扩散工艺
- 格式:doc
- 大小:547.50 KB
- 文档页数:14
扩散工艺的原理
扩散工艺是一种常用的半导体制造工艺,主要用于将掺杂材料在晶体中进行分布均匀的过程。
其原理基于掺杂材料的高浓度区域向低浓度区域的自由扩散。
具体的步骤如下:
1. 洁净晶体表面:在进行扩散之前,必须先清洁晶体表面,以去除表面氧化物和杂质,保证扩散过程的纯净度。
2. 衬底预处理:扩散液有时会侵蚀衬底材料,因此,需要先用保护层对衬底进行处理,以避免受到损伤。
3. 掺杂液制备:根据需要进行掺杂的材料种类和浓度要求,制备合适的掺杂液。
掺杂液中主要含有掺杂材料的离子。
4. 扩散过程:将待扩散的晶体与掺杂液接触,经过一定的时间和温度,掺杂材料的离子会在表面开始向内部扩散。
扩散速度取决于温度、时间和材料的特性。
5. 控制参数:在扩散过程中,需要严格控制温度、时间和气氛,以确保掺杂材料扩散的均匀性和准确性。
6. 后处理:扩散完成后,需要进行后续的清洗和退火处理,以去除残留的杂质和优化晶体结构。
总结起来,扩散工艺的原理是利用掺杂材料的高浓度区域向低浓度区域的自由扩散。
通过精确控制参数,可以实现对晶体的特定区域进行掺杂,从而改变材料性质和特性。
第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那 是对衬底而言相同导电类型杂质扩散。
这样的同质高浓度扩散,在晶体管制造中 还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。
除了改变杂质浓 度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,扩散是一种普通的自然现象,有浓度梯度就有扩散。
扩散运动是微观粒子原 子或分子热运动的统计结果。
在一定温度下杂质原子具有一定的能量,能够克服 某种阻力进入半导体,并在其中作缓慢的迁移运动。
一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定 的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面 杂质浓度的半导体制造技术,称为扩散工艺。
二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。
其中总有一 些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方, 而在原处留下一个“空位”。
这时如有杂质原子进来,就会沿着这些空位进行扩 散,这叫替位式扩散。
硼(B )、磷(P )、砷(As )等属此种扩散。
2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这 个原子间隙进入到另一个原子间隙,逐次跳跃前进。
这种扩散称间隙式扩散。
金、 铜、银等属此种扩散。
三.扩散方程扩散运动总是从浓度高处向浓度低处移动。
运动的快慢与温度、浓度梯度等 有关。
其运动规律可用扩散方程表示,具体数学表达式为:a N、 ——=D V 2N(3-1)a t在一维情况下,即为:a N a 2N ---- =D------- a t a x 2 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。
四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。
扩散工艺的化学原理扩散工艺是一种将固体材料中的原子或分子在另一固体材料中扩散的方式。
它是一种重要的材料加工技术,被广泛应用于半导体行业、材料科学、电子设备制造等领域。
1.气相扩散:气相扩散是一种将气体原子或分子从高浓度区域扩散到低浓度区域的过程。
它广泛应用于半导体制造中。
在气相扩散过程中,气体原子或分子通过与被处理材料的表面发生化学反应来扩散。
这种化学反应的速率由固体表面与气体界面之间的反应速率决定。
例如,氮化硅薄膜的制备常采用氨气(NH3)与硅表面上的硅原子发生反应,形成氮化硅层。
氨气的浓度差异使其向硅表面扩散,反应的速率主要取决于氨气与硅表面反应的速率。
2.液相扩散:液相扩散是指液体中原子或分子通过扩散来实现的过程,这种扩散通常发生在固体表面和液体之间。
液相扩散常用于金属合金的制备。
在液相扩散过程中,金属原子在固相间扩散,并在固体和液体相界面处重新结晶。
液体中的浓度差异是驱动液相扩散的主要原因。
例如,当固体镍和固体铬在液体中混合时,镍原子和铬原子会相互扩散使合金形成均匀的镍铬分布。
这种液相扩散过程中,镍原子和铬原子之间的化学反应被加速,形成新的镍铬化合物。
3.固相扩散:固相扩散是指固体材料中的原子或分子通过固体晶界、点缺陷、空位等的移动来实现的扩散过程。
固相扩散通常发生在材料的固态结构中,是一种非常缓慢的过程。
固相扩散的速率取决于晶体中原子或分子的浓度差异以及晶界和缺陷的性质。
例如,金属在高温下会发生固相扩散。
当金属中的原子在晶界或点缺陷处移动时,它们会在固态结构中扩散,从而改变金属的组织结构和性能。
这种固相扩散对于合金的制备和材料的加工具有重要意义。
总之,扩散工艺是通过利用浓度差异从而使固体材料中的原子或分子在其它材料中扩散的一种技术。
气相扩散、液相扩散和固相扩散是扩散工艺的常见形式,它们的化学原理基于热运动和化学反应,其中浓度差异是驱动扩散的主要力量。
这些扩散过程对于材料的合成、改性和加工具有重要作用,广泛应用于各个领域。
扩散⼯艺扩散⼯艺培训⼀、扩散⽬的在P型衬底上扩散N型杂质形成PN结。
达到合适的掺杂浓度ρ/⽅块电阻R□。
即获得适合太阳能电池PN结需要的结深和扩散层⽅块电阻。
R□的定义:⼀个均匀导体的⽴⽅体电阻 ,长L,宽W,厚dR= ρ L / d W =(ρ/d) (L/W)此薄层的电阻与(L / W)成正⽐,⽐例系数为(ρ /d)。
这个⽐例系数叫做⽅块电阻,⽤R□表⽰:R□ = ρ / dR = R□(L / W)L= W时R= R□,这时R□表⽰⼀个正⽅形薄层的电阻,与正⽅形边长⼤⼩⽆关。
单位Ω/□,⽅块电阻也称为薄层电阻Rs在太阳电池扩散⼯艺中,扩散层薄层电阻是反映扩散层质量是否符合设计要求的重要⼯艺指标之⼀。
制造⼀个PN结并不是把两块不同类型(P型和N型)的半导体接触在⼀起就能形成的。
必须使⼀块完整的半导体晶体的⼀部分是P型区域,另⼀部分是N型区域。
也就是晶体内部形成P型和N型半导体接触。
⽬前绝⼤部分的电池⽚的基本成分是硅,在拉棒铸锭时均匀的掺⼊了B(硼),B原⼦最外层有三个电⼦,掺B的硅含有⼤量空⽳,所以太阳能电池基⽚中的多数载流⼦是空⽳,少数载流⼦是电⼦,是P型半导体.在扩散时扩⼊⼤量的P(磷),P原⼦最外层有五个电⼦,掺⼊⼤量P的基⽚由P型半导体变为N型导电体,多数载流⼦为电⼦,少数载流⼦为空⽳。
在P型区域和N型区域的交接区域,多数载流⼦相互吸引,漂移中和,最终在交接区域形成⼀个空间电荷区,内建电场区。
在内建电场区电场⽅向是由N区指向P区。
当⼊射光照射到电池⽚时,能量⼤于硅禁带宽度的光⼦穿过减反射膜进⼊硅中,在N 区、耗尽区、P区激发出光⽣电⼦空⽳对。
光⽣电⼦空⽳对在耗尽区中产⽣后,⽴即被内建电场分离,光⽣电⼦被进⼊N区,光⽣空⽳则被推进P区。
光⽣电⼦空⽳对在N区产⽣以后,光⽣空⽳便向PN结边界扩散,⼀旦到达PN结边界,便⽴即受到内建电场作⽤,被电场⼒牵引做漂移运动,越过耗尽区进⼊P区,光⽣电⼦(多⼦)则被留在N区。
扩散工艺扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN结。
在集成电路发展初期是半导体器件生产的主要技术之一。
但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。
3.1 扩散机构3.1.1 替位式扩散机构这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。
硼、磷、砷等是此种方式。
3.1.2 填隙式扩散机构这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。
镍、铁等重金属元素等是此种方式。
3.2 扩散方程∂N / ∂t = D*2N / ∂x2N=N(x,t)杂质的浓度分布函数,单位是cm-3D:扩散系数,单位是cm2/s加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。
3.2.1 恒定表面浓度扩散整个扩散过程中,硅片表面浓度NS 保持不变N(x,t)=NSerfc(x/(2*(Dt)1/2))式中erfc称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。
3.2.2.限定源扩散杂质源限定在硅片表面薄的一层,杂质总量Q是常数。
N(x,t)=(Q/( Dt)1/2)*exp(-X2/4Dt)exp(-X2/4Dt)是高斯函数,因此限定源扩散时的杂质分布是高斯函数分布。
由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大3.2.3 扩散系数扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。
D大,扩散速率快。
D与扩散温度T、杂质浓度N、衬底浓度N、扩散气氛、衬底晶向、缺陷等因素有关。
Bexp(-E/kT)D=DT:绝对温度;K:波尔兹曼常数;E:扩散激活能D:频率因子3.2.4 杂质在硅中的固溶度杂质扩散进入硅中后,与硅形成固溶体。
扩散工艺原理
扩散工艺是一种常用的半导体器件制造工艺,其原理是通过控制不同材料间的原子扩散(Diffusion)过程,使得材料中的掺
杂原子浓度发生变化,从而实现改变材料的电学性质。
扩散工艺一般分为固相扩散和气相扩散两种类型。
固相扩散是指将掺杂材料与基底材料接触并加热,在高温下由于热激活,掺杂原子会从高浓度扩散到低浓度区域,从而改变材料的电学性能。
气相扩散则是将掺杂材料置于特定的气氛中,通过气氛中的气体分子与基底材料表面上的原子进行反应,使掺杂原子扩散到材料中。
在固相扩散中,加热是一个关键的步骤。
当材料加热到一定温度时,原子具有足够的能量跨越势垒,从而可以自由扩散。
扩散速率通常受到温度、时间和材料的性质等因素的影响。
此外,不同材料的扩散行为也可能不同,因此需要根据具体材料来选择适当的扩散工艺参数。
在气相扩散中,选择合适的气氛对于控制扩散过程也是非常重要的。
通常会使用有机金属化合物作为掺杂源,将其在高温下分解生成活性原子,再通过反应与基底材料表面原子结合而实现扩散。
不同的掺杂源和基底材料对应的扩散机制也可能不同。
总之,扩散工艺是一项重要的半导体器件制造工艺,通过控制不同材料间的原子扩散过程,可以实现对器件电学性能的调控。
加热和选择合适的气氛是关键的操作步骤,而温度、时间和材料性质等因素也需要进行合理的选择和控制。
扩散有生产工艺扩散是一种常用的材料处理工艺,它广泛应用于半导体、光电子、电子器件等领域。
扩散工艺的主要目的是在半导体材料的表面或界面上引入不同的杂质,从而改变材料的导电性能和特性。
扩散工艺主要包括以下几个步骤:1. 清洗:将半导体芯片放入清洗槽中进行清洗,去除表面的污物和杂质。
清洗槽中的溶液通常是硝酸、硫酸和蒸馏水的混合物,可以有效去除大部分的杂质。
2. 扩散源制备:将所需的杂质制备成扩散源。
常用的杂质有磷、硼、锑等。
扩散源的制备通常采用多晶硅的气相扩散、离子注入或电子束蒸发等方法。
3. 扩散:将扩散源和半导体芯片一起放入炉中进行扩散。
扩散炉是将芯片和扩散源置于高温环境中,使杂质从扩散源向芯片中扩散。
高温可以提高杂质的扩散速率,一般在800-1200摄氏度之间。
4. 干燥:在扩散过程中,芯片表面会有一层氧化物形成。
为了去除这层氧化物,需要进行干燥处理。
干燥通常采用高温退火的方法,将芯片置于高温环境中,使氧化物转化为气态,从表面蒸发掉。
5. 电极制备:扩散完成后,需要在芯片上制备电极。
电极的制备通常采用光刻工艺和蒸镀工艺。
光刻是将光阻涂覆在芯片表面,然后通过光刻曝光与显影的步骤,将光阻部分去除,暴露出电极区域。
蒸镀是将金属材料蒸发到芯片表面,并在光刻后形成电极。
6. 清洗和检测:电极制备完成后,需要进行清洗和检测。
清洗是将芯片放入清洗槽中,去除制备电极时产生的杂质和残留物。
检测是对芯片进行电学性能测试,以确保芯片的质量和性能。
扩散工艺的关键是控制扩散的深度和浓度。
深度和浓度的控制主要依靠扩散时间、温度和杂质浓度的控制。
通过合理地选择这些参数,可以实现对扩散过程的精确控制。
总之,扩散工艺是一种重要的材料处理工艺,广泛应用于半导体、光电子、电子器件等领域。
通过合理地控制扩散的深度和浓度,可以改善材料的导电性能和特性。
----主要设备、热氧化、扩散、合金扩散部 2002年7月前言:扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。
扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。
本文主要介绍热氧化、扩散及合金工艺。
目录第一章:扩散区域设备简介……………………………………第二章:氧化工艺第三章:扩散工艺第四章:合金工艺第一章:扩散部扩散区域工艺设备简介炉管设备外观:扩散区域的工艺、设备主要可以分为:炉管:负责高温作业,可分为以下几个部分:组成部分功能控制柜→对设备的运行进行统一控制;装舟台:→园片放置的区域,由控制柜控制运行炉体:→对园片进行高温作业的区域,由控制柜控制升降温源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。
FSI:负责炉前清洗。
第二章:热氧化工艺热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。
热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。
硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。
2. 1氧化层的作用2.1.1用于杂质选择扩散的掩蔽膜常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。
利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。
1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。
同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。
作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。
2.1. 2缓冲介质层其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。
半导体制造工艺基础之扩散工艺培训简介半导体制造是现代电子行业中非常重要的一环,扩散工艺作为其中的一种关键工艺,其作用是在半导体晶片表面或表面以下扩散掺杂特定的杂质,以改变材料的电子性质。
本文将介绍扩散工艺的基本概念、原理、设备和步骤等内容,为对半导体制造工艺感兴趣或从事相关工作的读者提供基础性培训。
扩散工艺的基本概念扩散是指通过高温下大气中有害杂质向半导体晶体中扩散迁移,并将半导体晶体杂质浓度均匀化的过程。
扩散工艺的关键步骤是通过高温加热使杂质分子迅速扩散到晶片内部,然后通过快速冷却固化杂质。
扩散工艺的原理扩散工艺的实现基于以下几个原理:•Fick’s 第一定律:物质在浓度梯度的驱动下,会自发地从高浓度区域向低浓度区域扩散。
•自扩散:同种原子在晶体内扩散迁移的现象。
扩散工艺需要精确控制温度、时间和扩散源的浓度,以确保扩散过程的效果和均匀性。
扩散工艺的步骤扩散工艺一般包括以下几个步骤:1.涂胶:将液态的胶原料均匀地涂在半导体晶片表面。
2.预热:将涂胶的晶片放入预热炉中,在一定温度下进行烘烤,使胶原料固化。
3.扩散:将预热后的晶片放入扩散炉中,通过控制温度和时间,将所需杂质扩散到晶片内部。
4.冷却:在扩散完成后,将晶片快速冷却以固化扩散的杂质。
5.清洗:将冷却后的晶片进行清洗,去除多余杂质和胶原料。
6.检测:对扩散后的晶片进行测试和检测,以确保质量符合要求。
扩散工艺的设备扩散工艺通常需要以下设备:•扩散炉:用于控制温度和时间进行扩散过程。
•预热炉:用于将涂胶的晶片进行烘烤,以固化胶原料。
•清洗设备:用于清洗扩散后的晶片,去除多余的杂质。
•检测设备:对扩散后的晶片进行测试和检测,以确保质量符合要求。
扩散工艺的应用扩散工艺在半导体制造中有广泛的应用,主要用于掺杂制造PN结、MOS结构以及形成超浅和深层掺杂等。
常见的扩散工艺包括硼扩散、砷扩散、硅扩散等。
结束语扩散工艺是半导体制造过程中不可或缺的一环,它的实施对于半导体器件的性能和质量具有重要影响。
扩散工艺培训----主要设备、热氧化、扩散、合金前言:扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。
扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。
本文主要介绍热氧化、扩散及合金工艺。
目录第一章:扩散区域设备简介……………………………………第二章:氧化工艺第三章:扩散工艺第四章:合金工艺第一章:扩散部扩散区域工艺设备简介炉管设备外观:扩散区域的工艺、设备主要可以分为:炉管:负责高温作业,可分为以下几个部分:组成部分功能控制柜→对设备的运行进行统一控制;装舟台:→园片放置的区域,由控制柜控制运行炉体:→对园片进行高温作业的区域,由控制柜控制升降温源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。
FSI:负责炉前清洗。
第二章:热氧化工艺热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。
热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。
硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。
2. 1氧化层的作用2.1.1用于杂质选择扩散的掩蔽膜常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。
利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。
1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。
同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。
作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。
2.1. 2缓冲介质层其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。
2.1.3电容的介质材料电容的计算公式:C=ε0*εr *S/dε0:真空介质常数 εr :相对介电常数S :电容区面积 D :介质层厚度P-Well SiO 2 Si 3N 4用材料。
在电容的制作过程中,电容的面积和光刻、腐蚀有较大的关系,而厚度则由二氧化硅的厚度决定。
2.1.4 集成电路的隔离介质二氧化硅的隔离效果比PN 结的隔离效果好,漏电流小,耐击穿能力强,隔离区和衬底之间的寄生电容小,不受外界偏压的影响,使器件有较高的开关速度。
如工艺中常用的场氧化就是生长较厚的二氧化硅膜,达到器件隔离的目的。
2.1.5 MOS 场效应晶体管的绝缘栅材料二氧化硅的厚度和质量直接决定着MOS 场效应晶体管的多个电参数,因此在栅氧化的工艺控制中,要求特别严格。
2.2 热氧化方法介绍2.2.1 干氧氧化干氧氧化化学反应式:Si+O 2 == SiO 2氧分子以扩散的方式通过氧化层到达二氧化硅-硅表面,与硅发生反应,生成一定厚度的二氧化硅层。
干氧化制作的SiO 2结构致密,均匀性、重复性好,掩蔽能力强,对光刻胶的粘附性较好,但生长速率较慢;一般用于高质量的氧化,如栅氧等;厚层氧化时用作起始和终止氧化;薄层缓冲氧化也使用此法。
2.2.2 水汽氧化水汽氧化化学反应式:2H 2O+Si == SiO 2+2H 2水汽氧化生长速率快,但结构疏松,掩蔽能力差,有较多缺陷。
对光刻胶的粘附性较差,我们公-WellSiO 222.2.3 湿氧氧化湿氧氧化反应气体中包括O2 和H2O ,实际上是两种氧化的结合使用。
湿氧氧化化学反应式:H2+O2==H2OH2O+Si == SiO2+2H2Si+O2 == SiO2湿氧氧化的生长速率介于干氧氧化和水汽氧化之间;在今天的工艺中H2O的形成通常是由H2和O2的反应得到;因此通过H2和O2的流量比例来调节O2和H2O的分压比例,从而调节氧化速率,但为了安全,H 2/O2比例不可超过1.88。
湿氧氧化的氧化层对杂质掩蔽能力以及均匀性均能满足工艺要求,并且氧化速率比干氧氧化有明显提高,因此在厚层氧化中得到了较为广泛的应用,如场氧化等。
2.2.4 掺氯氧化氧化气体中掺入HCL或DCE(C2H2Cl2)后,氧化速率及氧化层质量都有提高。
人们从两个方面来解释速率变化的原因,其一:掺氯氧化时反应产物有H2O,加速氧化;其二:氯积累在Si-SiO2界面附近,氯与硅反应生成氯硅化物,氯硅化物稳定性差,在有氧的情况下易转变成SiO2,因此,氯起了氧与硅反应的催化剂的作用。
并且氧化层的质量也大有改善,同时能消除钠离子的沾污,提高器件的电性能和可靠性。
热氧化过程中掺入氯会使氧化层中含有一定量的氯原子,从而可以减少钠离子沾污,钝化SiO2中钠离子的活性,抑制或消除热氧化缺陷,改善击穿特性,提高半导体器件的可靠性和稳定性。
我们公司大多数干氧氧化都含有掺氯氧化。
2. 3热氧化过程中的硅片表面位置的变化如果热生长的二氧化硅厚度是X0(um),所消耗的硅厚度为X1,则:a=X1/X=0.46即生长1um的SiO2,要消耗掉0.46um的Si。
但不同热氧化生长的SiO2的密度不同,a值会略有差异。
2.4.1 热氧化模型简介硅片的热氧化过程是氧化剂穿透二氧化硅层向二氧化硅和硅界面运动并与硅进行反应。
Deal-Grove方程具体描述了这种热氧化过程。
Deal-Grove膜厚方程式:X2+AX=B(t+τ)式中:A=2D0*(1/KS+1/h)B=2D*N*/nτ=(XI 2+A*XI)/BD:氧化剂在二氧化硅中的有效扩散系数; h:气相输运常数KS:界面反应速率常数;N*:氧化剂在氧化层中的平衡浓度XI:初始氧化层厚度; n:形成单位体积二氧化硅所需的氧分子数极限情况1:短时间氧化时X=(B/A)*t B/A:线性氧化速率常数极限情况2:长时间氧化时X2=Bt B:抛物线速率常数这两个速率常数都与工艺方法、氧化温度、氧化剂的分压、晶向有关系。
2.4.2 氧化温度的影响温度越高,氧化速率越快。
2.4.4 硅片晶向的影响线性速率常数与晶向有较大的关系,各种晶向的园片其氧化速率为:(110)>POLY>(111)>(100)2.4.5 掺杂杂质浓度的影响当掺杂杂质的浓度相当高时,会产生增强氧化,使氧化速率发生较大变化。
如 LVMG 产品N+退火氧化:在未掺杂区的氧化厚度:670A在N+掺杂区氧化厚度:1700A2.4.6 氯化物的影响2.4.7 氧化剂分压的影响速率变化。
2.4 CSMC-HJ扩散课的工艺状况2.4.1 氧化质量控制2.4.1.1 拉恒温区控制温度定期拉恒温区以得到好的温度控制2.4.1.2 DCE(C2H2Cl2)吹扫炉管2.4.1.3 BT 测量BT项目可以检测到可动离子数目,使我们及时掌握炉管的沾污情况,防止炉管受到可动电荷粘污,使大批园片受损。
2.4.1.4 片内均匀性保证硅片中每个芯片的重复性良好2.4.1.5 片间均匀性保证每个硅片的重复性良好2.4.1.6定期清洗炉管清洗炉管,可以减少重金属离子、碱金属离子的沾污同时也能减少颗粒,保证氧化层质量。
2.4.1.7 定期检测系统颗粒2.5.常见问题及处理I 膜厚异常,但均匀性良好对策:首先,检查测量结果是否准确、仪器工作状态是否正常,然后1 检查气体流量、工艺温度是否正常;2 检查炉管的气体接口是否正常;3 如使用控制片,检查控制片是否用对;4 和动力部门确认,工艺时气体供应有无出现异常;5 对于外点火的炉管,请检查点火装置的各处连接正常,然后进行TORCH点火实验。
Ⅱ部分园片或部分测试点膜厚正常,但整体均匀性差对策:1 如使用控制片,检查控制片;2 检查排风正常3检查炉门正常第三章扩散工艺展初期是半导体器件生产的主要技术之一。
但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。
3.1 扩散机构3.1.1 替位式扩散机构这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。
硼、磷、砷等是此种方式。
3.1.2 填隙式扩散机构这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。
镍、铁等重金属元素等是此种方式。
3.2 扩散方程∂N / ∂t = D*2N / ∂x2N=N(x,t)杂质的浓度分布函数,单位是cm-3D:扩散系数,单位是cm2/s加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。
3.2.1 恒定表面浓度扩散整个扩散过程中,硅片表面浓度NS 保持不变N(x,t)=NSerfc(x/(2*(Dt)1/2))式中erfc称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。
3.2.2.限定源扩散杂质源限定在硅片表面薄的一层,杂质总量Q是常数。
N(x,t)=(Q/(πDt)1/2)*exp(-X2/4Dt)由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大3.2.3 扩散系数扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。
D大,扩散速率快。
D与扩散温度T、杂质浓度N、衬底浓度N、扩散气氛、衬底晶向、缺陷等因素有关。
Bexp(-E/kT)D=DT:绝对温度;K:波尔兹曼常数;E:扩散激活能D:频率因子3.2.4 杂质在硅中的固溶度杂质扩散进入硅中后,与硅形成固溶体。
在一定的温度下,杂质在硅中有一个最大的溶解度,其对应的杂质浓度,称该温度下杂质在硅中的固溶度。
固溶度在一定程度上决定了硅片的表面浓度。
3.3 CSMC-HJ扩散课的扩散工艺状况扩散工艺按照作用可以分为推阱、退火、磷掺杂,不同工艺的作业炉管在配置上稍有不同。
3.3.1推阱由于CMOS是由PMOS和NMOS组成,因此需要在一种衬底上制造出另一种型号的衬底,才可以在一种型号的硅片上同时制造出N管、P管,在选择注入后的推阱工艺就可以在硅片上制出P阱、N阱;由于推阱一般需要有一定的结深,而杂质在高温下的扩散速率较大,因此推阱工艺往往需要在较高的温度(1150C)下进行,以缩短工艺时间,提高硅片的产出率。
3.3.1.1推阱工艺主要参数3.3.1.1.1结深比较关键,必须保证正确的温度和时间;3.3.1.1.2膜厚主要为光刻对位提供方便,同时会改变园片表面的杂质浓度,过厚或过薄均会影响N管或P管的开启电压;3.3.1.1.3表面浓度注入能量和剂量一定后,表面浓度主要受制于推阱程序的工艺过程,如高温的温度、工艺的时间、氧化和推结的前后顺序;3.3.1.2影响推阱的工艺参数3.3.1.2.1 温度3.3.1.2.2 时间一般不易偏差,取决于时钟的精确度。