二次根式和它的性质(2)
- 格式:ppt
- 大小:1.83 MB
- 文档页数:8
二次根式知识点二次根式是初中数学中的一个重要概念,它在数学的学习和实际应用中都有着广泛的用途。
接下来,咱们就来详细聊聊二次根式的相关知识。
首先,咱们得搞清楚啥是二次根式。
一般地,形如√a(a≥0)的式子叫做二次根式。
这里要特别注意,根号下的数 a 必须是非负数,不然就没有意义啦。
那二次根式有哪些性质呢?这可是重点哟!性质一:(√a)²= a(a≥0)。
也就是说,一个非负数开平方再平方,还是它本身。
性质二:√a² =|a|。
当a≥0 时,√a² = a;当 a<0 时,√a² = a。
这个性质在化简二次根式的时候经常用到。
性质三:√ab =√a × √b(a≥0,b≥0)。
性质四:√a/b =√a /√b(a≥0,b>0)。
了解了这些性质,咱们来看看二次根式的运算。
二次根式的加减法,关键是要把二次根式化成最简二次根式,然后把被开方数相同的二次根式(也就是同类二次根式)进行合并。
比如,√8 +√18 =2√2 +3√2 =5√2。
二次根式的乘法,就可以直接运用√ab =√a × √b 这个性质。
例如,√2 × √6 =√12 =2√3 。
二次根式的除法,运用√a/b =√a /√b 进行计算。
比如,√12÷√3=√4 = 2 。
在进行二次根式的运算时,一定要注意化简,把结果化成最简二次根式。
那啥是最简二次根式呢?满足以下两个条件的二次根式,叫做最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。
比如说,√8 就不是最简二次根式,因为 8 可以分解成 4×2,4 还能开方得 2,所以√8 =2√2,2√2 就是最简二次根式。
再来说说二次根式的化简。
化简二次根式的时候,经常要用到分母有理化。
分母有理化就是把分母中的根号去掉。
比如,1 /√2 ,分母有理化就是给分子分母同乘以√2 ,得到√2 / 2 。
二次根式的性质二次根式是数学中的一个重要概念,也是代数学中的一个常见表达式。
它们具有一些特殊的性质,我们来详细探讨一下。
一、定义二次根式是指形如√a的表达式,其中a是一个非负实数。
这里√称为根号,a称为被开方数。
当然,a可以是一个整数、小数或者分数。
二、性质1. 非负性:二次根式的被开方数a必须是非负实数,即a≥0。
因为√a是要求开方的数是非负的,否则就没有实数解。
2. 唯一性:对于给定的非负实数a,它的二次根式√a是唯一确定的。
这是因为非负实数平方的结果只有一个非负实数。
例如,√9=3,√25=5,√36=6,等等。
3. 运算性质:(1)加法与减法:二次根式可以进行加法和减法运算。
当两个二次根式的被开方数相同时,它们可以相加或相减。
例如,√a + √a = 2√a,√25 - √16 = √9 = 3。
(2)乘法:二次根式可以进行乘法运算。
两个二次根式相乘时,被开方数相乘,根号下的系数可以相乘。
例如,√a × √b = √(ab),2√3 × 3√5 = 6√15。
(3)除法:二次根式可以进行除法运算。
两个二次根式相除时,被开方数相除,根号下的系数也可以相除。
例如,√a ÷ √b = √(a/b),6√15 ÷ 3√5 = 2√3。
4. 化简与整理:(1)化简:有时候二次根式可以化简为更简单的形式。
例如,√4 = 2,√9 = 3,等等。
化简的关键是找到被开方数的平方因子,然后将依次提取出来。
(2)整理:有时候需要将二次根式按照一定的规则整理,使得表达式更具可读性。
例如,将√3 × 2√5整理为2√15,将5√a + 3√a整理为8√a,等等。
3. 近似值:对于无理数的二次根式,我们可以用近似值来表示。
这里的近似值可以使用小数形式或者分数形式。
四、应用二次根式是数学中广泛应用的一个概念,它在几何、代数、物理等领域都有重要作用。
1. 几何:二次根式在几何中常常用来表示线段的长度。
二次根式总结一、引言二次根式是数学中一个重要的概念,涉及到对平方根的运算和性质。
掌握好二次根式的基本知识对于理解和解决数学问题至关重要。
本文将对二次根式进行总结,从定义、性质到应用方面进行探讨。
二、定义与基本性质二次根式可以表示为√a(其中a≥0),这里√a称为二次根,a称为被开方数。
在二次根式中,一些基本性质需要予以关注。
首先,二次根式满足乘法分配律。
对于任意的非负实数a和b,有√(ab)=√a × √b。
这个性质与平方根的性质一致,可以利用它对二次根式进行简化。
其次,二次根式可以进行合并化简。
如果a和b都是非负实数,则√a + √b可以合并成一个根式。
例如,√2 + √3 = √(2+3) = √5。
这一点在化简二次根式的过程中常常应用到。
另外,二次根式的乘法也有一定的规律。
对于任意非负实数a 和b,有(√a × √b) = √(ab)。
同样地,在乘法的过程中可以利用这一性质对二次根式进行化简。
三、进一步探讨与应用1. 二次根式的化简化简二次根式是使用二次根式的基本性质,将复杂的根式表示简化为更简洁的形式。
例如,√8可以化简为2√2,√5 × √3可以化简为√15。
化简二次根式有助于简化运算和解决数学问题。
在化简二次根式时,可以利用约束性质,并通过提取公因数的方式进行。
例如,对于√8,可以提取公因数2,即√(2 × 4) = 2√2。
2. 二次根式的加减运算二次根式的加减运算可以通过化简和合并根式进行。
对于√a + √b,如果a和b无法合并,则不能再继续进行简化。
例如,对于√2 + √3,不能再进行进一步的运算。
但是可以计算其近似值,如√2 ≈ 1.414,√3 ≈ 1.732,因此√2 + √3 ≈ 1.414 + 1.732 ≈ 3.146。
3. 二次根式的乘除运算二次根式的乘除运算可以利用乘法分配律和二次根式的乘法规律进行。
利用这两个性质,可以轻松地计算复杂的二次根式。
基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。
算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。
二次根式的运算和性质二次根式是指具有平方根的数,它是数学中的重要概念,与一次根式不同,二次根式的运算涉及到平方根的加减乘除,以及二次根式的化简和简化等操作。
本文将围绕二次根式的运算和性质展开讨论,帮助读者更好地理解和应用二次根式。
一、二次根式的运算1. 二次根式的加减运算对于同类项,即根号下的数相同的二次根式,可以进行加减运算。
例如:√2 + √2 = 2√2√5 - √2 = √5 - √2 (不可化简)不同类项的二次根式无法进行加减运算,如√2 + √3。
2. 二次根式的乘法二次根式的乘法运算可以通过合并同类项、利用乘法公式等方法进行。
例如:√2 × √3 = √6(√2 + √3) × (√2 - √3) = √2^2 - √2√3 + √2√3 - √3^2 = 2 - 3 = -13. 二次根式的除法二次根式的除法运算可以通过有理化的方法进行。
例如:√2 ÷ √3 = (√2 × √3) ÷ (√3 × √3) = √6 ÷ 3 = √6/3 = √6/3 × √3/√3 =√18/3 = √2/√3二、二次根式的性质1. 二次根式的化简当二次根式中的根号下的数为完全平方数时,可以进行化简。
例如:√4 = 2√9 = 3√16 = 4通过化简可以简化计算过程,使得计算更加方便快捷。
2. 二次根式的大小比较对于两个二次根式的大小比较,可以通过平方的方法进行。
例如:(√2)^2 = 2(√3)^2 = 3(√4)^2 = 4可以通过比较二次根式的平方大小来确定它们的大小关系。
3. 二次根式的应用二次根式在实际应用中有广泛的用途,常见于几何学、物理学等领域的计算中。
例如,在三角形的勾股定理中,就涉及到二次根式的运算。
综上所述,二次根式的运算和性质是数学学习中的重要内容。
掌握二次根式的运算规则,了解二次根式的性质,有助于提高数学计算能力,并能应用于实际问题的解决中。
二次根式的性质与化简二次根式是指含有平方根的表达式,它在数学中有着重要的应用。
本文将探讨二次根式的性质以及化简方法。
一、二次根式的性质1. 二次根式的定义与表示:二次根式是指形如√a的表达式,其中a为非负实数。
二次根式可以用分数指数表示,即a的1/2次方。
2. 二次根式的运算性质:(1)加法与减法:当二次根式的根数相同时,可以进行加法或减法运算。
例如√a + √b = √(a + b),√a - √b = √(a - b)。
(2)乘法与除法:当二次根式的根数相同时,可以进行乘法或除法运算。
例如√a × √b = √(a × b),√a / √b = √(a / b)。
3. 二次根式的化简与分解:对于二次根式而言,有时可以进行化简与分解。
例如√(a^2) = a,√(a/b) = √a / √b。
二、二次根式的化简方法1. 化简含有相同根数的二次根式:当两个二次根式具有相同根数时,可以根据运算规律进行化简。
例如√(a) × √(b) = √(a × b),√(a) / √(b) = √(a / b)。
2. 化简含有不同根数的二次根式:当两个二次根式具有不同根数时,可以通过有理化的方法进行化简。
有理化的目的是将二次根式的分母消去。
具体操作步骤如下:(1)将含有二次根式的分母有理化,即将分母中的二次根式去除。
(2)将有理化后的分母进行分配。
(3)将相同根数的二次根式合并,并进行运算。
3. 示例:化简二次根式√(15) / √(3):(1)将含有二次根式的分母进行有理化,即√(3) × √(3) = 3。
(2)有理化后的分母为3。
(3)利用有理化后的分母,进行分配运算,即(√(15) × √(3)) / 3。
(4)合并二次根式,即√(45) / 3。
(5)化简二次根式,即3√(5) / 3。
(6)最终得到化简后的结果:√(5)。
4. 注意事项:化简二次根式时,需要注意分母不能为零,同时要注意因式分解的方法,以便于简化运算步骤。
二次根式及性质.知识要点:(1)平方根与立方根a. 平方根的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根。
用±a 表示。
例如:因为()±=±=±525252552,所以的平方根为。
b. 算术平方根的概念:正数a 的正的平方根叫做a 的算术平方根。
0的算术平方根为0。
用a 表示a 的算术平方根。
例如:3的平方根为±3,其中3为3的算术平方根。
c. 立方根的概念:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,用a 3表示。
例如:因为3272727333==,所以的立方根为。
d. 平方根的特征:①一个正数有两个平方根,它们互为相反数。
②0有一个平方根,就是0本身。
③负数没有平方根。
e. 立方根的特征:①正数有一个正的立方根。
②负数有一个负的立方根。
③0的立方根为0。
④-=-a a 33。
⑤立方根等于其本身的数有三个:1,0,-1。
(2)二次根式a. 二次根式的概念:形如a (a ≥0)的式子叫做二次根式(二次根式中,被开方数一定是非负数,否则就没有意义,并且根式a ≥0)。
b. 二次根式的基本性质: ①a a ≥≥00() ②()a a a 20=≥()③a a a a a a a 20000==>=-<⎧⎨⎪⎩⎪||()()()④ab a b a b =⋅≥≥(,)00⑤b a b a a b =>≥(,)00c. 二次根式的乘除法 ①a b ab a b ⋅=≥≥(,)00②b a ba ab =>≥(,)00d. 最简二次根式的标准:①被开方数的因数是整数,因式是整式(分母中不含根号)。
②被开方数中不含开得尽方的因数或因式。
e. 同类二次根式的识别:几个二次根式化简到不能再化简为止后,被开方数相同,则这几个二次根式是同类二次根式。
例如:8222=与是同类二次根式,35a a 与-是同类二次根式。
二次根式的概念和性质是什么一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
下面是店铺给大家整理的二次根式的概念和性质简介,希望能帮到大家!二次根式的概念和性质定义如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
即:若,则叫做a的.平方根,记作x= 。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
最简二次根式最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。
二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
二次根式的性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形式中被开方数不能有分母存在。
2. 零的平方根是零,即 ;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示,如: 。
6. 当a≥0时, ; 与中a取值范围是整个复平面。
7. [任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内,如(a>0) , (a<0),﹙a≥0﹚, (a<0)。
9.注意:,然后根据绝对值的运算去除绝对值符号。
10.具有双重非负性,即不仅a≥0而且≥0。
二次根式一考点、热点回顾1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.二次根式的性质:1.(a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab=a ·b (a≥0,b≥0);b b aa=(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 二 典型例题例1下列各式(1)x21, 1)2(-, 5)3(2+x , 2)3()4(-, 44)5(2+-x x其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x (3)121--x x例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( )A .1) 2)B .3) 4)C .1) 3)D .1) 4) 例4、计算32)2145051183(÷-+的值例5、要使1213-+-x x 有意义,则x 应满足( )A.321≤≤x B. 3≤x 且21≠x C.21 <x <3 D.21 <x ≤3例6. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例7. 把(a -b )-1a -b 化成最简二次根式 例8、已知x 满足xx x =-+-20112010,那么22010-x 的值为_____________例9、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---三 课后练习一、填空题1.在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 3. 化简82-的结果是_____________4. 计算: 若22m n +-和3223m n -+都是最简二次根式,则_____,______m n ==。
二次根式【知识点回顾】 一、概念:1.二次根式:式子a (a ≥0)叫做二次根式。
“”叫二次根号,根指数为2,a叫被开方数。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含小数或分数线; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
问:同类二次根式被开方数一定相同吗?二、二次根式的性质:(1)双重非负性 a ≥0,a ≥0(2)(a )2=a (a ≥0);(3)==a a 2三、二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面。
(2)二次根式的加减法:先把二次根式化成最简二次根式,找同类二次根式,合并同类a (a >0)a -(a <0)0 (a =0)二次根式。
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式。
ab =a ·b (a≥0,b≥0);b ba a=(b≥0,a>0). 二次根式的乘法公式和除法公式返过来可以对二次根式进行化简。
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。
【典型例题】1、概念与性质例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)42-x (2)m1 (3)421-x (4)21-+x x (5)21++x x(6)x x --+21例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
年级八年级 学科 数学 第 9 单元第2课时 总计 课时 2014年 4月 21日1 9.1 二次根式和它的性质(2)一、学习目标1、经历二次根式的性质的发现过程,体验归纳、类比的思想方法;2、了解二次根式的两个性质;3、会用二次根式的性质将简单二次根式化简。
二、学习重点、难点重点:利用性质进行运算。
难点:化简过程和一些技巧的运用。
课前预习案(一)复习:1、二次根式:(1)定义:)0(≥a a (2)性质:)0()(2≥=a a a(二)预习课本解决问题1、==2a2、=ab (0,0≥≥b a )课内探究(一)观察思考,合作交流1、你过去怎样求4,9,41,0的算术平方根? 2、计算:=22 ,23= , =2)0( 。
根据计算结果,你能得出结论: ,其中0≥a , 它的意义是 。
3、比较)0()(2≥=a a a 与)0(2≥=a a a ,他们有哪些相同和不同?4、例题讲解:例3、化简:(1)01.0 (2)2)2(- (3)29a跟踪练习:化简:(1)243⎪⎭⎫ ⎝⎛ (2)25.0 (3)()232⨯-________2=a课型: 新授 执笔: 马海丽 审核: 韩增美 滕广福2 (二)合作探究1、;,______________94________________94=⨯=⨯ ;,______________2516________________2516=⨯=⨯ 比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?如何证明你发现的结论?2、例题讲解:例4、化简:(1)4964⨯ (2)27 (3)24a注意:一般地,二次根式化简的结果应使根号内的数是一个自然数,且在该自然数的因数中,不含有1以外的自然数的平方数。
跟踪练习:化简:(1)16925⨯ (2)624⨯ (3)200 (4)2ab(三)课堂小结(四)拓展延伸1、化简:(1)8116⨯ (2)1212516⨯⨯ (3)188⨯ (4))4(16+x2、为使n 120的值是正整数,实数n 的最小值是多少?整数n 的最小值呢?(五)达标测试1、(1)49169425⨯ (2)28m 2、.已知x=3+2,y=3-2,求x 2+2xy+y 2的值。
二次根式的定义及性质1、二次根式的定义形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性 二次根式的两个非负性:)0(≥a a ;0≥a ,具有非负性的还有02≥a ;0≥a ;几个非负数的和等于零,那么这几个非负数均为零。
2、二次根式的主要性质 (1)())0(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a aa a a3、分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a ba -=-+来确定.如: aa4、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式叫最简二次根式 最简二次根式的条件①号内不含有开的尽方的因数或因式,②根号内不含有分母,③分母不含有根号。
5、 同类二次根式:被开方数相同的最简二次根式叫做同类二次根式6、 乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a ab7、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a 8、合并同类二次根式:__________________;=-=+a n a m a n a m形如)0(≥a a 的代数式叫二次根式例1、下列式子中二次根式的个数有( )(1)31(2)3-(3)12+-x (4)38(5)2)31(-(6))1(1>-x x A.2个 B.3个 C.4个 D.5个【变式练习】1、下列各式中,一定是二次根式的有______________________________① a ;②z y +;③6a ;④32+x ;⑤962++x x ;⑥12-x2、222++a a 是不是二次根式?___________(填“是”或“否”)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性例2、(2012.德阳)使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.210≠≥x x 且 D.一切实数 例3、 函数1213-+-=x x y 的自变量x 的取值范围是_______________【变式练习】1、 使12--x x 在实数范围内有意义的x 的取值范围是______________ 2、(2012.杭州)已知0)3(<-a a ,若a b -=2,则b 的取值范围是___________3、若2)(11y x x x +=---,则______=-y x())0(2≥=a a a例4、计算: (1) (2) (3) (4)(b ≥0) (5)【变式练习】计算: (1); (2); (3); (4). ⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a例5、化简: (1); (2); (3); (4).例6、2x =,则x 的取值范围是 。
二次根式的计算与性质二次根式是数学中的一个重要概念,在许多数学问题的解答中经常涉及。
它的计算和性质具有一定的规律和特点。
本文将深入探讨二次根式的计算方法和性质,并结合实例进行说明。
一、二次根式的定义与基本性质二次根式是指形如√a的数,其中a为非负实数,是它的被开方数。
二次根式具有以下基本性质:1. 当a≥0时,二次根式有意义。
2. 当a>0时,√a>0。
3. 当a>b≥0时,有√a>√b。
4. 二次根式的平方等于被开方数本身。
二、二次根式的四则运算1. 二次根式的加减运算:对于二次根式√a与√b,满足以下运算规律:√a ± √b = √(a ± b)。
这意味着可以通过合并二次根式进行简化。
举例:(1)化简√8 + √2。
解:√8 + √2 = √(4 × 2) + √2 = 2√2 + √2 = 3√2。
2. 二次根式的乘法运算:对于二次根式√a与√b,满足以下运算规律:√a × √b = √(a × b)。
这意味着可以通过合并二次根式进行简化。
举例:(1)化简√3 × √5。
解:√3 × √5 = √(3 × 5) = √15。
3. 二次根式的除法运算:对于二次根式√a与√b,满足以下运算规律:√a ÷ √b = √(a ÷ b)。
这意味着可以通过合并二次根式进行简化。
举例:(1)化简√16 ÷ √4。
解:√16 ÷ √4 = √(16 ÷ 4) = √4 = 2。
三、二次根式的化简与有理化1. 化简二次根式:对于二次根式√a,可以通过确定a的因式分解式来进行化简。
举例:(1)化简√72。
解:√72 = √(2 × 2 × 2 × 3 × 3) = √(2^2 × 3^2) = 2√2 × 3 = 6√2。
一、二次根式的概念和性质二次根式1.0a ≥)的式子叫做二次根式.说明:(1)被开方数是正数或0;(20a ≥)表示非负数a 的算术平方根. 2.二次根式的性质:(10; (2)2(0)a a =≥; (3(0)(0)(0)a a a a a a a >⎧⎪==⎨⎪-<⎩;(4)当0a ≥时,2=二、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式); (2)被开方数中不含能开得尽方的因数或因式; (3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.三、二次根式的加减 同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式. 二次根式的加减二次根式知识点同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.合并同类二次根式:(a b =+ 分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.0.四、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义来计算.五、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对与二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.六、根式的大小比较 比较大小的方法1.作差法:比较a 、b 的大小,0,0,0,a b a b a b a b >>⎧⎪-==⎨⎪<<⎩2.作商法:比较a 、b 的大小,当0,0a b >>时,可以采用作商法,1,1,1,a b a a b b a b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法 (1)0a b >>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法 (4)分子有理化 (5)倒数法七、二次根式的乘除 二次根式的乘除法=0a ≥,0b ≥).=(0a ≥,0b >). 说明:利用乘除法则时注意a 、b a 、b 都非负,否则不成立.一、 单选题1、(2015中考西城二模)函数2y x=-中,自变量的取值范围是( ) A .2x ≠ B .2x ≥ C .2x > D .2x ≥-【答案】 B【解析】由二次根式有意义的条件可得20x -≥,即2x ≥,故答案为B .2、(2013初二上期末房山区)下列各式中,计算正确的是( ) A .22=B 16=±C .8D .(26=【答案】 A【解析】该题考查的是二次根式的计算.x 例题A,22=,故A正确;B16,故B错误;C,8-,故C错误;D,(212=,故D错误.所以该题的答案是A.3)A.(1a-B.(1a-C.D.(1a-【答案】B【解析】(=-B选项.1a4、(2013初二上期末平谷区)下列二次根式中,最简二次根式是()ABCD【答案】C【解析】该题考查最简二次根式.A =,被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误;BCD 故选C .5、(2012初二下期末人大附中)如果最简二次根式b 那么a 、b 的值分别是( ) A .0a =,2b = B .2a =,0b = C .1a =-,1b = D .1a =,2b =- 【答案】 A【解析】该题考查的是同类二次根式的概念.同类二次根式是被开方数相同的两个最简二次根式. ∴2322b a b b a -=⎧⎨=-+⎩,解得:02a b =⎧⎨=⎩.故选A .6、下列运算中,正确的个数是( )①1251144251=;2=-;③214141161+=+④()442±=-5-A .0个B .1个C .2个D .3个【答案】B【解析】该题考查的是根式的运算.13111212=;=4,;⑤正确,故只有1个是正确的, 所以本题的答案是B .7、( )A .在9.1~9.2之间B .在9.2~9.3之间C .在9.3~9.4之间D .在9.4~9.5之间【答案】 C【解析】9()x x +是小数部分;则有:()2988x +=,即:2187x x +=,得187x ≈,0.38x ≈,9.39.4~之间,故答案为C 选项.8、(2013初一上期末人民大学附属中学)已知正整数a 、b =那么a b -的值是( ) A .2 B .3 C .4 D .5B【解析】该题考查的是根式的性质和运算.方法一:)1==因此可得6,3a b==,故a b-的值是3.方法二:由题知正整数a、b=9a b+-918a bab+=⎧⎨=⎩解得6a=,3b=,故a b-的值是3.故本题答案为B.二、填空题9、(2013初一上期末人民大学附属中学),则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.==0.∴43ab=-⎧⎨=-⎩求出321823a ba b+=--.10、实数a、b a的化简结果为______【答案】b-b a该题考查的是代数式化简.由图中可得0a >,0b <,且a b <,则0a b +<a a b a a b a b =++=--+=-.11、=____________=______________. 【答案】25,9 【解析】25==,369+=12、(2013a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=- 解得:1a =±13、(2013.【答案】【解析】该题考查的是二次根式的计算.原式==14、(2013初一上期末人民大学附属中学+=____【答案】【解析】该题考查根式的分母有理化.++=+=三、解答题15、(2014【答案】【解析】本题考察的是根式的计算.==16、(2013初二上期末门头沟区)【答案】【解析】该题考查的是二次根式计算.原式+2=-17、(2013初二上期中C理工附)(1(2)点Q、M之间的距离是_________.(3)点M关于点Q的对称点是__________.(4)若点P、Q、M、所对应的实数分别是p、q、m,q m-+【答案】(1)P、M、Q(2)M Q-(3)2Q M-(4)p m-【解析】该题考察的是实数与数轴.(1<P,M,Q;(2)MQdM Q=-;(3)若数轴上两个点关于某个点对称,则这两个点的平均数为中间的那个点所表示的数,故点M关于点Q的对称点为2Q M-;(4q m-+()22q p m q p q=---+-p m=-18、1()2x yz++,求x、y、z的值.【答案】1,2,3x y z===P MQ【解析】1()2x y z ++得:0x y z ---1(1)1(2)10x y z -+--+--=即:2221)1)1)0++=所以:1,2,3x y z ===19、.【答案】<【解析】1==1=>∴11<- <1、(2015中考平谷一模)函数y =中自变量的取值范围是( )A .1x ≠B .1x >C .1x ≥D .1x ≥-【答案】 B【解析】根据题意可知,10x ->,即1x >.故选B .2、对于所有实数,a b ,下列等式总能成立的是( ) A.2a b =+Ba b + C 22a b+D a b =+【答案】 C【解析】因为220a b +≥22a b +,故答案为C 选项.3、(2011中考大兴一模)函数y =中,自变量x 的取值范围是___________【答案】 2x >-【解析】根据题意可知,只需20x +>,即2x >-即可.随堂练习4、实数P____【答案】1【解析】该题考查的是实数运算.由数轴可得,23p <<, ∴20p ->,30p -<, 23231p p p p -+-=-+-=.5、计算:=⨯12172_________,=--)84)(213(_________, =⨯-03.027.02_________,_____________=.【答案】24;0.18-;5-【解析】=,(24⎛--==⎝,20.090.18-=--⨯=-,4335-⨯=-6、(2013初一上期末人民大学附属中学)化简:2____【答案】43x -12 34p【解析】该题考查根式的化简.212x -+∵由题得120x -≥,12x ≤33x x =-=-.∴原式12343x x x =-+-=-. 故答案为43x -.7、设A B ==A ____B .【答案】 A B >【解析】2A =2B =< ∴22A B< ∴A B >8、(2013初二下期中北京第四中学)已知: 1x =,求223x x +-的值.【答案】 2-【解析】该题考查的是代数式求值.把1x =代入得:原式))21213=+-323=--2=-9、已知:,x y 为实数,且3y ,化简:3y -【答案】1-【解析】 由3y <得:1x =,3y <,所以31634341y y y y y y --+=---=-++-1、(2015中考大兴一模)函数y =x 的取值范围是( ) A .2x ≤且0x ≠ B .2x ≤C .2x <且0x ≠D .0x ≠【答案】 A【解析】根据题意可知,20x -≥,且0x ≠.解得2x ≤,且0x ≠. 2、若A ( )A .24a +B .22a +C .()222a +D .()224a +【答案】 A 【解析】 因为()224A a+24a =+,故答案为A 选项.3、(2015中考西城二模)若2(2)0m ++ 则m n -= .课后作业【答案】 3-【解析】因为2(2)0m +=,所以2m =-,1n =,故3m n -=-.4、在下列二次根式中,最简二次根式有____________________.【答案】【解析】由最简二次根式的定义可知是最简二次根式.5、(2012初二上期末通州区)若最简二次根式a =__________【答案】 4【解析】本题考查的是最简二次根式的定义.∴3530a a -=+≥,解得4a =.6、0,则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.000=0=0.∴43a b =-⎧⎨=-⎩求出321823a ba b+=--.7、(2013初二下期中北京第四中学)12.(填“>”、“<”或“=”).【答案】>【解析】该题考查的是二次根式比大小.102==>102->,12>.8、(2013初二下期末清华大学附属中学)01)【答案】 011+=0……5分9、化简:(1(2【答案】(11(2【解析】(11=(2===。
初中数学二次根式的性质
二次根式具有多种性质,以下是其中一些主要的性质:
1.非负性:对于任意的实数a,如果a≥0,那么√a是一个非
负数。
也就是说,二次根式的结果总是非负的。
这个性质在二次根式的运算中非常重要,因为它可以帮助我们确定结果的符号。
2.定义域:二次根式有意义的条件是被开方数必须是非负
数。
也就是说,如果我们要对一个数进行开方运算,那么这个数必须是大于或等于0的。
否则,二次根式就没有意义。
3.运算性质:二次根式满足一些基本的运算性质,如加法、
减法、乘法和除法。
这些性质与整数的运算性质类似,但需要注意的是,二次根式的运算结果可能需要进行化简。
4.化简性质:在二次根式中,我们可以利用一些公式和性质
进行化简。
例如,我们可以利用平方差公式将√(a^2 -
b^2)化简为√a^2 - √b^2,或者利用完全平方公式将√(a^2 + 2ab + b^2)化简为√(a + b)^2。
以上是二次根式的一些主要性质,这些性质在解二次根式方程和不等式,以及进行二次根式的运算时都非常重要。