微观经济学_第四章_生产函数
- 格式:ppt
- 大小:4.28 MB
- 文档页数:45
第四章生产论成本理论和生产理论是企业经营管理的关键所在,把生产函数和成本结合起来,就可以分析作为“经济人”的企业或厂商的利润函数。
本章讨论的企业或厂商,其生产的唯一目的就是使得其利润最大化,具体体现为利润最大化。
本章分析生产者行为,通过这种分析可以加深对供给定理的理解,本章只分析生产要素投入量和产出量之间的物质技术关系,不涉及货币因素,因而是一种实物关系。
难点在于各种产量的变化规律、一种要素的合理投入、多种要素的合理投入。
第一部分考查重点1、生产和生产函数2、短期生产函数3、长期生产函数4、等成本线和最优生产要素组合5、生产的经济区域6、规模报酬7、齐次生产函数与欧拉定理8、规模经济与范围经济第二部分主要内容解析一、生产和生产函数1、生产(1)厂商在微观经济分析中,生产者亦称厂商,是指能够做出统一的生产决策的单个经济单位,包括个人、合伙和公司性质的经营组织形式。
厂商被假定为合乎理性的经济人,其生产目的是为了追求最大化的利润。
(2)生产要素生产中的投入程总生产要素。
厂商进行生产的过程就是从生产要素的投入到产品产出的过程。
生产要素一般分为四类:①劳动(L):指人类在生产过程中提供的体力和智力的总和。
②土地(N):包括土地和地上、底下的一球自然资源。
③资本(K):包括资本品(实物形态)和货币资本(货币形态)。
④企业家才能(E):指企业家组织建立和经营管理企业的才能。
2、生产函数的概念生产函数表示在一定时间内,在技术水平不变的情况下,生产中所使用的各种生产要素的投入数量与所能生产的最大产量之间的关系。
一般地,如果1x ,2x ,…,n x 表示生产过程中投入的各种要素数量,Q 表示所能生产的最大产量,则生产函数可以表示为:),...,,(21n x x x f Q =假定生产者只投入劳动和资本这两种要素,则生产函数可表示为),(K L f Q =3、常见的生产函数(1)固定投入比例生产函数(也称为里昂惕夫生产函数)①概念固定投入比例生产函数:是指在每一产量水平上任何一对要素投入量之间的比例都是固定的生产函数的。
微观经济学的生产函数一、引言生产函数是微观经济学中的一个重要概念,用来描述生产过程中输入与输出之间的关系。
它是经济学家研究企业如何最大化利润、如何选择最优生产方式的基础。
本文将从定义、性质、分类、图像和应用几个方面对生产函数进行全面而详细的介绍。
二、定义生产函数是指某种特定技术条件下,将不同数量的劳动力和资本投入到生产过程中所能获得的最大产出量。
通常表示为Q=f(K,L),其中Q表示产品产量,K表示资本投入量,L表示劳动力投入量,f表示一个函数关系。
这个函数关系描述了输入与输出之间的关系。
三、性质1. 非负性:对于任意K和L,f(K,L)≥0。
2. 增减性:如果增加了某种输入因素(例如增加了资本投入),则在其他因素不变的情况下,输出量会增加。
3. 递减边际收益:当某种输入因素增加时,在其他因素不变的情况下,每单位输出量所需要增加的该输入因素会逐渐减少。
四、分类1. 短期生产函数:在短期内,某些输入因素(例如资本)是固定的,只有劳动力可以变化。
因此短期生产函数只考虑劳动力对产量的影响。
2. 长期生产函数:在长期内,所有输入因素都可以变化。
因此长期生产函数考虑了所有输入因素对产量的影响。
3. 固定比例生产函数:假设资本和劳动力的投入比例固定不变,即K/L=常数。
则该生产函数为固定比例生产函数。
4. 可变比例生产函数:假设资本和劳动力的投入比例可以变化,则该生产函数为可变比例生产函数。
五、图像在二维坐标系中,以L为横轴、Q为纵轴,画出Q=f(K,L)的等高线图像。
等高线表示同一水平面上的产品输出量。
随着L或K增加,等高线向右上方移动。
六、应用1. 企业最大化利润:根据成本、价格等条件选择最优的输入组合方式,以获得最大利润。
2. 企业规模扩张:通过分析长期生产函数来确定企业规模扩张所需投入的资本和劳动力。
3. 政府政策制定:政府可以通过调整税收、补贴等政策来影响企业的输入组合方式和产量水平。
七、总结生产函数是微观经济学中重要的概念之一,描述了输入与输出之间的关系。
第四章 生产函数1.下面是一张一种可变生产要素的短期生产函数的产量表: (1) 在表中填空。
(2) 该生产函数是否表现出边际报酬递减?如果是,是从第几单位的可变要素投入量开始的?可变要素的数量可变要素的总产量可变要素的平均产量 可变要素的边际产量122 103 24 4 125 606 67 708 0 963解答:(1) 可变要素的数量可变要素的总产量可变要素的平均产量可变要素的边际产量1 2 20 2 126 10 3 24 8 12 4 48 12 24 5 60 12 12 6 66 11 67 70 10 48 70 35/4 0 9637-7(2)该生产函数表现出边际报酬递减。
是从第5个单位的可变要素投入量开始,此时,平均产量开始大于边际产量。
2.用图说明短期生产函数Q =f(L ,k )的TP L 曲线,AP L 曲线和MP L 曲线的特征及其相互之间的关系。
(1)总产量线TP ,边际产量线MP 和平均产量线AP 都是先呈上升趋势,达到本身的最大值以后,再呈下降趋势。
参考第4题图。
(2) 首先,总产量与边际产量的关系: ① MP=TP ′(L, K),TP= ∫MP 。
②MP 等于TP 对应点的斜率,边际产量线是总产量线上各点的斜率值曲线。
斜率值最大的一点,即边际产量线拐点。
③MP =0时, TP 最大;边际产量线与横轴相交。
MP >0 时, TP 递增; MP <0 时, TP 递减。
其次,平均产量与边际产量关系。
21()()()TP TP L TP AP L MP AP L L L '-''===-①若MP >AP ,则AP 递增;平均产量上升的部分,边际产量一定高于平均产量;②若MP <AP ,则AP 递减;平均产量线下降的部分,边际产量线一定低于平均产量线。
③若MP =AP ,则AP 最大。
MP 交AP 的最高点。
最后,总产量与平均产量的关系。
第四章生产函数分析一、名词解释生产者生产函数生产要素固定投入比例生产函数一种可变要素的生产函数短期生产长期生产柯布一道格拉斯生产函数总产量平均产量边际产量边际报酬递减规律等产量线边际技术替代率边际技术替代率递减规律等成本线等斜线生产要素最优组合扩展线规模报酬规模报酬递增规模报酬不变规模报酬递减二、选择题知识点:生产函数1.生产要素(投入)和产出水平的关系称为()。
A.生产函数B.生产可能性曲线C.总成本曲线D.平均成本曲线2.生产函数表示( )。
A.一定数量的投入,至少能生产多少产品B.生产一定数量的产品,最多要投入多少生产要素C.投入与产出的关系D.以上都对观察图4。
1,回答第3—6题.3.如图4.1的生产函数,不变劳动投入的是( )。
A.L0B.L1 C L2D.L34.如图4.1的生产函数,下面关于劳动的边际生产率和平均生产率的说法中不正确的是( )。
A.边际生产率是生产函数的斜率B.在L3平均生产率等于边际生产率C.平均生产率开始先上升,然后下降D.边际生产在L3处达到最大5.如图4.1的生产函数,下列关于边际产量和平均产量的说法中,不正确的一项是( )。
A.在L2和L4处平均生产率相等B.边际生产率在L2处达到最大C.在L2处,平均生产率等于边际生产率D.平均生产率在L3处达到最大6.如图4.1的生产函数,则下列关于边际产量和平均产量的说法中,正确的一项是()。
A.C和D之间的平均生产率下降B.A和C之间的边际产量上升C.C点的平均生产率最小D.B和D之间的平均生产率上升7.如果生产函数为Q = min (3L,K),w = 5,r = 10,则劳动与资本的最优比例为()。
A.3 :1 B.1 :2 C.1 : 3 D.2 : 18.下面情形表示生产仍有潜力可挖的是()。
A.生产可能性边界上的任意一点B.生产可能性边界外的任意一点C.生产可能性边界内的任意一点D.以上都有可能知识点:总产出、平均产出、边际产出的概念及三者之间的关系9.当生产函数Q = f(L,K)的AP L为正且递减时,MP L可以是( ).A.递减且为正B.为0 C.递减且为负D.上述任何一种情况都有可能10.在总产量、平均产量和边际产量的变化过程中,下列说法中正确的是().A.总产量最先开始下降D.平均产量首先开始下降C.边际产量首先开始下降D.平均产量下降速度最快11.下列各项中,正确的是()。
微观经济学第四章生产函数第一节厂商生产者(厂商/企业)含义:指能够作出统一的生产决策的单个经济单位一、厂商的组织形式组织形式:个人企业(单个人独资经营的厂商组织)合伙制企业(两个人以上合资经营的厂商组织)公司制企业(按公司法建立和经营的具有法人资格的厂商组织)二、企业的本质三、厂商的目标——追求最大化利润第二节生产生产技术决定成本生产技术是指生产过程中投入量与产出量之间的关系一、生产函数厂商进行生产的过程就是从投入生产要素到生产出产品的过程生产要素:土地、劳动、资本、企业家才能生产函数(表示生产要素的投入量与最大产量之间的关系)含义:表示在一定时期内,在一定技术条件下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系表达式:Q=f(X1,X2,X3............,X N)Q最大产量X生产要素的投入量有N种生产要素Q=f(L,K)L劳动投入数量K资本投入数量(假定只使用资本和劳动)二、短期生产与长期生产1.短期1)含义:指生产者来不及调整全部生产要素的数量,至少有一种生产要素的数量是固定不变的时间周期2)不变投入:生产者在短期内无法进行数量调整的那部分要素投入是不变要素投入3)固定投入:生产者在短期内可以进行数量调整的那部分要素投入是可变要素投入2.长期含义:指生产者可以调整全部生产要素的数量的时间周期。
第三节短期生产函数一、短期生产函数1.假定资本投入量是固定的,劳动投入量是可变的2.短期生产函数:)K L,(f =Q 二、总产量、平均产量和边际产量1.总产量、平均产量和边际产量的概念短期生产函数:表示在资本投入量固定时,由劳动投入量变化所带来的最大产量的变化(劳动投入量与最大产量之间的关系)1)总产量(TP )劳动的总产量(TP L )含义:指与一定的可变要素劳动的投入量相对应的最大产量定义公式:)K L,(f =TP L 2)平均产量(AP )总产量÷投入量劳动的平均产量(AP L )含义:指平均每一单位可变要素的投入量所生产的产量定义公式:)K L,(P T =AP L L 3)边际产量(MP)产量增加量÷投入量增加量劳动的边际产量:指每增加一单位可变要素劳动的投入量说增加的产量定义公式:dL)K L,(P T L )K L,(P T =MP L L L d =??2.总产量曲线、平均产量曲线和边际产量曲线先呈上升趋势,而后达到各自的最高点以后,再呈下降的趋势三、边际报酬递减率1.内容:在技术水平不变的条件下,在连续等量地把某种可变生产要素增加到其他一种或集中不变的生产要素上去的过程中,当这种可变生产要素的投入量小于某一特定值时,增加该要素投入所带来的边际产量是递增的;当这种可变要素的投入量连续增加并超过这个特定值时,增加该要素所带来的边际产量是递减的。
第四章 参考答案一、名词解释1.生产者(producer)是指能够对生产和销售做出统一生产决策,且努力将若干种投入转化为产出的经济单位。
2.生产函数(product function)是指在一定时期内,在技术水平不变的情况下,生产中所运用的各种生产要素的数量和能产生的最大产量之间的关系。
3.生产要素(factors of production)一般是指劳动、土地、资本和企业家才能等。
4.固定比例投入生产函数(fixed-ratio input product function)的形式可以描述为⎪⎭⎫⎝⎛=v K u L Q ,min ,其中Q 为产量,L 、K 分别为劳动和资本的投入量,u 、v 分别为劳动和资本的生产技术系数,表示生产一单位产品所需的劳动和资本投入量。
5.一种可变要素的生产函数:表示在技术水平和其他投入不变的条件下,一种可变生产要素的投入量与其所生产的最大产量之间的关系的函数。
6.短期生产(short-run production)是指生产者来不及调整全部生产要素的数量,至少有一种生产要素的数量是固定不变的时间周期。
7.长期生产(long-run production)是指生产者可以调整全部生产要素的时间周期。
8.柯布----道格拉斯生产函数(Cobb-Douglas product function)的形式可以描述为βαK AL Q =,其中Q 为产量,L 、K 分别为劳动和资本投入量,A 、α和β为参数,α和β分别表示劳动和资本所得在总产量中所占份额,α<0,β<0。
9.总产量(total product)是指与一定的可变要素劳动的投入量相对应的最大产量。
10.平均产量(average product)是总产量与所使用的可变要素劳动的投入之比。
11.边际产量(marginal product)是增加一单位可变要素劳动投入量所增加的产量。
12.边际报酬递减规律(law of diminishing marginal returns)是指在技术水平不变的条件下,连续等量地把一种可变生产要素增加到其他生产要素数量不变的生产过程中,当这种生产要素的投入量小于某一特定值时,增加该要素投入所带来的边际产量是递增的,超过这个特定值时,所带来的边际产量是递减的。
微观经济学的生产函数介绍微观经济学中,生产函数是一个重要的概念,用来描述生产过程中输入与产出之间的关系。
生产函数可以帮助我们理解和分析经济中的生产效率和资源利用。
本文将详细探讨微观经济学中生产函数的概念、性质、应用以及相关理论模型。
生产函数的定义和表示生产函数是指将一定数量的输入转化为输出的关系式。
一般来说,输入可以包括劳动力、资本和技术等要素,而输出可以是物品或服务的产量。
生产函数可以用数学方式表示为:Y = f(K, L),其中Y表示产出(输出),K表示资本输入,L表示劳动力输入,f表示生产函数。
生产函数的性质生产函数具有一些重要的性质,包括: 1. 递增边际产出:就是当输入因素增加时,产量的边际增加。
2. 递减边际产出:当某一输入因素增加时,产量的边际增加率递减。
3. 规模报酬递增:当所有输入因素的数量同时增加时,产量的增长速度增加。
4. 规模报酬递减:当所有输入因素的数量同时增加时,产量的增长速度减缓。
5. 规模报酬不变:当所有输入因素的数量同时增加时,产量的增长速度保持不变。
生产函数的应用生产函数在经济学中有许多应用,下面将介绍其中的几个重要应用:生产要素的配置生产函数可以帮助企业合理配置生产要素(如劳动力和资本)。
通过分析生产函数,企业可以确定最优的生产要素组合,以实现最大化的产量和利润。
这在生产管理中非常重要。
生产效率的分析通过比较不同生产函数的性质和效果,可以评估和分析不同产业或企业的生产效率。
生产效率的提高是提升经济增长和企业竞争力的关键。
技术进步的研究生产函数也被应用于研究技术进步对产出的影响。
通过分析生产函数的参数变化,可以定量评估技术进步对产量的提升效果,从而为经济政策和发展战略提供重要依据。
生产函数的理论模型生产函数在经济学中有许多经典的理论模型,下面将介绍其中的几个重要模型:柯布-道格拉斯生产函数柯布-道格拉斯生产函数是最早应用于描述经济增长模型的生产函数之一。