基于51单片机的LED数码管动态显示
- 格式:doc
- 大小:19.00 KB
- 文档页数:4
51单片机动态数码管实验报告一、背景动态数码管是一种常见的显示装置,它由多个LED组成,可以显示数字、字母和符号等信息。
在嵌入式系统中,动态数码管常用于显示各种信息,如温度、湿度、时间等。
本次实验旨在通过学习51单片机动态数码管的使用方法,了解动态数码管的工作原理和使用技巧。
二、分析动态数码管由多个共阴极或共阳极LED组成,每个LED都可用于显示一个数字或字符。
动态数码管的显示是通过快速切换数码管的管脚电平实现的,每个数码管显示部分的亮度和显示时间取决于刷新速度。
本次实验涉及到四位数码管,所以需要控制四个共阳极或共阴极数码管,通过快速切换显示四个数码管的方式实现动态显示效果。
实验所需要的材料有:51单片机开发板、数码管模块、面包板、杜邦线等。
以下是步骤:1.将数码管模块的共阳极或共阴极连接到51单片机开发板的IO口。
根据数码管模块的引脚连接方式,选择合适的IO口。
2.在51单片机开发板上搭建实验电路。
首先将开发板的VCC引脚连接到面包板的正电源线上,GND引脚连接到面包板的地线上。
然后将数码管模块的VCC引脚连接到面包板的正电源线上,GND引脚连接到面包板的地线上。
最后将数码管模块的信号引脚连接到51单片机开发板选择的IO口上。
3.编写程序。
使用C语言编写代码,通过控制IO口的电平和延时实现数码管的动态显示功能。
根据所需显示的数字和字符,选择合适的代码逻辑。
4.将编写好的程序下载到51单片机开发板上。
使用USB转串口工具将开发板与电脑连接,使用相应的下载软件将程序下载到开发板。
5.执行程序。
将开发板上的动态数码管模块打开,观察数码管的显示效果。
根据实际需求,调整程序中的显示内容和显示速度。
三、结果经过以上步骤,可以成功实现51单片机动态数码管的显示功能。
根据编写的程序和韦氏编码表,可以显示各种数字、字母和符号等信息。
通过调整程序中的显示内容和显示速度,可以实现不同的显示效果。
四、建议在进行实验过程中,需要注意以下几点:1.确保电路连接正确。
动态显示1.掌握LED数码管显示及其一般电路结构;2.掌握LED动态显示程序的一般设计方法。
一、实验内容动态显示,也称为扫描显示。
显示器由6个共阴极LED数码管构成。
单片机的P0口输出显示段码,由一片74LS245输出给LED管;由P1口输出位码,经74LS04输出给LED显示。
二、实验步骤1、打开Proteus ISIS编辑环境,按下表所列的元件清单添加元件。
图1 动态显示实验电路原理图2、按实验要求在KeilC中创建项目,编辑、编译程序。
3、将编译生成的目标码文件(后缀为.Hex)传入Proteus的实验电路中。
4、在Proteus ISIS仿真环境中运行程序,观察实验运行结果并记录。
三、实验要求1.编写一显示程序显示201071;2.显示特殊字符good;3.调整软件延时子程序的循环初值,逐渐加大每一位LED点亮的时间,观察程序运行结果。
四、参考程序dbuf equ 30h ;置存储区首址temp equ 40h ;置缓冲区首址org 00hmov 30h,#2 ;存入数据mov 31h,#0mov 32h,#1mov 33h,#0mov 34h,#7mov 35h,#1mov r0,#dbufmov r1,#tempmov r2,#6 ;六位显示器mov dptr,#segtab ;段码表首地址dp00: mov a,@r0 ;取要显示的数据movc a,@a+dptr ;查表取段码mov @r1,a ;段码暂存inc r1inc r0djnz r2,dp00disp0: mov r0,#temp ;显示子程序mov r1,#6 ;扫描6次mov r2,#01h ;从第一位开始dp01: mov a,@r0mov p0,a ;段码输出mov a,r2 ;取位码mov p1,a ;位码输出acall delay ;调用延时mov a,r2rl amov r2,ainc r0djnz r1,dp01sjmp disp0segtab: db 3fh,06h,5bh,4fh,66hdb 6dh,7dh,07h,7fh,6fhdelay: mov r4,#03h ;延时子程序aa1: mov r5,0ffhaa: djnz r5,aadjnz r4,aa1retend实验原理MCS-51单片机内设置了两个可编程的16位定时器T0和T1,通过编程,可以设定为定时器和外部计数方式。
33第2卷 第22期产业科技创新 2020,2(22):33~34Industrial Technology Innovation 基于51单片机实现LED数码管静态与动态显示的设计浅析龙 志(广州大学松田学院,广州 增城 511370)摘要:随着社会的发展,在我们日常的生活中,数码管的应用随处可见,尤其是在电子应用设计显示等方面常常发挥着非常重要的作用,因此研究数码管的显示有非常重要的现实意义。
数码管我们可以分为静态显示和动态显示,这两种显示有着本质的区别,静态显示的特点是占用CPU 时间少,显示便于监测和控制,显示字形稳定,而动态数码管的显示,效果相对静态显示亮度差少许,但成本较低。
本设计主要是基于51单片机,先通过结合集成芯片74HC573对LED 数码管静态显示的硬件电路设计与分析,进一步拓展到采用芯片74HC138与LED 数码管动态显示的硬件电路设计与分析,最终实现两种不同的电路设计显示的方法。
关键词:LED 数码管;静态显示;动态显示;51单片机中图分类号:TP368.12 文献标识码:A 文章编号:2096-6164(2020)22-0033-02随着电子应用技术的不断发展,显示电路在电子设计应用方面更加广泛,尤其是LED 数码管显示在各行各业中的应用更加重要,如红绿交通灯显示,电子时钟显示,家电产品功能显示等方面都需要用到LED 数码管作为显示。
因此,对LED 数码管的显示控制有着非常重要的现实意义。
因此我们要实现LED 数码管的熟练显示控制,我们必须要根据数码管的特点来进行分析和设计,数码管有静态显示和动态显示的两种方法,接下对这两种电路作详细的分析与设计,最终实现对LED 数码管静态与动态的两种不同显示设计方法。
1 数码管静态显示电路设计数码管静态显示设计是利用MCS-51单片机结合两片集成芯片74HC573,实现对4个LED 数码管的显示控制。
具体设计如图1所示:图1 数码管静态显示设计电路图本电路设计主要是利用单片机的P0口来实现对数码管的位选控制与段选的控制,P0口之所以能够正确的对数码管进行位选与段选的控制,关键是在于设计中使用了芯片74HC573。
基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文本篇报告将详细介绍基于单片机的按键控制LED数码管共阴极动态显示电路的设计。
一、引言LED数码管是一种常用的数字显示器件,广泛应用于各种计数器、时钟和计时器等电子设备中。
本设计旨在利用单片机实现对LED数码管的动态显示,并通过按键控制显示的数字。
二、设计方案1.系统结构本系统采用基于单片机的数字显示方案,其中包括一个单片机、数码管显示模块和按键模块。
单片机负责接收按键输入信号,并根据输入信号控制数码管显示相应的数字。
2.系统设计(1)数码管显示模块:该模块由共阴极LED数码管组成,共阴极接地,通过接通不同的端口线来控制数码管显示不同的数字。
(2)按键模块:该模块由多个按键组成,用于用户输入指定的数字。
每个按键接一个IO脚,通过按下不同的按键,触发不同的端口输入。
(3)单片机:本设计选用51单片机作为控制核心,通过IO口与数码管显示模块和按键模块连接。
单片机根据按键输入信号的变化,对数码管进行动态显示。
3.设计过程(1)针对单片机的接线设计:将单片机的IO口分别与数码管显示模块和按键模块连接。
将数码管的共阳极接电源正极,数码管的各段(即a、b、c、d、e、f、g)接单片机的IO脚。
(2)针对单片机软件设计:设计单片机程序实现按键输入的检测和数码管动态显示的控制。
首先初始化IO口,设置按键引脚为输入端口,设置数码管引脚为输出端口。
然后循环检测按键的状态。
当检测到按键被按下时,根据按键的不同选择分别显示不同的数字。
4.功能要求(1)按下不同的按键,数码管能够显示相应的数字,实现动态显示。
(2)按键输入具有去抖功能,避免误触发。
(3)程序运行稳定,能够正确响应按键输入,显示正确的数字。
三、实验结果经过实验验证,本设计实现了按键控制LED数码管共阴极动态显示的功能要求。
按下不同的按键,数码管能够正确显示相应的数字,程序运行稳定,无误触发现象。
51单片机数码管动态显示分析51单片机数码管动态显示是一种常见的数字显示方式,其主要通过控制不同位数的数码管,使其依次显示数字,从而实现数字动态显示的效果。
以下将从原理和实现两个方面对51单片机数码管动态显示进行分析。
一、原理分析51单片机数码管动态显示的原理主要分为两部分,分别为定时器控制和位选控制。
定时器控制:在51单片机中使用定时器是为了保证数字动态显示的稳定性。
通过定时器中断的方式来控制数码管的显示时间,使得每个数字都有足够的时间显示,并且切换速度平稳。
位选控制:在数码管动态显示过程中,需要依次控制不同位数的数码管显示数字。
这是通过位选控制器实现的,它会依次选中各位数码管,并显示出要显示的数字。
这个过程会不停地重复,从而实现数字的动态显示。
二、实现分析51单片机数码管动态显示的实现需要以下几个步骤:1. 确定使用的数码管数量及其接口:需要确定使用几个数码管以及它们的引脚分别对应的单片机IO口。
2. 编写显示函数:编写一个函数来控制数码管的动态显示,其中需要实现定时器中断以及位选控制的功能。
3. 循环调用显示函数:将编写好的显示函数放到主函数中进行调用,并不断地循环执行,从而实现数字的动态显示。
需要注意的是,在编写显示函数的过程中,需要确定定时器中断的时间间隔、位选控制的顺序以及每个数码管对应的IO口。
这些因素会直接影响到数字的显示效果,因此需要仔细调试以达到最佳的显示效果。
在实现过程中,还需要考虑到如何读取用户输入并将其显示在数码管上。
一种常见的方式是通过外部按键来读取用户输入,然后通过数码管动态显示的方式,将输入的数字依次显示出来。
总之,51单片机数码管动态显示是一种常见的数字显示方式,其实现原理和步骤相对比较简单。
需要注意的是,在实际应用中还需要结合实际需求进行相应的调整,以达到最佳的显示效果。
LED动态显示设计总体设计思路如下:依题意用MCS-51单片机设计一个在四位LED数码管上动态显示出数字1、2、3、4。
一、单片机系统可分为三部分:硬件、软件、单片机最小系统(含时钟复位电路).二、单片机系统硬件原理图五、程序清单ORG 0000HLJMP MAINORG 0100H MAIN: MOV SP,#50HMOV 30H,#06HMOV 31H,#5BHMOV 32H,#4FHMOV 33H,#66HMOV 34H,#77HMOV R0,#30H DISP: MOV P3,#0FFHMOV P1,@R0MOV P3,34HMOV A,34HRR AMOV 34H,AINC R0MOV A,R0ANL A,#33HMOV R0,ALCALL DELAYSJMP DISP DELAY: MOV R2,#8D1: MOV R3,#200D2: MOV R4,#250DJNZ R4,$DJNZ R3,D2DJNZ R2,D1RET选用AT89C51系列单片机制作一个动态显示数字“1”,“2”,“3”,“4”效果。
I/O中P1口接四位数码管的BCD码笔段,分别P1.0~P1.7对应a~dp管脚端口上。
显示1~4数码管控制端依次为:P3.7、P3.6、P3.5、P3.4。
三、单片机软件设计用MCS-51单片机中的寻址方式间接寻址Mov direct, @R0,30H~33H分别存入数字1,2,3,4的BCD码。
R0寄存器寻址30H~33H。
34H存数码管控制端选择数据,采用软件延时间断显示。
四、程序流程图。
物理与电子工程学院《单片机原理与接口技术》课程设计报告书设计题目:基于单片机LED数码管共阴极显示电路专业:自动化班级: 14级接本班学生姓名:李超学号: 2010140343108指导教师:成燕平2014年6月9日物理与电子工程学院课程设计任务书专业:自动化班级: 14级接本1班随着计算机技术的发展,现代的计算机都是大规模集成电路计算机它们具有功能强、结构紧凑、系统可靠等特点,其发展趋势是巨型化、微型化、网络化及智能化。
微型化是计算机发展的重要方向,也就是把计算机的运算器、控制器、存储器、I/O接口四个组成部分集成在一个硅片内,于是就出现了一个以大规模集成电路为主要组成的微型计算机即单片机(Single Chip Microcomputer)。
正是由于单片机技术的发展,才能使LED七段数码管能够在减少驱动器的情况下能够直接被驱动。
由于LED数码管显示技术的优势使得它被广泛应用在工业过程控制系统、智能仪表,智能产品等领域。
本论文重点介绍了LED(light emission diode)数码管显示技术,并且编写了这种显示技术在单片机中实现的关键编码以及提供了参考原理简图。
关键词:LED技术;计算机硬件;单片机;数码管1 引言 (1)2 设计的目的 (2)3 电路的设计与分析 (2)3.1电路的总体设计 (2)3. 2数码管的工作原理 (3)3.3电路的原理框图 (5)3.4计数电路的分析与设计 (6)4 译码显示电路的设计与分析 (7)4 .1译码电路的设计 (7)4.2译码电路的分析 (8)5调试及运行结果分析 (9)5.1调试及运行 (9)5.2结果分析 (9)5.3总电路仿真 (10)6心得体会 (11)参考文献 (12)附录 (13)1 引言用单片机驱动LED数码管有很多方法,按显示方式可分静态显示和动态(扫描)显示;按译码方式可分硬件译码和软件译码。
静态显示数据稳定,占用很少的CPU时间。
基于51单片机的LED数码管动态显示
LED数码管动态显示就是一位一位地轮流点亮各位数码管,对于每一位LED数码管来说,每隔一段时间点亮一次,利用人眼的“视觉暂留"效应,采用循环扫描的方式,分时轮流选通各数码管的公共端,使数码管轮流导通显示。
当扫描速度达到一定程度时,人眼就分辨不出来了。
尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,认为各数码管是同时发光的。
若数码管的位数不大于8位时,只需两个8位I/O口。
1 硬件设计
利用51单片机的P0口输出段码,P2口输出位码,其电路原理图如下所示。
在桌面上双击图标,打开ISIS 7 Professional窗口(本人使用的是 SP3中文版)。
单击菜单命令“文件”→“新建设计”,选择DEFAULT模板,保存文件名为“”。
在器件选择按钮中单击“P”按钮,或执行菜单命令“库”→“拾取元件/符号”,添加如下表所示的元件。
51单片机AT89C51 一片
晶体CRYSTAL 12MHz 一只
瓷片电容CAP 22pF 二只
电解电容CAP-ELEC 10uF 一只
电阻RES 10K 一只
电阻RES 四只
双列电阻网络 Rx8 300R(Ω) 一只
四位七段数码管7SEG-MPX4-CA 一只
三极管 PNP 四只
若用Proteus软件进行仿真,则上图中的晶振和复位电路以及U1的31脚,都可以不画,它们都是默认的。
在ISIS原理图编辑窗口中放置元件,再单击工具箱中元件终端图标,在对象选择器中单击POWER和GROUND放置电源和地。
放置好元件后,布好线。
左键双击各元件,设置相应元件参数,完成电路图的设计。
2 软件设计
LED数码管动态显示是一位一位地轮流点亮各位数码管的,因此要考虑每一位点亮的保持时间和间隔时间。
保持时间太短,则发光太弱而人眼无法看清;时间太长,则间隔时间也将太长(假设N位,则间隔时间=保持时间X(N-1)),使人眼看到的数字闪烁。
在程序中要合理的选择合适的保持时间和间隔时间。
而循环次数则正比于显示的变化速度。
LED数码管动态显示的流程如下所示。
LED数码管动态显示的详细C51程序如下。
/*****************************************
*通过P0及P2口控制四只数码管,12M晶振
*****************************************/
#include ""
#define uchar unsigned char
#define uint unsigned int
uchar code ddata[]={
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90, 0x88,0x83,0xc6,0xa1,0x86,0x8e,0xc0,0xf9,0xa4
}; ..F,0,1,2,3的段码
/****延时函数*******************************/
void delayms(uint t)
{
uint i,j;
for(i=0;i<t;i++)
for(j=0;j<120;j++)
;
}
main()
{
while(1)
{
uint i,j,k;
for(k=1;k<17;k++) //16个字符
{
for(j=0;j<50;j++)//反比于字符显示变化速度
{
for(i=1;i<5;i++) //4位
{
P0=ddata[k+i-2];
switch(i)
{
case 1:P2=0XFE;break; //点亮第1位
case 2:P2=0XFD;break; //点亮第2位
case 3:P2=0XFB;break; //点亮第3位
case 4:P2=0XF7;break; //点亮第4位
}
delayms(5);
P2=0XFF; // 熄灭
}
}
}
}
}
打开Keil程序(本人使用的是中文版),执行菜单命令“工程”→“新建工程”创建“动态”项目,并选择单片机型号为AT89C51。
执行菜单命令“文件”→“新建”创建文件,输入C语言源程序,保存为“”。
在Project Workspace窗口中右击源代码组1,选择“添加文件到组‘源代码组 l’”将源程序“”添加到项目中。
在Keil中执行执行菜单命令“工程”→“创建目标”(或点击“创建目标”快捷按钮),编译源程序。
如果编译成功,则在“Output Window”的“创建”窗口中显示没有错误,并创建了“”文件。
3 仿真与调试
关于Proteus与Keil的联合仿真调试,可参见我以前所写的博文或其它参考资料。
启动Proteus的ISIS,并将其放在屏幕的右上角(可将原理图放大到合适大小);再启动Keil的μVision3,并将其放在屏幕的左下角。
在Keil中执行菜单命令“调试”→“启动/停止调试”,或直接单击图标,进入Keil调试环境。
同时,在Proteus ISIS的窗口中可看出Proteus也进入了程序调试状态。
在Keil代码编辑窗口中设置相应断点,断点的设置方法:在需要设置断点语句前双击鼠标左键,可设置断点;再次双击,可取消该断点。
在Keil中按F5键(或点击“运行”快捷按钮)运行程序。
四位LED数码管显示0123、1234、2345……CdEF、dEf0、EF01、F012……如此循环。
或可以点击单步、运行到光标处、全速运行等快捷按钮,以及同时观察工程窗口寄存器页面、存储器窗口等,来进行仿真调试。