汽车传感器波形分析(PDF)
- 格式:pdf
- 大小:3.44 MB
- 文档页数:33
浅谈利用汽车氧传感器波形信分析发动机故障利用汽车氧传感器波形信号分析发动机故障是一种有效的方法,可以帮助车主和技术人员找出发动机故障的原因并及时进行修复。
下面我将从氧传感器的作用和原理、氧传感器波形信号的分析方法以及利用波形信号分析发动机故障的案例来进行详细的浅谈。
首先,我们需要了解氧传感器的作用和原理。
汽车氧传感器是一种用于检测发动机尾气中氧气含量的传感器。
它通过测量进入和离开催化器的气流中氧气的浓度差异,来判断发动机燃烧的富氧还是贫氧,并将结果反馈给发动机控制单元(ECU)。
ECU根据氧传感器的反馈信号来调整燃油喷射的时机和量,以确保发动机工作在最佳状态下。
其次,我们需要了解如何分析氧传感器波形信号。
正常工作的氧传感器波形信号应该是一个呈现周期性变化的波形,这个变化规律与氧气浓度和燃油燃烧产生的氧含量有关。
一般来说,氧气浓度高时传感器输出的电压较低,而氧气浓度低时传感器输出的电压较高。
通过对氧传感器波形信号的分析,我们可以判断出发动机是否存在富氧或贫氧的问题。
当氧传感器波形信号周期和振幅变化较小,且始终维持在比较低的水平时,可能表示发动机存在富氧问题。
当氧传感器波形信号周期和振幅变化较大,且始终维持在比较高的水平时,可能表示发动机存在贫氧问题。
此外,还可以通过波形信号的快速反应能力来判断发动机的工作状况,正常的氧传感器应具有较短的反应时间。
最后,我将举一个利用汽车氧传感器波形信号分析发动机故障的案例。
在车辆使用过程中,发动机出现了抖动和怠速不稳定的症状。
技术人员通过检测氧传感器波形信号发现,波形波动较大,且在怠速时出现异常的周期性变化。
通过进一步的分析,技术人员发现燃油喷射量过大,导致了燃烧不稳定和氧含量异常。
最终,技术人员对燃油喷射系统进行调整,解决了发动机抖动和怠速不稳定的问题。
总结起来,利用汽车氧传感器波形信号分析发动机故障是一种简单而有效的方法。
通过对波形信号的变化进行分析,可以帮助车主和技术人员找出发动机故障的原因,并及时采取措施进行修复。
汽车点火波形分析摘要汽车电子化的发展,应用之广与日俱增,尤其是计算机、网络技术的发展为汽车电子化带来了根本性的变革。
因此,当代汽车的维修不是单纯的机械维修,而是机械与电子为一体的维修。
由于电子控制元件的维修比较抽象,给汽车维修技术提出了新的挑战,使许多维修人员望而止步,感到神秘莫测。
汽车电控系统技术的发展,使现代的汽车成为了一个高科技的结晶体,这就要求汽车故障诊断技术也向高新技术方向发展。
传统的故障诊断方式根本不能适应现代汽车故障诊断的要求,尤其对电控系统故障的诊断,必须采用先进的检测设备,先进的工作模式。
波形分析技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确性,利用波形分析检测时,示波器可以显示出电子信号的各种参数,利用这些参数就能够判定这个电子信号的波形是否正常,然后,通过波形分析便可以进一步检查出电路中传感器,执行器以及电路和控制电脑等各部分的故障,从而进行修理。
本文叙述了汽车点火系统波形连接、检测、分析方法;并结合波形图形象深刻的分析汽车故障类型、位置、原因。
使学者有一目了然的深刻视觉感受,发掘学习者的兴趣。
【关键词】:点火系统;点火波形图;波形分析;故障波形分析目录第1章绪论 (1)1.1引言 (1)1.2 点火系统概述 (1)第2章点火系统检测连接及点火波形种类、特点 (3)2.1点火系统检测连接方法 (3)2.2点火波形种类 (4)2.3次级点火波形的特点 (5)第3章点火波形分析 (7)3.1点火波形分析方法 (7)3.2各类点火系波形 (8)3.2.1触点式点火系波形 (8)3.2.2无触点点火系波形 (9)3.2.3 无分电器点火系统波形 (9)3.3次级点火波形可查明的故障 (9)3.4分析次级点火波形的要点(五常看) (10)3.5点火系统的加载调试 (12)第4章故障波形分析 (13)4.1典型故障波形分析 (13)4.1.1初级电压分析 (14)4.1.2次级电压波形分析 (15)4.2次级点火故障波形分析 (16)4.3点火波形分析举例 (17)结论 (20)参考文献 (21)致谢 (22)2第1章绪论第1章绪论1.1引言汽车自1886年诞生以来,发展及其快速,已成为集机、电、液、气于一体。
示波器测量汽⻋LIN总线信号及波形分析汽⻋⽹络通信中除了CAN的通信⽅式外,还有另外⼀种低成本通信⽅式——LIN系统。
它的英⽂是“Local Interconnect Network”,LIN总线基于UART/SCI(通⽤异步收发器/串⾏接⼝)的串⾏通信协议,主要⽤于智能传感器和执⾏器的串⾏通信,⻋上各个LIN总线系统之间的数据交换是由控制单元通过CAN数据总线实现的。
LIN特点是⽤作主从控制系统,⼀个主控系统可以带最多16个⼦系统,并且⼦系统只具备与主系统通信的功能,各个⼦系统之间⽆法通信,也不能与LIN⽹络之外的系统模块进⾏通信。
LIN⼀般应⽤于⻋⻔控制系统,⽐如福特蒙迪欧致胜和克鲁兹的⻋⻔电动玻璃控制系统就采⽤LIN控制。
我们这⾥以测量奥迪汽⻋LIN总线控制的⾬刷电机为例。
连接⼀条BNC转⾹蕉头线到示波器的通道⼀上。
连接⼀根刺针到红⾊⾹蕉头,刺⼊到⻋辆上的插头⾥⾯的LIN总线数据信号端⼦上。
⾹蕉头的⿊⾊接头接⼀个鳄⻥夹到蓄电池负极或良好的底盘接地上。
由于LIN总线⼀般最⼤值在12V左右,因此可以设置示波器的垂直档位为2V/div,时基可以设置为500μs左右。
然后打开示波器的解码菜单,进⾏LIN总线配置,选择与被测信号相匹配的波特率。
调节总线阈值电平到波形显示范围内,就可以看到解码数据了。
可以将触发⽅式改为总线解码触发,设置合适的帧ID来稳定波形。
如下图就是奥迪汽⻋⾬刷电机LIN总线控制信号。
LIN总线波形是⼀个⽅波,代表着串⾏数据流⾥的⼆进制状态。
所⻅的波形应该没有明显的变形和噪⾳⽑刺。
解码数据包以⼗六进制显示总线活动时的实时数据内容。
“帧ID”显示颜⾊为⻩⾊,上图中即是23,“数据”显示颜⾊为⽩⾊,“校验和”显示颜⾊为绿⾊,如果校验和错误,以红⾊“E”显示。
如果⽆信息发送到LIN数据总线上(总线空闲)或者发送到LIN数据总线上的是⼀个隐性位,LIN总线信号上的最⼤值即隐性电平。
当传输显性位时,发送控制单元内的收发器将LIN数据总线接地。
汽车电控燃油控制的波形分析引言在现代汽车中,电控燃油系统起着至关重要的作用。
燃油控制是维持引擎正常运行的关键,而波形分析那么是诊断问题的有力工具。
本文将对汽车电控燃油控制的波形进行分析,帮助了解燃油系统的工作原理、故障诊断方法以及解决问题的技巧。
1. 汽车电控燃油系统简介汽车电控燃油系统主要由燃油泵、进气系统、点火系统、喷油器、传感器等组成。
整个系统通过电子控制单元〔ECU〕协调工作,确保燃油供应的精确控制,并实时调整以满足引擎的需求。
2. 汽车电控燃油控制的波形分析原理燃油控制是通过ECU对燃油喷射时机和量进行精确控制来实现的。
波形分析是诊断燃油控制系统的有效方法之一,主要通过观察和分析传感器和执行器的输出信号波形来判断系统的工作状态和是否存在故障。
在波形分析中,一些常用的输入信号包括: - 氧传感器输出信号 - 空气流量传感器输出信号 - 曲轴位置传感器输出信号 - 进气歧管绝对压力传感器输出信号一些常用的输出信号包括: - 燃油喷射器驱动脉冲信号 - 点火系统的点火脉冲信号 - 燃油泵驱动信号 - 长时燃油修正信号通过对这些信号波形的观察和分析,可以给出诊断结果,判断系统是否正常工作。
3. 汽车电控燃油控制的常见问题和解决方法3.1. 燃油喷射器故障燃油喷射器是汽车燃油系统中的关键部件之一。
当喷油器出现故障时,会导致燃油供应缺乏或过量,引发引擎失火或工作不稳定的问题。
在波形分析中,观察燃油喷射器驱动脉冲信号的波形可以判断其工作状态。
正常情况下,喷油器应该有规律的脉冲信号,且脉冲的持续时间和频率应该符合规格要求。
如果喷油器的脉冲信号出现异常,如持续时间过短或过长,频率异常等,可能需要更换或维修燃油喷射器。
3.2. 传感器故障汽车燃油控制系统中的传感器起着收集和反应关键信息的作用。
常见的传感器包括氧传感器、进气歧管绝对压力传感器和曲轴位置传感器。
通过观察传感器的输出信号波形,可以判断传感器是否工作正常。
曲轴位置传感器波形分析.(DOC)曲轴位置传感器波形分析枣庄市台⼉庄区职业中专徐辉摘要:分析了三种典型曲轴位置传感器,并对其波形进⾏了分析。
关键词:曲轴位置传感器波形波形分析曲轴位置传感器是计算机控制点⽕系统中最重要的传感器之⼀,曲轴位置传感器有3种型式:电磁脉冲式、霍尔效应式、光电效应式。
如果曲轴位置传感器损坏,将不能检测上⽌点信号和发动机转速信号,引起发动机不能启动。
曲轴位置传感器的检测⽅法很多,波形分析是曲轴位置传感器故障诊断最直观的⽅法,它能直接地反映出曲轴位置传感器的⼯作情况,在诊断过程中波形的读取⽅法与具体波形分析有着⾮常重要的作⽤。
1 测量线路连接连接 KT600 和电源延长线,根据被测试车型的电瓶位置选择电瓶供电或者点烟器供电,如果选择点烟器接头,请先确认点烟器是否有12V 电瓶电压。
将测试探头接⼊通道1(CH1 端⼝),然后将测试探头上的⼩鳄鱼夹接蓄电池负极或搭铁,⽤测试探针刺⼊曲轴位置传感器信号线,连接⽅法如图1所⽰图1 曲轴位置传感器检查设备与线路连接2 磁脉冲式曲轴位置传感器信号波形分析2.1 典型波形及分析连接波形测试设备,起动发动机怠速运转,⽽后加速或按照发⽣故障状况驾驶汽车等获得波形,典型的磁脉冲式曲轴位置传感器信号波形如图2所⽰图2 典型的磁脉冲式曲轴位置传感器波形举例对于将发动机曲轴位置传感器和凸轮轴位置传感器制成⼀体的具有两个信号输出端⼦的曲轴位置传感器可⽤双通道的波形检测设备同时进⾏波形检测,其典型的信号波形如图3所⽰。
图3 典型的双通道检测磁脉冲式曲轴位置传感器信号波形举例对⼤量磁脉冲式曲轴位置传感器采集波形,进⾏波形分析可以得出以下结论:2.1.1相同齿形应产⽣相同型式的连续脉冲。
脉冲有⼀致的形状、幅值并与曲轴的转速成正⽐。
输出信号的频率、传感器磁极与触发轮间⽓隙的⼤⼩对传感器信号的幅值影响极⼤。
2.1.2靠除去传感器触发轮上⼀个齿或两个相互靠近的齿所产⽣的同步脉冲,可以确定上⽌点的信号。
汽车维修技师论文
氧传感器信号波形异常的原因有很多,其中最常见的是氧传感器本身的老化和损坏、排气系统的漏气、点火系统的故障以及燃油系统的问题。
氧传感器老化和损坏会导致信号波形出现不规则的变化,排气系统的漏气会影响氧传感器的工作,点火系统的故障会导致发动机燃烧不充分,燃油系统的问题则会导致混合气浓度过高或过低。
这些问题都会导致氧传感器信号波形出现异常,从而影响发动机的工作效率和排放性能。
因此,对于氧传感器信号波形的分析和故障判断,是汽车维修技师必备的技能之一。
想要学会区分不同杂波所对应的故障,最好的方法是观察同一类型汽车氧传感器在不同行驶里程下的信号电压波形,并进行分析比较。
如果检测到氧传感器信号波形出现非常严重的杂波,可以推测这可能是缺火所引起的发动机故障。
一般来说,点火失误引起的严重杂波,氧传感器波形大多处在低电压位置,而喷油器损坏引起喷油滴漏和各缸喷油不均匀则可能使氧传感器电压波形大多处于高电压位置。
当氧传感器波形出现严重杂波,而不是氧传感器本身及控制系统故障时,必须对发动机进行检查以确定故障部位。
检查步骤如下:
1.检查、判断点火系统是否有故障;
2.检查汽缸压力以判断是否有压缩泄漏的可能性;
3.使用加浓或配合其他仪器等方法判断是否有真空泄漏的
可能性;
4.检查喷油系统是否有故障。
参考文献:《汽车电子技术》、《汽车故障诊断与维修》。
实训项目七用示波器检测传感器波形一、实训目的及要求1、掌握示波器的使用方法;2、掌握传感器及执行器的波形观测方法.3、根据波形进行故障分析二、实训课时4课时三、实训设备及工具1、桑塔纳轿车一台;2、时代超人试验台一台;3、K81及常用工具一套。
四、实训步骤及要求(一)、主要传感器的波形检测( l )空气流量计空气流量计安装在空气滤清器与节气门之间,用于测量进人气缸的空气流量,并将空气流量变成电信号传输给电子控制器ECU 。
常用的空气流量计有叶片式、热线式和卡门旋涡式三种类型。
限于篇幅,仅以丰田子弹头ZJz 一FE 型发动机叶片式空气流量计为例,介绍对空气流量计进行电压、电阻测量的方法,其测量图如图4 一40 所示。
叶片式空气流量计的波形检测:波形观测利用示波器可以观测到空气流量计输出信号电压(或频率)的变化情况。
需要注意的是,叶片式空气流量计输出的信号电压有两种形式:一种形式是输出的信号电压随发动机进气量的增大而增高,多安装在欧洲、亚洲车型上;另一种形式是输出的信号电压随发动机进气量的增大而降低,多安装在丰田车系上,如上述丰田子弹头ZJZ 一FE 发动机的叶片式空气流量计就是如此。
把示波器的COM 测针连接到空气流量计的搭铁线上,把CHI 测针连接到空气流量计的信号输出线(通往ECU )上,关闭发动机所有附件,起动发动机,即可观测到空气流量计输出信号电压(或频率)的变化情况。
一般情况下,空气流量计输出信号电压的变化范围,在怠速下是 1 . 0V 左右,节气门全开时最大幅值可达 4 . 0 一4 . 5V 。
在节气门从全闭到全开再到全闭动作过程中,叶片式空气流量计(模拟式)输出信号电压的正常变化(输出的信号电压随发动机进气量的增大而增高)情况如图4 一41 所示,热线式空气流量计(模拟式)输出信号电压的正常变化情况如图 4 一42 所示,卡门旋涡式空气流量计(数字式)输出信号频率的正常变化情况如图 4 一43 所示。