ansysworkbench热分析研究教程
- 格式:docx
- 大小:1.53 MB
- 文档页数:27
第12章 热分析 热力学分析(简称热分析)用于计算一个系统或部件的温度分布及其他各种热物理参数,如热量的获取与损失、热梯度、热流密度(热通量)等。
热分析在许多工程应用中扮演着非常重要的角色,如内燃机、涡轮机、换热器、电子元件等。
★ 了解传热的基础知识。
12.1 传热概述传热分析(Steady-State Thermal Analysis )遵循热力学第一定律,即能量守恒定律。
对于一个封闭的系统(没有质量的流入或流出),则:PE KE U W Q Δ+Δ+Δ=−式中Q 为热量,W 为所做的功,ΔU 为系统的内能,KE Δ为系统的动能,PE Δ为系统的势能。
对于大多数工程传热问题:0==PE KE ΔΔ若不考虑做功,即0=W ,则U Q Δ=;对于稳态热分析:0=Δ=U Q即流入系统的热量等于流出的热量;对于瞬态热分析:q dU dt =即流入或流出的热传递速率q 等于系统内能的变化。
12.1.1 传热方式热分析包括热传导、热对流、热辐射三种传热方式。
ANSYS Workbench 17.0有限元分析从入门到精通1.热传导热传导可以定义为完全接触的两个物体之间,或一个物体的不同部分之间由于温度梯度而引起的内能交换。
热传导遵循傅里叶定律:dxdT k q −=′′ 式中q ′′为热流密度(W/m 2),k 为导热系数。
2.热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量交换。
热对流可以分为两类:自然对流和强制对流。
热对流用牛顿冷却方程来描述:)(B T S T h q −=′′ 式中h 为对流换热系数(或称膜传热系数、给热系数、膜系数等),S T 为固体表面的温度,B T 为周围流体的温度。
3.热辐射热辐射是指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。
物体温度越高,单位时间内辐射的热量就越多。
热传导和热对流都需要有传热介质,而热辐射无须任何介质。
实质上,在真空中的热辐射效率最高。
● 第一步:独立分析首先要保证模型在ansoft中需正确分析完成。
● 第二步:模型导出分析完成后,将ansoft模型导出,格式我选择step格式,其他格式没有试过。
选择菜单栏中的Modeler-Export 选择step格式将模型导出● 第三步:文件导入启动ANSYS Workbench 13.0,首先点击菜单栏中 Import... 选择.mxwl格式,选择刚才的maxwell分析完成的文件,进行导入。
● 第四步:更新工程点击Workbench菜单栏中的 update project,如果maxwell文件正确的话,过一会solution会有黄色闪电变成绿色对勾。
然后在左侧选择Steady-state thermal ,拖入到中间● 第五步:模型属性然后将Steady-state thermal下的Gemoetry属性改为2D.● 第六步:设置单位双击Gemoetry,进入模型设置界面,选择对应的模型尺寸单位。
点击左上角菜单栏中的File-Impotr Extenal Gemoetry File,选择刚才maxwell导出的step 格式模型。
导入后,点击左上角快捷图表Generate,模型就会出现。
● 第七步:网格剖分关闭Gemoetry界面,退回主界面,会发现Gemoetry已经变为绿色对勾,标识模型导入正确。
然后点击Workbench菜单栏中的 update project,会自动对模型进行网格划分。
当然也可以进入Model菜单进行手动划分。
● 第八步:模型对接网格划分成功后,Model会变为绿色对勾。
然后将Maxwell 2D solution和Steady-state thermal 的Setup进行连接,再次点击菜单栏中的 update project。
● 第九步:完成导入update project完成后,Maxwell 2D 中solution会变成绿色对勾。
然后双击进入Steady-state thermal中的Setup,进入setup设置,右侧会出现“ImportedLoad(Maxwell2Dsolution)”。
6-1•本章练习稳态热分析的模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1•本节描述的应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural•提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:•假设:KT TQ T–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(PointMass)的特性•壳体和线体假设:•唯一需要的材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入•温度相关的导热性以表格形式输入•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。
•如果接触是Bonded(绑定的)或noseparation (无分离的),那么当面出现在pinballradius内时就会发生热传导(绿色实线表示)。
PinballRadius右图中,两部件间的间距大于pinball 区域,因此在这两个部件间会发生热传导。
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
Workbench -Mechanical Introduction Introduction作业6.1稳态热分析作业6.1 –目标Workshop Supplement •本作业中,将分析下图所示泵壳的热传导特性。
•确切说是分析相同边界条件下的塑料(Polyethylene)泵壳和铝(Aluminum)泵壳。
)泵壳•目标是对比两种泵壳的热分析结果。
作业6.1 –假设Workshop Supplement 假设:•泵上的泵壳承受的温度为60度。
假设泵的装配面也处于60度下。
•泵的内表面承受90度的流体。
•泵的外表面环境用一个对流关系简化了的停滞空气模拟,温度为20度。
作业6.1 –Project SchematicWorkshop Supplement •打开Project 页•从Units菜单上确定:–项目单位设为Metric (kg, mm, s, C, mA, mV)–选择Display Values in Project Units…作业6.1 –Project SchematicWorkshop Supplement 1.在Toolbox中双击Steady-State Thermal创建一个新的Steady State Thermal(稳态Steady State Thermal热分析)系统。
1.2.在Geometry上点击鼠标右键选择p y,导入文Import Geometry件Pump_housing.x_t 2.…作业6.1 –Project SchematicWorkshop Supplement3.双击Engineering Data得到materialproperties(材料特性) 3.4.选中General Materials的同时,点击Aluminum Alloy和Polyethylene旁边的‘+’符号,把它们添加到项目中。
5.Return to Project(返回到项目)4.5.Workshop Supplement…作业6.1 –Project Schematic6.把Steady StateThermal 拖放到第一个系统的Geometry 上。
6-1A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1• 本节描述地应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural• 提示:在ANSYS 热分析地培训中包含了包括热瞬态分析地高级分析K T T= Q T –在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度地函数–{Q}可以是一个常量或是温度地函数• 固体内部地热流(Fourier’s Law)是[K]地基础;• 热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要地.–体、面、线•线实体地截面和轴向在DesignModeler中定义• 热分析里不可以使用点质量(PointMass)地特性•壳体和线体假设:–壳体:没有厚度方向上地温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体地轴向仍有温度变化唯一需要地材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入•温度相关地导热性以表格形式输入若存在任何地温度相关地材料特性,就将导致非线性求解.–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball地解释).–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义地,同时还给了一个相对较小地值来适应模型里地小间距.• 默认情况下,假设部件间是完美地热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美地热接触传导:TTx⋅ (T q = TCC target - T conta ct – 式中T contact 是一个接触节点上地温度, T target 是对应目标节点上地温度–默认情况下,基于模型中定义地最大材料导热性KXX 和整个几何边界框地对角线ASMDIAG ,TCC 被赋以一个相对较大地值.TCC = KXX ⋅10,000/ ASMDIAG– 这实质上为部件间提供了一个完美接触传导• 在ANSYS Professional或更高版本,用户可以为纯罚函数和增广拉格朗日方程定义一个有限热接触传导(TCC).–在细节窗口,为每个接触域指定TCC输入值–如果已知接触热阻,那么它地相反数除以接触面积就可得到TCC值–Spotweld在CAD软件中进行定义(目前只有DesignModeler和Unigraphics 可用).T2 T1热流量: – 热流速可以施加在点、边或面上.它分布在多个选择域上.– 它地单位是能量比上时间(energy/time )•完全绝热(热流量为0): •热生成:– 内部热生成只能施加在实体上– 它地单位是能量比上时间在除以体积(energy/time/volume )正地热载荷会增加系统地能量.– 可以删除原来面上施加地边界条件• 热通量:– 热通量只能施加在面上(二维情况时只能施加在边上)– 它地单位是能量比上时间在除以面积( e nergy/time/area )温度、对流、辐射:•完全绝热条件将忽略其它地热边界条件 • 给定温度: – 给点、边、面或体上指定一个温度– 温度是需要求解地自由度• 至少应存在一种类型地热边界条件,否则,如果热量将源源不断地输入到系统中,稳态时地温度将会达到无穷大.• 另外,给定地温度或对流载荷不能施加到已施加了某种热载荷或热边界条件地表面上 .•对流:– 只能施加在面上(二维分析时只能施加在边上)– 对流q 由导热膜系数 h ,面积A ,以及表面温度T surface 与环境温度T ambient 地差值 来定义. q = hA (T surface - T ambient )– “h ” 和 “T ambient ” 是用户指定地值– 导热膜系数 h 可以是常量或是温度地函•与温度相关地对流:–为系数类型选择Tabular(Temperature)–输入对流换热系数-温度表格数据–在细节窗口中,为h(T)指定温度地处理方式•几种常见地对流系数可以从一个样本文件中导入.新地对流系数可以保存在文件中.•辐射:– 施加在面上(二维分析施加在边上)(4 4)– 式中: Q R = σεFAT surface - T ambient• σ=斯蒂芬一玻尔兹曼常数• ε =放射率• A =辐射面面积• F = 形状系数(默认是1)– 只针对环境辐射,不存在于面面之间(形状系数假设为1)– 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定在projectschematic里建立一个SSThermalsystem(SS热分析)•在Mechanical 里,可以使用Analysis Settings为热分析设置求解选项.–注意,第四章地静态分析中地AnalysisDataManagement选项在这里也可以使用.加地结构载荷和约束.– 求解结构在Static Structural 中插入了一个importedload 分支,并同时导入了施–温度–热通量–反作用地热流速–用户自定义结果•模拟时,结果通常是在求解前指定,但也可以在求解结束后指定.–搜索模型求解结果不需要在进行一次模型地求解.– 温度是标量,没有方向– 热通量 q 定义为q = -KXX ⋅∇TTotal Heat Flux (整体热通量)和DirectionalHeatFlux (方向热通量)–通过插入probe指定响应热流量,或–用户可以交替地把一个边界条件拖放到Solution上后搜索响应•作业6.1–稳态热分析•目标:–分析图示泵壳地热传导特性版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
1
ANSYS 热分析实例教程—一灯论坛罗勇梨提供
1.
打开软件
2.选取模块
3.导入零件
4.设定零件的材料特性
点击Part 1,出来上示对话档(在左下角),在Material 一栏中选择New material 来设定材料的散热系数,如下图:选择Thermal 一栏,
在
中先输入数值,再点击前面方框,以保存.完
成后退出对话框
.
或选Import 直接设定零件材质(如材料能在Ansys 的材料库中找到,否则一般都采用前一种方法
):
5.创建网格
右键点击Mesh---Generate Mesh,自动创建即可.
6.设定分析项目.
在New anslysis 下拉菜单中选择稳态分析(Steady-State Thermal)
7.设定对流参数
按下图步骤点选:点击处,会弹出2处菜单,点选
.
8.设定热源
9.计算
如图右键弹出下拉菜单点选Temperature.
再右键Solve.。
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
基于ANSYS WORKBENCH的通电导线的热分析本篇文章是关于ANSYS WORKBENCH的耦合场分析的一个例子。
一根导线在通稳恒电流后会发热,这属于电-热耦合分析,例子本身很简单,只是说明WORKBENCH自带的耦合分析系统的使用。
【问题描述】一根裸露导线,电阻为R,通过电流为I,需要计算电线中心温度和表面温度。
已知导线的长度为0.1米,截面半径为0.005米,导线的热传导率是60.5瓦每米摄氏度,电阻率是1.7e-1欧姆米,电流大小是20安培,环境温度是20摄氏度,导线裸露表面与空气的对流换热系数是5瓦特每平方米摄氏度。
(注:该题来自于《ANSYS 13.0 WORKBENCH数值模拟技术》,许京荆编著)【问题分析】ANSYS WORKBENCH中自带热电分析系统,可以直接进行热电耦合分析。
使用过程与一般分析相同。
【求解过程】1.打开ANSYS WORKBENCH14.52.创建热-电分析系统。
3.创建材料模型。
双击engineering data进入到工程数据中。
系统默认的钢材的热传导率和电阻率与已知条件相同,不需要修改。
退回到WB界面。
4.创建几何模型。
双击geometry进入到DM中,选择长度单位是毫米。
其尺寸如下图退出DM.5.划分网格。
6.设置边界条件。
设置一个端面电压为零。
设置另外一个端面的电流为20安。
对外圆柱面设置对流边界条件。
7.求解。
8.后处理。
温度云图。
整个导体温度均匀。
电压云图。
焦耳热云图。
6-1?本章练习稳态热分析地模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1? 本节描述地应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural? 提示:在ANSYS 热分析地培训中包含了包括热瞬态分析地高级分析?K T???T???Q?T?–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度地函数–{Q}可以是一个常量或是温度地函数?上述方程基于傅里叶定律:? 固体内部地热流(Fourier’s Law)是[K]地基础;? 热通量、热流率、以及对流在{Q}为边界条件;?对流被处理成边界条件,虽然对流换热系数可能与温度相关?在模拟时,记住这些假设对热分析是很重要地.?热分析里所有实体类都被约束:–体、面、线•线实体地截面和轴向在DesignModeler中定义? 热分析里不可以使用点质量(PointMass)地特性?壳体和线体假设:–壳体:没有厚度方向上地温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度? 但在线实体地轴向仍有温度变化•唯一需要地材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入?温度相关地导热性以表格形式输入若存在任何地温度相关地材料特性,就将导致非线性求解.?对于结构分析,接触域是自动生成地,用于激活各部件间地热传导–如果部件间初始就已经接触,那么就会出现热传导.–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball地解释).–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义地,同时还给了一个相对较小地值来适应模型里地小间距.?如果接触是Bonded(绑定地)或noseparation(无分离地),那么当面出现在pinballradius内时就会发生热传导(绿色实线表示).PinballRadius右图中,两部件间地间距大于pinball区域,因此在这两个部件间会发生热传导.? 默认情况下,假设部件间是完美地热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美地热接触传导:––––压力表面温度T使用导电脂....Tx?接? ?– 穿过接触界面地热流速,由接触热通量q 决定:q ??TCC target ??T cont act ?– 式中T contact 是一个接触节点上地温度, T target 是对应目标节点上地温度–默认情况下,基于模型中定义地最大材料导热性KXX 和整个几何边界框地对角线ASMDIAG ,TCC 被赋以一个相对较大地值.TCC ??KXX ?10,000/ASMDI AG – 这实质上为部件间提供了一个完美接触传导? 在ANSYS Professional或更高版本,用户可以为纯罚函数和增广拉格朗日方程定义一个有限热接触传导(TCC).–在细节窗口,为每个接触域指定TCC输入值–如果已知接触热阻,那么它地相反数除以接触面积就可得到TCC值在接触界面上,可以像接触热阻一样输入接触热传导?Spotweld(点焊)提供了离散地热传导点:–Spotweld在CAD软件中进行定义(目前只有DesignModeler和Unigraphics 可用).T2T1?热流量:– 热流速可以施加在点、边或面上.它分布在多个选择域上.– 它地单位是能量比上时间(energy/time ) ?完全绝热(热流量为0): ?热生成:– 内部热生成只能施加在实体上– 它地单位是能量比上时间在除以体积(energy/time/volume )正地热载荷会增加系统地能量.– 可以删除原来面上施加地边界条件? 热通量:– 热通量只能施加在面上(二维情况时只能施加在边上)– 它地单位是能量比上时间在除以面积( e nergy/time/area )温度、对流、辐射:?完全绝热条件将忽略其它地热边界条件 ? 给定温度: – 给点、边、面或体上指定一个温度– 温度是需要求解地自由度? 至少应存在一种类型地热边界条件,否则,如果热量将源源不断地输入到系统中,稳态时地温度将会达到无穷大.? 另外,给定地温度或对流载荷不能施加到已施加了某种热载荷或热边界条件地表面上 .?对流:– 只能施加在面上(二维分析时只能施加在边上)– 对流q 由导热膜系数 h ,面积A ,以及表面温度T surface 与环境温度T ambient 地差值 来定义. q ? hA ?T surface ? T ambient ?– “h ” 和 “T ambient ” 是用户指定地值– 导热膜系数 h 可以是常量或是温度地函?与温度相关地对流:–为系数类型选择Tabular(Temperature)–输入对流换热系数-温度表格数据–在细节窗口中,为h(T)指定温度地处理方式?几种常见地对流系数可以从一个样本文件中导入.新地对流系数可以保存在文件中.?辐射:– 施加在面上(二维分析施加在边上)?4 4?– 式中: Q R ????FAT surface ??T ambient? σ=斯蒂芬一玻尔兹曼常数? ε =放射率? A =辐射面面积? F = 形状系数(默认是1)– 只针对环境辐射,不存在于面面之间(形状系数假设为1)– 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定从Workbench toolbox插入Steady-StateThermal将在projectschematic里建立一个SSThermalsystem(SS热分析)•在Mechanical 里,可以使用Analysis Settings为热分析设置求解选项.–注意,第四章地静态分析中地AnalysisDataManagement选项在这里也可以使用.加地结构载荷和约束.– 求解结构?为了实现热应力求解,需要在求解时把结构分析关联到热模型上. 在Static Structural 中插入了一个importedload 分支,并同时导入了施?后处理可以处理各种结果:–温度–热通量–反作用地热流速–用户自定义结果?模拟时,结果通常是在求解前指定,但也可以在求解结束后指定.–搜索模型求解结果不需要在进行一次模型地求解.?温度:–温度是标量,没有方向?可以得到热通量地等高线或矢量图:– 热通量 q 定义为q ???KXX ??T – 可以指定Total Heat Flux (整体热通量)和DirectionalHeatFlux (方向热通量) ? 激活矢量显示模式显示热通量地大小和方向?对给定地温度、对流或辐射边界条件可以得到响应地热流量:–通过插入probe指定响应热流量,或–用户可以交替地把一个边界条件拖放到Solution上后搜索响应从Probe菜单下选择或拖放边界条件?作业6.1–稳态热分析?目标:–分析图示泵壳地热传导特性版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守着作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。