ANSYS workbench摩擦生热实例
- 格式:doc
- 大小:180.50 KB
- 文档页数:2
《弹性力学与有限元分析》院系:机械工程学院姓名:程俊智学号:201512202567专业方向:车辆工程2015年1月13日弹性力学与有限元方法作业1、已知应力分量分别为:y xy x x 84322-+=σ,yxy x y3222++=σ,y xy x xy 262221---=τ,===ττσyz xzz,证明当无体力时,该应力分量满足平衡微分方程。
证明:平衡微分方程如下所示:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+++=+++=+++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂000F z y xF z y x F z y x bz z yz xz by zyy xy bx zx yx x στττστττσ===ττσyz xzz,故平衡微分方程简化如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+∂∂∂∂∂∂∂∂00y xy x y xy yx x σττσ(1)yx x x46+=∂∂σ,yx yy6+=∂∂σ, yx xxy6--=∂∂τ,yx yyx46--=∂∂τ。
故,,满足(1)式,所以当无体力时,该应力分量满足平衡微分方程。
2、弹性力学的基本方程都有哪些?并简述每种基本方程的含义及形式。
答:a 平衡微分方程含义:用来描述外力和应力之间的关系。
形式:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+++=+++=+++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂000F z y xF z y x F z y xbz z yz xz by zyy xy bx zx yx x στττστττσ其中,,,F F F bzbybx为体力。
b 几何方程含义:用来描述应变和位移之间的关系。
=+∂∂∂∂yxyxxτσ0=+∂∂∂∂yxyxyστ形式:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+=+====∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z x w z v y w y x z w y x zxyz xy z y x μγγμνγενεμεc 变形协调方程含义:变形协调方程也称变形连续方程,或相容方程。
总结这个例子的几个要点:
1.几何下面插入command,单元为平面耦合场单元223,KEYOPT设置结构+温度自由度。
et,matid,plane223,11
2.摩擦接触下面同样设置温度自由度,还有导热率
keyopt,cid,1,1 !自由度
RMODIF,cid,14,1e4 !热传导系数
3.基于结构瞬态分析,所以温度载荷就得command完成了,还有求解器的一些设置。
/solu
tref,10
cmsel,s,base
d,all,temp,10
allsel
TRNOPT,full
OUTRES,ERASE
OUTRES,all,all
4.很快就计算完成,原则上应该在后处理查看到耦合场的结果,但是我查看结果总是提示 the result data fo contained in the result file ,我前面还故意加上了OUTRES,all,all,不知为什么,我没有做任何修改在AC 所有结果,wb中commad也没问题,这个问题还请斑竹和各位指导。
我怀疑是不是wb自身的问题,应力结果也不对,但是在经典界面这些问题都没有了。
还有我有个关于接触的疑问,此例中罚函数计算收敛,但是 aug lagrange却怎么试都不行,各位可以试一下本来以为aug lagrange更容易收敛。
附件是源文件,12.1版本,打不开的可以下载几何,自己操练一下。
第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。
2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。
内容1:冷却栅管问题问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。
一个轴对称的冷却栅结构管内为热流体,管外流体为空气。
冷却栅材料为不锈钢,特性如下:导热系数:25.96 W/m ℃弹性模量:1.93×109 MPa热膨胀系数:1.62×10-5 /℃泊松比:0.3边界条件:(1)管内:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃(2)管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。
其上下边界承受边界约束,管内部承受均布压力。
练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名及工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。
2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。
3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。
《弹性力学与有限元分析》院系:机械工程学院姓名:程俊智学号:201512202567专业方向:车辆工程2015年1月13日弹性力学与有限元方法作业1、已知应力分量分别为:y xy x x 84322-+=σ,yxy x y3222++=σ,y xy x xy 262221---=τ,===ττσyz xzz,证明当无体力时,该应力分量满足平衡微分方程。
证明:平衡微分方程如下所示:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+++=+++=+++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂000F z y xF z y x F z y x bz z yz xz by zyy xy bx zx yx x στττστττσ===ττσyz xzz,故平衡微分方程简化如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+∂∂∂∂∂∂∂∂00y xy x y xy yx x σττσ(1)yx x x46+=∂∂σ,yx yy6+=∂∂σ, yx xxy6--=∂∂τ,yx yyx46--=∂∂τ。
故,,满足(1)式,所以当无体力时,该应力分量满足平衡微分方程。
2、弹性力学的基本方程都有哪些?并简述每种基本方程的含义及形式。
答:a 平衡微分方程含义:用来描述外力和应力之间的关系。
形式:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+++=+++=+++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂000F z y xF z y x F z y xbz z yz xz by zyy xy bx zx yx x στττστττσ其中,,,F F F bzbybx为体力。
b 几何方程含义:用来描述应变和位移之间的关系。
=+∂∂∂∂yxyxxτσ0=+∂∂∂∂yxyxyστ形式:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+=+====∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z x w z v y w y x z w y x zxyz xy z y x μγγμνγενεμεc 变形协调方程含义:变形协调方程也称变形连续方程,或相容方程。
文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 6-1•本章练习稳态热分析的模拟,包括:A. 几何模型B. 组件-实体接触C. 热载荷D. 求解选项E. 结果和后处理F. 作业6.1• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural• 提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析K T T= Q T –在稳态分析中不考虑瞬态影响–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:• 固体内部的热流(Fourier’s Law)是[K]的基础;• 热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在D esignModeler中定义• 热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化•唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。
•如果接触是Bonded(绑定的)或no separation(无分离的),那么当面出现在pinball radius内时就会发生热传导(绿色实线表示)。
Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
基于ANSYSWorkbench的研球机主轴热态特性分析以研球机主轴为研究对象,通过三维实体软件UG对主轴进行几何建模,利用ANSYS Workbench平台建立了主轴热态特性有限元分析模型,对主轴进行了热态特性分析。
通过分析,得到了机床主轴温度场的变化,热通量大小分布以及热变形的大小分布,为有效控制主轴热变形,保证机床的加工精度提供了理论依据。
标签:主轴;热态特性;加工精度引言随着现代加工技术的不断发展,高精度加工已逐渐成为现代工业化生产的主流。
在精密机械加工过程中,影响机床加工精度的因素很多,其中,机床主轴一直是影响机床加工精度的关键部件,主轴的转动和摩擦产生的热会造成主轴的热变形,而主轴的变形会直接影响机床的加工精度。
文章以ANSYS Workbench为平台,对研球机主轴的热态特性进行了分析。
1 主轴有限元模型的建立该研球机为陶瓷球研磨机床,其主轴组件主要包括主轴、轴承、研磨盘等零件。
文章通过UG6.0三维实体软件对主轴进行了几何建模,然后通过UG输出转换文件,导入到ANSYS Workbench分析软件中。
该分析主要是进行的热应力的部分分析,通过采用直接耦合法来求解得出耦合场的分析结果,即温度在主轴上的分布和结构的变形。
在ANSYS Workbench中对主轴进行网格划分,因为轴承所对应的主轴部分是发热的主要部分和受力处,在主轴转动时产生较多的热量,因此对该部位的网格划分要更加细密。
该研球机主轴的有限元模型如图1所示。
2 主轴的热源以及稳态热分布分析在研球机工作过程中,主轴主要受到两种热源:一是周围环境的空气对流以及阳光等一些外在的辐射热源;二是主轴转动与轴承产生的摩擦发出的热。
在一般情况下,机床加工通常处于室温的稳定情况,所以,我们主要考虑主轴与轴承在转动过程中产生的发热量。
当轴承在高速轻载条件下,M0占主要部分;当轴承在低速重载条件下,M1占主要部分。
该分析所用研球机运行过程中主轴转速75r/min,并且带动研磨板进行运动,主轴工作压力是25kN,属低速重载条件,因此在该研球机主轴的摩擦力矩中M1占主要部分。
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。
几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚1 inch铝层壁厚0.25inch筒长200 feet导热系数不锈钢8.27BTU/hr.ft.o F玻纤0.028 BTU/hr.ft.o F铝117.4 BTU/hr.ft.o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft2.o F海水对流系数80 BTU/hr.ft2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1 度进行分析,如图示。
/filename,Steady1/title,Steady-state thermal analysis of submarine/units,BFTRo=15 !外径(ft)Rss=15-(0.75/12) !不锈钢层内径ft)Rins=15-(1.75/12) !玻璃纤维层内径(ft)Ral=15-(2/12) !铝层内径(ft)Tair=70 !潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 !不锈钢的导热系数(BTU/hr.ft.oF)Kins=0.028 !玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 !铝的导热系数(BTU/hr.ft.oF)Hair=2.5 !空气的对流系数(BTU/hr.ft2.oF)Hsea=80 !海水的对流系数(BTU/hr.ft2.oF)prep7et,1,plane55 !定义二维热单元mp,kxx,1,Kss !设定不锈钢的导热系数mp,kxx,2,Kins !设定玻璃纤维的导热系数mp,kxx,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc,Rss,Rins,-0.5,0.5pcirc,Rins,Ral,-0.5,0.5aglue,allnumcmp,arealesize,1,,,16 !设定划分网格密度lesize,4,,,4lesize,14,,,5lesize,16,,,2Mshape,2 !设定为映射网格划分mat,1amesh,1mat,2amesh,2mat,3amesh,3/SOLUSFL,11,CONV,HAIR,,TAIR !施加空气对流边界SFL,1,CONV,HSEA,,TSEA !施加海水对流边界SOLVE/POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为3 英尺,壁厚为0.2 英尺,接管外径为0.5 英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。
热力耦合·AnsysWorkBench摩擦生热简例
大家好,这次简单介绍在workbench里如何分析摩擦生热。
首先新建瞬态结构分析Transient Structural。
右键A3导入模型后,在右侧选择2D分析。
进入有限元分析后,给两个模型插入命令设置材料的网格类型,使用solid223,结构-热耦合。
两个模型的接触设置为有摩擦接触,摩擦系数0.2。
设置接触的求解方法是增强型拉格朗日算法,刚度每次更新。
给接触插入命令流,接触内包含结构自由度和温度自由度。
给平板设置固定约束,滑块设置位移约束。
在滑块上施加一个压力。
在分析上插入命令流。
/solu!在求解程序中
allsel!所有参与计算的单位和节点
tref,0!热分析参考温度是0℃
trnopt,full!瞬态分析的方法是Full Newton-Raphson,完全法timint,off,struc!关闭结构的瞬态分析,只进行瞬态热分析tintpr,,,,1.0!使用默认一阶积分
结果中设置自定义结果,查看温度
求解后的结果,自定义温度。
8例1 螺栓连接件分析如图所示为一螺栓连接的法兰连接件简图,法兰一端及内侧面固定约束。
载荷1为螺栓预应力1000N载荷2为螺栓预应力1500N载荷3为螺栓预应力2000N根据实际情况,自己设定接触类型,其中摩擦类型接触对时,摩擦系数为0.1 为方便设置,材料均取钢材,求其变形及应力。
边界条件螺栓连接件分析1 导入几何模型,进入DS模块2 材料设置选择默认的材料:Structural Steel3 设置接触螺栓与螺母的接触类型为Bonded螺栓杆与法兰的接触类型为Frictional,摩擦系数为0.1螺栓杆与垫片内壁的接触类型为Frictional,摩擦系数为0.1其余接触类型为No Separation4 网格划分5 选择分析类型·在“New Analysis”中选择结构静力学分析“Static Structural”;6 施加约束与载荷1)施加固定约束·点击“Static Structural”,在“Supports”中选择固定约束“Fixed Support”·选择法兰一端及内侧面固定约束;2)施加载荷·选择载荷1处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为1000N ·选择载荷2处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为1500N ·选择载荷3处螺栓杆表面,添加螺栓预应力“Bolt Pretension”大小为2000N5 设定求解类型1)求解变形·点击“solution”,点击“Deformation”选择“Total”,求解变形·点击“Stress”,选择“Equivalent (V on-Mises)”,求解等效应力6 单击“Solve”求解7 观察求解结果·点击“Total Deformation”查看变形·点击“Equivalent Stress”查看应力分布例2卡紧散热片的不锈钢扣件受力分析扣紧件是一个不锈钢的卡子,因为散热片同功率部件之间的接触力同最终的散热有很大关系,因此研究力的大小是很有意义的。
总结这个例子的几个要点:
1.几何下面插入command,单元为平面耦合场单元223,KEYOPT设置结构+温度自由度。
et,matid,plane223,11
2.摩擦接触下面同样设置温度自由度,还有导热率
keyopt,cid,1,1 !自由度
RMODIF,cid,14,1e4 !热传导系数
3.基于结构瞬态分析,所以温度载荷就得command完成了,还有求解器的一些设置。
/solu
tref,10
cmsel,s,base
d,all,temp,10
allsel
TRNOPT,full
OUTRES,ERASE
OUTRES,all,all
4.很快就计算完成,原则上应该在后处理查看到耦合场的结果,但是我查看结果总是提示 the result data fo contained in the result file ,我前面还故意加上了OUTRES,all,all,不知为什么,我没有做任何修改在AC 所有结果,wb中commad也没问题,这个问题还请斑竹和各位指导。
我怀疑是不是wb自身的问题,应力结果也不对,但是在经典界面这些问题都没有了。
还有我有个关于接触的疑问,此例中罚函数计算收敛,但是 aug lagrange却怎么试都不行,各位可以试一下本来以为aug lagrange更容易收敛。
附件是源文件,12.1版本,打不开的可以下载几何,自己操练一下。