用51单片机在数码管上实现 P.移动
- 格式:wps
- 大小:13.00 KB
- 文档页数:2
51单片机C语言实验及实践教程_13.动态数码显示技术发布: 2009-4-04 13:11 | 作者: 孙青安 | 查看: 82次1.实验任务如图4.13.1所示,P0端口接动态数码管的字形码笔段,P2端口接动态数码管的数位选择端,P1.7接一个开关,当开关接高电平时,显示“12345”字样;当开关接低电平时,显示“HELLO”字样。
2.电路原理图图4.13.13.系统板上硬件连线(1.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7用8芯排线连接到“动态数码显示”区域中的a-h端口上;(2.把“单片机系统”区域中的P2.0/A8-P2.7/A15用8芯排线连接到“动态数码显示”区域中的S1-S8端口上;(3.把“单片机系统”区域中的P1.7端口用导线连接到“独立式键盘”区域中的SP1端口上;4.程序设计内容(1.动态扫描方法动态接口采用各数码管循环轮流显示的方法,当循环显示频率较高时,利用人眼的暂留特性,看不出闪烁显示现象,这种显示需要一个接口完成字形码的输出(字形选择),另一接口完成各数码管的轮流点亮(数位选择)。
(2.在进行数码显示的时候,要对显示单元开辟8个显示缓冲区,每个显示缓冲区装有显示的不同数据即可。
(3.对于显示的字形码数据我们采用查表方法来完成。
5.程序框图图4.13.26.汇编源程序ORG 00HSTART: JB P1.7,DIR1MOV DPTR,#TABLE1SJMP DIRDIR1: MOV DPTR,#TABLE2DIR: MOV R0,#00HMOV R1,#01HNEXT: MOV A,R0MOVC A,@A+DPTRMOV P0,AMOV A,R1MOV P2,ALCALL DAYINC R0RL AMOV R1,ACJNE R1,#0DFH,NEXTSJMP STARTDAY: MOV R6,#4D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE1: DB 06H,5BH,4FH,66H,6DHTABLE2: DB 78H,79H,38H,38H,3FHEND7.C语言源程序#include <AT89X51.H>unsigned charcode table1[]={0x06,0x5b,0x4f,0x66,0x6d}; unsigned char codetable2[]={0x78,0x79,0x38,0x38,0x3f}; unsigned char i;unsigned char a,b;unsigned char temp;void main(void){while(1){temp=0xfe;for(i=0;i<5;i++){if(P1_7==1){P0=table1[i];}else{P0=table2[i];}P2=temp;a=temp<<(i+1);b=temp>>(7-i);temp=a|b;for(a=4;a>0;a--)for(b=248;b>0;b--);}} }。
51单片机数码管0到99循环程序代码1. 概述在嵌入式系统的开发中,数码管是一种常见的输出设备,可以用于显示数字、字符等信息。
而51单片机是一种广泛应用的微控制器,其结合了强大的功能和灵活的应用,能够很好地驱动数码管。
本文将介绍如何使用51单片机编写一个循环显示0到99的程序,通过数码管输出这些数字。
2. 电路连接我们需要连接51单片机和数码管。
通常我们使用的是共阴数码管,其连接方式如下:- VCC连接到5V电源- GND连接到GND- DIO(数据输入/输出)连接到51单片机的IO口3. 程序设计下面是一个简单的C语言程序设计,用于控制数码管显示0到99的数字。
```c#include <reg51.h>sbit DIO = P2^0; // 数码管数据输入/输出sbit CL = P2^1; // 数码管片选信号unsigned char code numCode[10] = { 0xc0, // 00xf9, // 10xa4, // 20xb0, // 30x99, // 40x92, // 50x82, // 60xf8, // 70x80, // 80x90 // 9};//延时函数void delay(unsigned int i) {unsigned int j,k;for (j=i;j>0;j--)for(k=110;k>0;k--);}void display(unsigned char num) { CL = 1; //关闭片选DIO = numCode[num / 10]; //十位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);CL = 1; //关闭片选DIO = numCode[num 10]; //个位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);}void m本人n() {unsigned char i,j;while(1) {for(i=0;i<10;i++) {for(j=0;j<10;j++) {display(i * 10 + j);}}}}```4. 程序说明- 首先定义了数码管的连接引脚,以及0~9的显示编码。
51单片机动态数码管实验报告一、背景动态数码管是一种常见的显示装置,它由多个LED组成,可以显示数字、字母和符号等信息。
在嵌入式系统中,动态数码管常用于显示各种信息,如温度、湿度、时间等。
本次实验旨在通过学习51单片机动态数码管的使用方法,了解动态数码管的工作原理和使用技巧。
二、分析动态数码管由多个共阴极或共阳极LED组成,每个LED都可用于显示一个数字或字符。
动态数码管的显示是通过快速切换数码管的管脚电平实现的,每个数码管显示部分的亮度和显示时间取决于刷新速度。
本次实验涉及到四位数码管,所以需要控制四个共阳极或共阴极数码管,通过快速切换显示四个数码管的方式实现动态显示效果。
实验所需要的材料有:51单片机开发板、数码管模块、面包板、杜邦线等。
以下是步骤:1.将数码管模块的共阳极或共阴极连接到51单片机开发板的IO口。
根据数码管模块的引脚连接方式,选择合适的IO口。
2.在51单片机开发板上搭建实验电路。
首先将开发板的VCC引脚连接到面包板的正电源线上,GND引脚连接到面包板的地线上。
然后将数码管模块的VCC引脚连接到面包板的正电源线上,GND引脚连接到面包板的地线上。
最后将数码管模块的信号引脚连接到51单片机开发板选择的IO口上。
3.编写程序。
使用C语言编写代码,通过控制IO口的电平和延时实现数码管的动态显示功能。
根据所需显示的数字和字符,选择合适的代码逻辑。
4.将编写好的程序下载到51单片机开发板上。
使用USB转串口工具将开发板与电脑连接,使用相应的下载软件将程序下载到开发板。
5.执行程序。
将开发板上的动态数码管模块打开,观察数码管的显示效果。
根据实际需求,调整程序中的显示内容和显示速度。
三、结果经过以上步骤,可以成功实现51单片机动态数码管的显示功能。
根据编写的程序和韦氏编码表,可以显示各种数字、字母和符号等信息。
通过调整程序中的显示内容和显示速度,可以实现不同的显示效果。
四、建议在进行实验过程中,需要注意以下几点:1.确保电路连接正确。
51单片机指令使用方法51单片机是一种常用的嵌入式微控制器,广泛应用于各种电子设备中。
它具有强大的控制能力和灵活的指令集,为我们开发各种应用提供了便利。
在使用51单片机时,我们需要熟悉其指令的使用方法,下面我们来介绍一些常用的指令及其应用。
首先,我们来讲解一些与数据传输和处理相关的指令。
MOV指令是最常用的指令之一,用于将一个数据从一个寄存器或内存单元传输到另一个寄存器或内存单元。
通过MOV指令,我们可以在单片机中实现数据的复制、传递和处理等操作。
除了MOV指令,还有一些其他常用的数据传输和处理指令,比如ADD指令用于进行加法运算,AND指令用于进行逻辑与操作,OR指令用于进行逻辑或操作等。
这些指令可以实现各种数据处理、逻辑运算和位操作等功能,为我们的程序提供灵活性和多样性。
接下来,我们介绍一些与控制流程相关的指令。
循环结构是程序中常用的一种控制结构,而JMP指令和CJNE指令可以实现跳转和循环控制。
JMP指令用于无条件跳转到指定的地址,而CJNE指令则根据比较结果决定是否跳转到指定的地址。
通过这些指令,我们可以实现程序的分支、循环和条件控制等功能。
此外,还有一些与中断处理相关的指令需要我们熟悉。
中断是单片机中常用的一种事件触发机制,通过中断处理,我们可以实现对外部事件的及时响应。
EA指令用于使能全局中断,而EN和DIS指令用于使能和禁止外部中断。
通过这些指令,我们可以合理利用中断机制,提高程序的响应速度和实时性。
最后,我们来介绍一些与IO口操作相关的指令。
单片机的IO口是与外部设备进行通信的接口,而P1、P2等寄存器则是与IO口对应的数据寄存器。
通过MOV指令和SETB/C指令,我们可以实现对IO口数据的读写操作和控制。
通过这些指令,我们可以与外部设备进行数据交互,实现各种输入输出功能。
总结起来,51单片机的指令使用是嵌入式开发中的基础知识,熟练掌握各种指令的使用方法能够提高我们的开发效率和程序的性能。
基于51单片机的LED数码管动态显示LED数码管动态显示就是一位一位地轮流点亮各位数码管,对于每一位LED数码管来说,每隔一段时间点亮一次,利用人眼的“视觉暂留"效应,采用循环扫描的方式,分时轮流选通各数码管的公共端,使数码管轮流导通显示。
当扫描速度达到一定程度时,人眼就分辨不出来了。
尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,认为各数码管是同时发光的。
若数码管的位数不大于8位时,只需两个8位I/O口。
1 硬件设计利用51单片机的P0口输出段码,P2口输出位码,其电路原理图如下所示。
在桌面上双击图标,打开ISIS 7 Professional窗口(本人使用的是v7.4 SP3中文版)。
单击菜单命令“文件”→“新建设计”,选择DEFAULT模板,保存文件名为“DT.DSN”。
在器件选择按钮中单击“P”按钮,或执行菜单命令“库”→“拾取元件/符号”,添加如下表所示的元件。
51单片机A T89C51 一片晶体CRYSTAL 12MHz 一只瓷片电容CAP 22pF 二只电解电容CAP-ELEC 10uF 一只电阻RES 10K 一只电阻RES 4.7K 四只双列电阻网络Rx8 300R(Ω) 一只四位七段数码管7SEG-MPX4-CA一只三极管PNP四只若用Proteus软件进行仿真,则上图中的晶振和复位电路以及U1的31脚,都可以不画,它们都是默认的。
在ISIS原理图编辑窗口中放置元件,再单击工具箱中元件终端图标,在对象选择器中单击POWER 和GROUND放置电源和地。
放置好元件后,布好线。
左键双击各元件,设置相应元件参数,完成电路图的设计。
2 软件设计LED数码管动态显示是一位一位地轮流点亮各位数码管的,因此要考虑每一位点亮的保持时间和间隔时间。
保持时间太短,则发光太弱而人眼无法看清;时间太长,则间隔时间也将太长(假设N位,则间隔时间=保持时间X(N-1)),使人眼看到的数字闪烁。
51单片机实验手册一、概述51单片机是一种经典的8位微控制器,具有广泛的应用领域。
本实验手册旨在提供详细的实验指导,帮助初学者快速入门,并为进一步的学习提供基础。
二、实验准备在进行51单片机实验之前,我们需要准备以下材料:1. 一块51单片机开发板2. USB数据线或者串口线3. 电脑及编程软件4. 面包板及对应的连接线5. 红、绿、蓝LED以及相应的电阻三、实验一:LED闪烁LED闪烁是最基础的实验之一,通过控制51单片机的I/O口状态,使LED灯交替亮灭。
1. 连接电路将51单片机的VCC引脚连接到正极,GND引脚连接到负极,将LED的长脚连接到P1.0引脚,短脚连接到GND引脚。
2. 编写程序使用C语言编写如下程序:```c#include <reg52.h>void main() {while(1) {P1 = 0x00; // P1置低电平,LED灯熄灭Delay(1000); // 延时1秒P1 = 0xFF; // P1置高电平,LED灯点亮Delay(1000); // 延时1秒}}void Delay(unsigned int t) {while (t--);}```3. 烧录程序将编写好的程序通过编程软件下载到51单片机中。
4. 运行实验将USB数据线或串口线连接到51单片机开发板和电脑,将开发板上的开关打开,观察LED灯的闪烁情况。
四、实验二:数码管显示通过控制51单片机的I/O口状态,驱动数码管显示数字。
1. 连接电路将51单片机的VCC引脚连接到正极,GND引脚连接到负极,将数码管的A、B、C、D、E、F、G引脚分别连接到P1.0、P1.1、P1.2、P1.3、P1.4、P1.5、P1.6引脚。
2. 编写程序使用C语言编写如下程序:```c#include <reg52.h>unsigned char code segment[] = { // 数码管段码表0x3F, // 数字00x06, // 数字10x5B, // 数字20x4F, // 数字30x66, // 数字40x6D, // 数字50x7D, // 数字60x07, // 数字70x7F, // 数字80x6F // 数字9};void main() {unsigned int i;while(1) {for(i = 0; i < 10; i++) {P1 = segment[i]; // 依次在数码管上显示数字0-9 Delay(1000); // 延时1秒}}}void Delay(unsigned int t) {while (t--);}```3. 烧录程序将编写好的程序通过编程软件下载到51单片机中。
51单片机(四位数码管的显示)程序基于单片机V1或V2实验系统,编写一个程序,实现以下功能:1)首先在数码管上显示“P_ _ _”4个字符;2)等待按键,如按了任何一个键,则将这4个字符清除,改为显示“0000”4个字符(为数字的0)。
最佳答案下面这个程序是4x4距阵键盘,LED数码管显示,一共可以到0-F显示,你可以稍微改一下就可以实现你的功能了,如还有问题请发信息,希望能帮上你!#include<at89x52.h>unsigned char codeDig[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1 ,0x86,0x8e}; //gongyang数码管0-F 代码unsigned char k; //设置全局变量k 为键盘的键值/************************************键盘延时函数****************************/void key_delay(void) //延时函数{int t;for(t=0;t<500;t++);}/************************************键盘扫描函数******************************/void keyscan(void) //键盘扫描函数{unsigned char a;P2 = 0xf0; //键盘初始化if(P2!=0xf0) //有键按下?{key_delay(); //延时if(P2!=0xf0) //确认真的有键按下?{P2 = 0xfe; //使行线P2.4为低电平,其余行为高电平key_delay();a = P2; //a作为缓存switch (a) //开始执行行列扫描{case 0xee:k=15;break;case 0xde:k=11;break;case 0xbe:k=7;break;case 0x7e:k=3;break;default:P2 = 0xfd; //使行线P2.5为低电平,其余行为高电平a = P2;switch (a){case 0xed:k=14;break;case 0xdd:k=10;break;case 0xbd:k=6;break;case 0x7d:k=2;break;default:P2 = 0xfb; //使行线P2.6为低电平,其余行为高电平a = P2;switch (a){case 0xeb:k=13;break;case 0xdb:k=9;break;case 0xbb:k=5;break;case 0x7b:k=1;break;default:P2 = 0xf7; //使行线P2.7为低电平,其余行为高电平a = P2;switch (a){case 0xe7:k=12;break;case 0xd7:k=8;break;case 0xb7:k=4;break;case 0x77:k=0;break;default:break;}}}break;}}}}/****************************** ***主函数*************************************/ void main(void){while(1){keyscan(); //调用键盘扫描函数switch(k) //查找按键对应的数码管显示代码{case 0:P0=Dig[0];break;case 1:P0=Dig[1];break;case 2:P0=Dig[2];break;case 3:P0=Dig[3];break;case 4:P0=Dig[4];break;case 5:P0=Dig[5];break;case 6:P0=Dig[6];break;case 7:P0=Dig[7];break;case 8:P0=Dig[8];break;case 9:P0=Dig[9];break;case 10:P0=Dig[10];break;case 11:P0=Dig[11];break;case 12:P0=Dig[12];break;case 13:P0=Dig[13];break;case 14:P0=Dig[14];break;case 15:P0=Dig[15];break;default:break; //退出}}}/**********************************end***************************************/。