力钢筋合力点的距离,按本规范第 6.1.6 条的规定计算;y0、y n-- 换算截面重心、净截面重心至所计算纤维处的距离;T l -- 相应阶段的预应力损失值,按本规范第6.2.1 条至6.2.7 条的规定计算;'a E--钢筋弹性模量与混凝土弹性模量的比值:a E—E S/E C,此处,E按本规范表424采用,E c按本规范表4.1.5采用;N p0、N p-- 先张法构件、后张法构件的预应力钢筋及非预应力钢筋的合力,按本规范第 6.1.6 条计算;M2--由预加力N在后张法预应力混凝土超静定结构中产生的次弯矩,按本规范第6.1.7 条的规定计算。
完整版立交桥匝道现浇箱梁预应力施工参数计算立交桥匝道现浇箱梁预应力施工是指在钢筋混凝土现浇箱梁结构中,通过预应力钢束的施加,改变其应力状态,以增加结构的承载能力和使用寿命。
在进行预应力施工时,需要计算一系列参数,以确保施工的安全性和可靠性。
一、预应力钢束的计算1.张拉力计算当计算两侧预应力钢束的张拉力时,首先需要确定梁的设计跨度和悬臂长度。
根据设计要求和加载情况,计算出最大的活荷载,并在梁的最不利截面上,进行应力和挠度的计算。
根据计算结果,确定预应力钢束的截面尺寸和数量。
2.锚固力计算根据已经确定的预应力钢束的截面和数量,计算出每个预应力钢束锚固部位的锚固长度和锚固力。
根据锚固力大小和锚固长度,选择合适的承载锚具和锚固装置。
3.张拉应变计算根据已经确定的预应力钢束的长度、直径和材质,计算出预应力钢束的伸长量和相应的应变。
分别计算张拉之前和张拉之后的应变,以检验预应力钢束的可靠性。
二、传力系统的计算1.钢束对箱梁的传力计算当预应力钢束段与箱梁接触时,需要计算出传力的方式和大小。
根据预应力钢束的几何形状和箱梁的几何形状,计算出传力面积和传力方式。
同时,根据传力面积和传力方式,计算出传力的大小和作用点位置。
2.钢筋对钢束的传力计算在预应力施工中,由于外力的作用,钢筋也会对预应力钢束产生作用力。
根据钢筋布置和预应力钢束的位置,计算出钢筋对预应力钢束的传力大小和作用点位置。
三、施工工艺参数的计算1.砼配合比计算根据梁的设计要求和使用环境,确定砼的配合比。
根据配合比,计算出水灰比、砂率、密实度和流动性等参数,以满足现场施工的需要。
2.浇筑施工工艺参数的计算根据梁的几何形状和现场施工条件,计算出浇筑施工的工艺参数。
包括浇筑速度、浇筑顺序、施工温度和外界环境等。
3.预应力钢束张拉参数的计算根据预应力钢束的几何形状和现场施工条件,计算出预应力钢束的张拉参数。
包括预应力钢束的张拉力大小、张拉的步骤和张拉的持续时间等。
第9章预应力混凝土结构构件计算1.何谓预应力混凝土结构?答:所谓预应力混凝土结构,就是在外荷载作用之前,先对混凝土施加压力,造成人为的应力状态,它所产生的预压应力能抵消外荷载所引起的部分或全部拉应力◆。
这样,在外荷载作用下,裂缝就能延缓或不会产生,即使出现了裂缝,裂缝宽度也不致过大。
2.与非钢筋混凝土结构相比较,预应力混凝土结构主要有哪几方面的优点?答:与非钢筋混凝土结构相比较,预应力混凝土结构主要有以下几方面的优点:(1)预应力混凝土结构在使用荷载作用下不出现裂缝或推迟裂缝的出现,在同样的荷载下,能减小裂缝宽度,因此也提高了构件的刚度,增加结构的耐久性。
如用在处于腐蚀性介质和潮湿环境中的结构以及海洋工程结构中,可根本解决裂缝问题,对水工建筑物的意义尤为重大。
(2)预应力混凝土结构可以合理、有效地利用高强钢筋◆和高强混凝土,从而节省材料,减轻结构自重,可建造大跨度结构。
(3)施加纵向预应力可延缓斜裂缝的形成,使受剪承载力得到提高。
(4)预应力可以降低钢筋的疲劳应力比,因而提高了构件的抗疲劳性能。
3.根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成哪几类,各有何特点?答:根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成:全预应力混凝土、有限预应力混凝土和部分预应力混凝土。
全预应力混凝土:在全部荷载即荷载效应的短期组合下,截面不出现拉应力的预应力混凝土,称为全预应力混凝土。
全预应力混凝土的特点是:(1)抗裂性好。
由于构件截面不出现拉应力,混凝土不开裂,因而其抗裂性能好、刚度大,常用于对抗裂或抗腐蚀性能要求较高的结构,如核电站安全壳、贮液罐、吊车梁等。
(2)抗疲劳性能好。
预应力钢筋从张拉到使用阶段的全过程中,其应力值变化幅度小,所以在重复荷载下抗疲劳性能好。
(3)反拱值可能过大。
当活荷载较大,在正常使用情况下,由于预加应力较高,引起结构的反拱过大,使混凝土在施工阶段产生裂缝,影响上部结构构件的正常使用。
(4)延性较差。
由于构件的开裂荷载与极限荷载较为接近,使构件延较差,对结构的抗震不利。
有限预应力混凝土:在全部荷载即荷载效应的短期组合下,截面拉应力不超过混凝土规定的抗拉强度;在长期荷载即荷载效应的长期组合下,截面不出现拉应力的预应力混凝土,称为有限预应力混凝土。
部分预应力混凝土:截面允许出现裂缝,但最大的裂缝宽度不得超过允许的限值,称为部分预应力混凝土。
部分预应力混凝土的特点:(1)节约钢材。
可根据结构构件的不同使用要求、荷载作用情况及环境条件等,对裂缝进行控制,降低了预应力值,从而节约预应力钢筋及锚具的用量,降低造价。
(2)反拱值不致于过大。
由于施加预应力较小,可避免产生过大反拱。
(3)延性较好。
由于配置了非预应力钢筋,可提高构件的延性,有利于结构抗震,并可改善裂缝分布,减小裂缝宽度。
(4)与全预应力混凝土相比,可简化张拉、锚固等工艺,其综合经济效果较好。
对于抗裂要求不太高的结构构件,部分预应力混凝土已得到广泛应用。
(5)计算较为复杂。
4.施加预应力的方法有哪两种,其施工的主要工序如何?答:施加预应力的方法,按施加预应力的时间可分为先张法和后张法。
先张法:先张法即先张拉预应力钢筋,后浇筑混凝土的方法。
其施工的主要工序如下:(1)在台座上按设计规定的拉力张拉钢筋,并用锚具临时固定于在台座上。
(2)支模、绑扎非预应力钢筋、浇筑混凝土构件。
(3)待构件混凝土达到一定的强度后(一般不低于混凝土设计强度等级的75%,以保证预应力钢筋与混凝土之间具有足够的粘结力),切断或放松钢筋,预应力钢筋的弹性回缩受到混凝土阻止而使混凝土受到挤压,产生预压应力。
后张法:是先浇筑混凝土构件,当构件混凝土达到一定的强度后,在构件上张拉预应力钢筋的方法。
其施工的主要工序如下:(1)浇筑混凝土构件,并在预应力钢筋位置处预留孔道。
(2)待混凝土达到一定强度(不低于混凝土设计强度等级的75%)后,将预应力钢筋穿过孔道,以构件本身作为支座张拉预应力钢筋,此时,构件混凝土将同时受到压缩。
(3)当预应力钢筋张拉至要求的控制应力时,在张拉端用锚具将其锚固,使构件的混凝土受到预压应力。
5.先张法和后张法各有何优缺点和适用?答:先张法需要有用来张拉和临时固定钢筋的台座,因此初期投资费用较大。
但先张法施工工序简单,钢筋靠粘结力自锚,在构件上不需设永久性锚具,临时固定的锚具都可以重复使用。
因此在大批量生产时先张法构件比较经济,质量易保证。
为了便于吊装运输,先张法一般宜于生产中小型构件。
后张法不需要台座,构件可以在工厂预制,也可以在现场施工,应用比较灵活,但是对构件施加预应力需要逐个进行,操作比较麻烦。
而且每个构件均需要永久性锚具,用钢量大,因此成本比较高。
后张法适用于运输不方便的大型预应力混凝土构件。
6.预应力结构构件所用的混凝土、钢筋,需满足哪些要求?目前,我国常用的预应力钢筋有哪集中?答:预应力结构构件所用的混凝土,需满足下列要求:(1)强度高。
因为高强度混凝土才能充分发挥高强度钢筋的性能,建立尽可能高的预应力,从而提高结构构件的抗裂度和刚度,有效地减小构件截面尺寸和减轻自重。
(2)收缩、徐变小。
这样可减少收缩、徐变引起的预应力损失。
(3)快硬、早强。
以便尽早施加预应力,加快施工进度,加快设备周转率。
预应力构件的混凝土强度等级不应低于C30;当采用钢丝、钢绞线和热处理钢筋作为预应力钢筋时,混凝土强度等级不宜低于C40。
预应力结构构件所用的钢筋,需满足下列要求:(1)强度高。
混凝土预压应力的大小,取决于预应力钢筋张拉应力的大小。
由于构件在制作过程中会出现各种应力损失,因此必须使用高强度的钢筋,才能建立较高的有效张拉应力。
(2)与混凝土有较好的粘结力。
先张法构件的预应力主要依靠钢筋和混凝土之间的粘结力来完成。
当采用光面高强钢丝时,需经过“刻痕”、“压波”的方法来提高粘结力。
(3)具有一定的良好的加工性能。
如良好的可焊性能,以及钢筋经过镦头后不影响原有的力学性能等。
(4)具有较好的塑性。
高强钢筋的塑性一般较低,为了保证结构或构件在破坏之前有较大的变形能力,必须保证预应力钢筋有足够的塑性。
目前,我国常用的预应力钢筋有下述几种:(1)热处理钢筋。
热处理钢丝具有强度高、松弛小等特点。
它以盘圆形式供应,可省掉对焊和整直等工序,大大方便施工。
(2)消除应力钢丝。
消除应力钢丝有光面、螺旋肋和刻痕几种形式,施工方便。
(3)钢铰线。
一般由一股3根和一肢7根不同直径的高强度钢丝绞制在一起而成,施工方便且与混凝土粘结强度高。
7.何谓有粘结预应力混凝土和无粘结预应力混凝土?答:预应力混凝土构件中,沿预应力钢筋全长均与混凝土接触表面之间存在粘结作用,称为有粘结预应力混凝土。
如对先张法,预应力钢筋张拉后直接浇筑在混凝土内;对后张法,在张拉之后要在预留孔道中压入水泥浆,以使预应力钢筋与混凝土粘结在一起。
如果预应力钢筋沿全长与混凝土接触表面之间不存在粘结作用,可产生相对滑移,则称为无粘结预应力混凝土。
8.无粘结预应力混凝土与有粘结预应力混凝土相比有何特点? 答:无粘结预应力混凝土与有粘结预应力混凝土相比,有以下特点: (1)采用无粘结预应力混凝土不需要留孔、穿筋和灌浆,简化施工工 艺,又可在工厂制作,减少现场施工工序。
(2)如果忽略摩擦的影响,无粘结预应力混凝土中钢筋的应力沿全长是相等的,而且比有粘结预应力混凝土中钢筋的应力要低,所以无粘结预应力混凝土构件的开裂荷载低于有粘结预应力混凝土构件,裂缝疏而宽,挠度较大,需设置一定数量的非预应力钢筋以改善构件的受力性能。
(3)无粘结预应力混凝土中,预应力钢筋完全依靠端头锚具来传力,所以对锚具的质量及防腐蚀要求较高。
9.何谓锚具和夹具?简述螺丝端杆锚具、镦头锚具、锥形锚具、夹片式锚具的组成、工作原理、特点及应用。
答:通常把在构件制作完毕后,能够取下重复使用的称为夹具;锚固在构件端部,与构件联成一体共同受力,不能取下重复使用的称为锚具。
(1)螺丝端杆锚具如图9-5所示,主要用于预应力 钢筋张拉端。
预应力钢筋与螺丝端杆对 焊连接,螺丝端杆另一端与张拉千斤顶 相连。
张拉终止时,通过螺帽和垫板将 预应力钢筋锚固在构件上。
这种锚具的优点是比较简单、滑移 小和便于再次张拉;缺点是对预应力钢筋长度的精度要求高,不能太长或太短,否则螺纹长度不 够用。
需要特别注意焊接接头的质量,以防止发生脆断。
(2)镦头锚具如图9-6所示,这种锚具用于锚固钢筋束。
张拉端采用锚杯,固定端采用锚板。
先将钢丝端头镦粗成球形,穿入锚杯孔内,边张拉边拧紧锚杯的螺帽。
每个锚具可同时锚固几根到图9—5 螺丝端杆 锚具一百多根5mm~7mm 的高强钢丝,也可用于单根粗钢筋。
这种锚具的锚固性能可靠,锚固力大,张拉操作方便,但要求钢筋(丝)的长度有较高的精确度,否则会造成钢筋(丝)受力不均。
(3)锥形锚具如图9-7所示,这种锚 具是用于锚固多根直径为 5mm 、7mm 、8mm 、12mm 的平行钢丝束,或者锚固多 根直径为13mm 、15mm 的 平行钢铰线束。
锚具由锚环和锚塞两部分组成,锚环在构件混凝土浇灌前埋置在构件端部,锚塞中间有小孔作锚固后灌浆用。
由双作用千斤顶张拉钢丝后又将锚塞顶压入锚圈内,利用钢丝在锚塞与锚圈之间的摩擦力锚固钢丝。
(4)夹片式锚具如图9-8所示,这种锚具可以 根据需要,每套锚具锚固1~100根 直径为15.2mm 或12.7mm 的钢绞 线。
每套锚具是由一个锚座、一个 锚环和若干个夹片组成,钢绞线在每个孔道内通过有牙齿的钢夹片夹 住。
国内常见的夹片式锚具有HVM 、 OVM 、QM 等型号。
10.何谓预应力钢筋的张拉控制应力,其大小对预应力的效果有何影响?答:张拉控制应力是指张拉预应力钢筋时,预应力钢筋达到的最大应力值,即用张拉设备所控制的张拉力除以预应力钢筋截面面积所得到的应力,用σcon 表示。
张拉控制应力的大小直接影响预应力的效果。
张拉控制应力取值过低,影响预应力钢筋充分发挥作用;张拉控制应力取值越高,预应力钢筋对混凝土的预压作用越大。
但如果张拉控制应力取值过高,可能导致钢筋脆断,产生过大的应力松弛。
11.何谓预应力损失?引起预应力损失的因素有哪些?这些因素是如何产生的?答:由于张拉工艺和材料性能等原因,从张拉钢筋开始到构件使用整个过程中,张拉控制应力将不断降低,这种现象称为预应力损失。
引起预应力损失的因素有:张拉端锚具变形和钢筋内缩引起的预应力损失σl1;预应力图9-7 锥形锚具图9-6镦头锚具1- 锚杯;2-固定用锚帽;3-锚板(圆形);4-工具式拉杆;5-连接套筒;6-千斤顶;7-钢丝束;8-镦粗头;9-构件(屋架下弦)筋与孔道壁之间的摩擦引起的预应力损失σl2;混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失σl3;预应力筋应力松弛引起的预应力损失σl4;混凝土收缩和徐变引起的预应力损失σl5;螺旋式预应力筋挤压混凝土引起的预应力损失σl6。