Two Technologies for Hydrogenation and Upgrading of Coal-Based Crude Liquid Developed by S
- 格式:pdf
- 大小:135.17 KB
- 文档页数:1
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期气液混合强化在固定床加氢过程中的应用进展苏梦军,刘剑,辛靖,陈禹霏,张海洪,韩龙年,朱元宝,李洪宝(中海油化工与新材料科学研究院,北京 102209)摘要:炼油工业作为国民经济的支柱,在创造大量财富的同时,往往存在高能耗、高物耗和高污染的问题。
固定床加氢技术是重要清洁炼油技术,在油品质量升级、产品结构调整、原油资源高效利用、生产过程清洁化进程中发挥了重要的作用。
提高固定床加氢效率有助于充分利用石油资源、生产清洁燃料和实现生产过程的节能降耗。
本文从固定床反应器滴流床加氢和液相加氢过程的氢油两相物料混合特性出发,综述了通过开发新型混氢设备和加氢工艺,强化气液混合过程,提高固定床多相催化加氢效率的应用进展,并提出固定床加氢反应过程气液混合强化技术发展趋势,为炼油化工生产过程提质增效、节能降碳新技术的开发提供参考。
关键词:气液混合;固定床加氢;多相反应;传质;过程强化中图分类号:TE624 文献标志码:A 文章编号:1000-6613(2024)01-0100-11Progress in the application of gas-liquid mixing intensification infixed-bed hydrogenationSU Mengjun ,LIU Jian ,XIN Jing ,CHEN Yufei ,ZHANG Haihong ,HAN Longnian ,ZHU Yuanbao ,LI Hongbao(CNOOC Institute of Chemicals & Advanced Materials, Beijing 102209, China)Abstract: As the pillar of national economy, oil refining industry often has the problems of high energy consumption, high material consumption and high pollution while creating a lot of wealth. Fixed-bed hydrogenation technology is an important clean oil refining technology, which plays an important role in the upgrading of oil quality, the adjustment of product structure, the efficient utilization of crude oil resources and the clean production process. Improving the efficiency of fixed-bed hydrogenation is helpful to make full use of petroleum resources, produce clean fuel and realize energy saving and consumption reduction in production process. Based on the mixing characteristics of hydrogen and oil two-phase materials in the trickle-bed hydrogenation and liquid-phase hydrogenation processes of fixed-bed reactor, this paper reviewed the application progress of gas-liquid mixing intensification which improved the efficiency of fixed-bed multiphase catalytic hydrogenation by developing new hydrogen mixing equipment and hydrogenation process, and proposed the development trend of gas-liquid mixing intensification technology in fixed-bed hydrogenation process. It provides reference for the development of new technologies for improving quality and efficiency, saving energy and reducing carbon in refining and chemical production process.Keywords: gas-liquid mixing; fixed-bed hydrogenation; multiphase reaction; mass transfer; process intensification特约评述DOI :10.16085/j.issn.1000-6613.2023-1170收稿日期:2023-07-11;修改稿日期:2023-08-30。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期含氮有机液体储放氢催化体系研究进展李佳豪1,杨锦2,潘伦1,钟勇斌2,王志敏2,王锦生2,张香文1,邹吉军1(1 天津大学化工学院,绿色合成与转化教育部重点实验室,天津 300072;2 东方电气集团东方锅炉股份有限公司,四川 成都 610000)摘要:氢能源作为重要的二次能源,能量密度大、环境友好且用途广泛,是人类战略能源发展的重要方向。
然而,氢气储运仍面临较大的成本和安全难题,有机液体储氢化合物(LOHCs )储放氢技术以其储氢密度较高、储存条件温和、运输方便等优势成为氢气储运可供选择的技术之一。
相比稠环芳烃类化合物,含氮有机储氢化合物具有更温和的催化加氢和脱氢条件,可有效提高储放氢鲁棒性和反应能效。
基于此,本文系统综述了含氮有机储氢化合物加氢及脱氢反应研究进展,阐述了两类反应的路径和催化作用机制,从催化剂活性中心和载体、双金属协同效应、反应条件、催化剂稳定性等方面系统分析了加氢/脱氢催化剂,并详细总结了基于连串反应、反应网络等模型的反应动力学。
介绍了含氮有机储氢化合物储氢技术目前面临的挑战并提出未来的研究思路及展望。
但是该技术仍存在较多问题,应在有机储氢化合物配方体系、储放氢连续反应系统、催化剂设计与制备、催化剂构效关系、精准反应动力学和全面理化性质数据库等方面进行深入研究。
关键词:氢;含氮有机液体储氢化合物;反应机理;催化剂;反应动力学中图分类号:TK91 文献标志码:A 文章编号:1000-6613(2023)12-6325-20Research progress in catalytic system for hydrogen storage and releasefrom nitrogen-containing liquid organic carriersLI Jiahao 1,YANG Jin 2,PAN Lun 1,ZHONG Yongbin 2,WANG Zhimin 2,WANG Jinsheng 2,ZHANG Xiangwen 1,ZOU Jijun 1(1 Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering andTechnology, Tianjin University, Tianjin 300072, China; 2 DongFang Boiler Group Co., Ltd., Chengdu 610000, Sichuan, China)Abstract: As an important secondary energy, hydrogen is of high energy density, environmental friendliness and wide use, which is an important direction of human strategic energy development. However,hydrogen storage and transportation are still facing problems of high cost and safety. The hydrogen storage and release technology based on liquid organic hydrogen carriers (LOHCs) has become one of the available technologies with its advantages of relatively high hydrogen storage density, mild storage conditions and convenient transportation. Compared with polycyclic aromatic hydrocarbons, nitrogen-containing LOHCs is milder in catalytic hydrogenation and dehydrogenation, which can effectively improve the robustness of hydrogen storage and release and the reaction efficiency. Based on this, this paper systematically reviewed综述与专论DOI :10.16085/j.issn.1000-6613.2023-0089收稿日期:2023-01-19;修改稿日期:2023-04-11。
化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2021年第40卷第2期CO 2高值化利用新途径:铁基催化剂CO 2加氢制烯烃研究进展张超1,张玉龙1,朱明辉1,孟博2,涂维峰2,韩一帆1,2(1化学工程联合国家重点实验室,华东理工大学,上海200237;2先进功能材料制造教育部工程中心,郑州大学,河南郑州450001)摘要:大气中CO 2浓度逐年升高,而其高值化利用是实现减排的重要途径之一。
低碳烯烃是重要的化工原料,CO 2作为碳源加氢制取烯烃(CTO )是缓解化石能源的消耗及温室效应的有效方法之一。
铁基催化剂因其优异的催化反应性能,被视为该反应最具应用前景的催化剂之一;但铁基催化剂烯烃选择性仍有待进一步提高。
本文综述了铁基催化剂CTO 反应研究进展,包括反应热力学分析、理论模型、催化剂设计与开发(助剂和载体对催化剂结构及性能的影响)、反应机理、构-效关系、失活机理等;提出未来催化研究方向,即借助Operando 技术聚焦反应过程中催化剂活性相的动态结构变化规律,探究外界因素引起的催化材料表界面的作用机制,为工业催化剂的理性设计提供思路。
关键词:二氧化碳;加氢;催化剂;选择性;失活;稳定性中图分类号:TQ032.4文献标志码:A文章编号:1000-6613(2021)02-0577-17New pathway for CO 2high-valued utilization:Fe-based catalysts forCO 2hydrogenation to low olefinsZHANG Chao 1,ZHANG Yulong 1,ZHU Minghui 1,MENG Bo 2,TU Weifeng 2,HAN Yifan 1,2(1State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China;2Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education,ZhengzhouUniversity,Zhengzhou 450001,Henan,China)Abstract:The concentration of CO 2in the atmosphere is increasing year by year,and high value utilization of CO 2is an important path to reduce the carbon emissions.Low-carbon olefins are important chemical raw materials,and CO 2as a carbon source hydrogenation to olefins (CTO)is one of the most promising CO 2utilization technologies that can potentially mitigate the global greenhouse gas emission and reduce the dependence of chemical production on fossil fuels.The Fe-based catalysts are recognized as a promising candidate in CTO due to their low cost and excellent performance.However,the selectivity to lower olefins and the activity of the Fe-based catalysts currently haven ’t met the industrial requirements,and the mechanism of CTO reaction remains unclear.This article reviews the research progress of the iron-based catalysts for CTO reaction,including the reaction thermodynamic analysis,theoretical model,catalyst design and development (the influence of additives and supports on thestructure and performance of catalysts),reaction mechanism,structure-activity relationship,and特约评述DOI :10.16085/j.issn.1000-6613.32020-1403收稿日期:2020-07-20;修改稿日期:2020-10-28。
化工进展Chemical Industry and Engineering Progress2022年第41卷第6期中国碳中和目标下CO 2转化的思考与实践周红军1,周颖1,2,徐春明1(1中国石油大学(北京)重质油国家重点实验室,北京102249;2中国石油大学(北京)理学院,北京102249)摘要:提出政策引导CO 2回收、利用与封存(CCUS )发展,需重新定义二氧化碳的属性及价值,深度挖掘其资源属性,在以煤油气为一次能源、电为二次能源,向以电热为一次能源、氢为二次能源的再电气化能源革命转型中,为从有碳能源向无碳能源转变,将影响及重构所有社会活动及产业。
本文通过未来低碳场景下CCUS 绿色技术的思考,指出以二氧化碳氢化的三个技术链的创新开发和实践,使二氧化碳转化为合成气(CO+H 2),从而实现高值化、资源化碳的固化和封存。
文章提出:煤电、煤化工与水泥产业的二氧化碳氢化及费托合成高碳烃燃料,不仅高值化,还可用于电网调峰;沼气及非常规天然气CO 2与CH 4的干重整可生产绿氢、可再生燃料及甲醇而高值化,对于中国的乡村振兴具有特别意义,可打通村镇废弃物处理能源化与国家工业补农业的能源基金通道,将使中国乡村振兴获得资本强化新机遇;钢铁及炼化产业的低碳发展,煤气及干气的二氧化碳干重整高值利用,特别是干重整合成气生产甲醇经甲醇制烯烃(MTO )生产乙烯和丙烯及聚合物进行碳固化,将使CCUS 获得新的产业链。
CCUS 将成为所有社会活动及工业的附属产业,成为新的公共服务产业链。
关键词:二氧化碳回收、利用与封存;氢能;合成气;光伏风电;干重整中图分类号:TQ116文献标志码:A文章编号:1000-6613(2022)06-3381-05Exploration of the CO 2conversion under China ’s carbon neutrality goalZHOU Hongjun 1,ZHOU Ying 1,2,XU Chunming 1(1State Key Laboratory of Heavy Oil Processing,China University of Petroleum-Beijing,Beijing 102249,China;2College ofScience,China University of Petroleum-Beijing,Beijing 102249,China)Abstract:To guide the development of CCUS by government policies,it is necessary to redefine the attributes and value of carbon dioxide,and to deeply explore its resource attributes.In the energy revolution,all social activities and industries will be affected and reconstructed in order to enable the transformation from carbon-based energy to carbon-free energy.Thinking of CCUS green technology in the low carbon scenarios of the future with innovative development and application of the three technologies forcarbon dioxide hydrogenation,carbon dioxide could be converted into syngas (CO+H 2),so as to realize high value,resource utilization and carbon solidification and archive.In sddition ,Fischer-Tropsch synthesis of high-carbon hydrocarbon fuels and carbon dioxide hydrogenation in the coal power,coal chemical and cement industries is not only a way of realizing the value from carbon dioxide,but also观点DOI :10.16085/j.issn.1000-6613.2022-0395收稿日期:2022-03-14;修改稿日期:2022-04-26。
水下无人航行器燃料电池技术浅谈宋 强(中国人民解放军92578部队,北京 100161)摘要: 本文对国内外无人航行器能源动力现状进行比较全面论述,燃料电池兼具汽/柴油发电机的持续稳定续航、环境适应性强和一次/二次电池的低噪声、低红外辐射、抗电磁干扰等优点,在水下无人航行器领域具有广阔的应用前景。
依据水无人下航行器的排水量不同,可以灵活配置不同类型的氢源,不同功率级别的质子交换膜燃料电池,建立高能量密度、零排放的氢氧燃料电池系统,以适应大潜深,远航程水下无人航行器的动力需求。
关键词:水下无人航行器;燃料电池;金属水解制氢;甲醇重整制氢;有机液体储氢中图分类号:TM911 文献标识码:A文章编号: 1672 – 7649(2020)12 – 0150 – 05 doi:10.3404/j.issn.1672 – 7649.2020.12.030Discussion on fuel cell technology for underwater unmanned vehiclesSONG Qiang(No. 92578 Unit of the PLA, Beijing 100161, China)Abstract: This article makes a discussion on the current status of energy and power of underwater unmanned vehicles. The fuel cell combines the characteristics of continuous and stable endurance of gasoline/diesel generators, strong environ-mental adaptability, low noise, low infrared radiation, and anti-electromagnetic interference characteristics of non-re-chargeable and rechargeable batteries, and has broad applications in the field of underwater unmanned vehicles prospect. Ac-cording to the different displacements of the underwater unmanned vehicle, different types of hydrogen sources and proton exchange membrane fuel cells of different power levels can be flexibly configured to establish a hydrogen-oxygen fuel cell system with high energy density and zero emission to adapt to large diving depths. Power requirements for long-range under-water for long-range underwater unmanned vehicles.Key words: underwater unmanned vehicle;fuel cell;hydrogen production from metal hydrolysis;methanol reform-ing to produce hydrogen;organic liquid hydrogen storage0 引 言无人潜航器(UUV)是一种可在水下长时间潜航工作的海上无人化装备,包括自主潜航器(AUV)和有缆遥控潜航器(ROV)。
International Journal of Hydrogen EnergyIntroductionThe International Journal of Hydrogen Energy (IJHE) is a renowned scientific publication that focuses on the exploration, development, and utilization of hydrogen as an energy carrier. This journal plays a crucial role in advancing the understanding and application of hydrogen-related technologies, promoting sustainable energy solutions, and addressing global energy challenges. In this article, we will delve into the significance of hydrogen energy and the contributions made by IJHE in this field.Importance of Hydrogen EnergyHydrogen is considered a promising energy source due to its high energy density, clean combustion process, and lack of greenhouse gas emissions when used in fuel cells. This makes it an attractive alternative to fossil fuels, which are finite and contribute to climate change. Harnessing the power of hydrogen has the potential to revolutionize various sectors, including transportation, power generation, and industrial processes. Its versatility and eco-friendliness make it a vital element in achieving a sustainable and low-carbon future.Role of International Journal of Hydrogen EnergyIJHE serves as a platform for researchers, scientists, and engineers to publish their findings, innovations, and breakthroughs in the field of hydrogen energy. By providing a scholarly avenue for knowledge dissemination, IJHE plays a crucial role in advancing the field and catalyzing the development of hydrogen technologies. It facilitates the exchange of ideas, fosters collaboration, and encouragesinterdisciplinary research, ultimately contributing to the growth of the hydrogen energy community.Contributions to Hydrogen Technology1.Research Papers: IJHE publishes original research papers thatexplore various aspects of hydrogen energy. These papers cover awide range of topics, including hydrogen production, storage,transportation, and utilization. The rigorous peer-review process ensures the quality and reliability of the published work,promoting scientific excellence in the field.2.Review Articles: In addition to research papers, IJHE alsofeatures review articles that provide in-depth summaries andanalyses of specific topics within hydrogen energy. These articles offer comprehensive insights into the current state of research,highlight key challenges, and propose future directions forfurther exploration.3.Technology Development: IJHE actively promotes the developmentand commercialization of hydrogen-related technologies. Byshowcasing innovative technologies and sharing success stories,the journal inspires researchers and industry professionals topush the boundaries of what is possible with hydrogen.4.Policy and Economics: Recognizing the importance of policy andeconomics in shaping the adoption of hydrogen energy, IJHE alsopublishes articles that address regulatory frameworks, markettrends, and economic viability. This comprehensive approachensures a holistic understanding of the challenges andopportunities associated with hydrogen energy implementation.ConclusionThe International Journal of Hydrogen Energy serves as a leading platform for advancing the field of hydrogen energy. Through its publication of research papers, review articles, and technology developments, the journal contributes significantly to the growth and application of hydrogen technologies. By facilitating knowledge exchange and promoting collaboration, IJHE plays an indispensable role in driving the transition towards a sustainable and hydrogen-powered future.References: 1. International Journal of Hydrogen Energy. (n.d.). Retrieved from [。
2020年第7期工程师园地我国原油资源短缺,煤焦油作为炼油产业的主要副产物,其数量巨大[1,2]。
如何将煤焦油加氢精制转化为清洁燃料油是科研工作者一直以来的研究热点。
近20多年来,我国在煤焦油加氢精制技术方面取得了一定的成果[3,4],开发了不同的加氢工艺流程,按照技术特点,主要包括固定床和悬浮床煤焦油加氢工艺。
1固定床上煤焦油加氢技术固定床加氢工艺是指采用固定床反应器对原料重油进行炼化的一种工艺,具有技术成熟、工艺和设备结构简单等特点[5]。
目前是科研工作者用于研究煤焦油加氢的主要反应器。
南京工业大学谭凤宜等人[6]采用自制的Ni基催化剂,采用煤焦油中的芳烃萘作为探针反应,在固定床反应器上优化了萘加氢合成十氢萘的工艺。
优化的工艺条件为:T、P、LHSV分别为170~190℃、7~8MPa、0.6~0.8h-1。
在此最佳的反应条件下,萘的转化率和十氢萘的选择性分别高达95%和85%以上。
该研究团队自行设计了固定床加氢反应器,工艺流程简图见图1。
李国峰(新疆应用职业技术学院石油与化学工程系,新疆奎屯833200)摘要:煤焦油通过加氢可以转化为清洁燃料油,同时还可以从中提取有用的化工产品。
然而,煤焦油含有成千上万种成分,并且杂原子含量高,这给煤焦油加氢技术带来了不小的挑战,研究开发高效的煤焦油加氢工艺成为了研究热点。
文章分析了固定床上煤焦油加氢技术和悬浮床上煤焦油加氢技术各自的特点,随后将两种反应器加氢工艺技术进行了对比分析。
研究认为,悬浮床反应器上催化剂不容易结焦积碳,加氢活性更好,在处理杂原子含量较高的煤焦油方面更具优势。
关键词:煤焦油;加氢;固定床;悬浮床中图分类号:TQ051.1文献标识码:AComparison of coal tar hydrogenation technology on fixed bed and slurry-phase hydrocracking*LI Guo-feng(Department of Petro and chemical engineering,Xinjiang Career Technical College,Kuitun833200,China)Abstract:Coal tar can be converted into clean fuel oil by hydrogenation,and useful chemical products can also beextracted from it.However,coal tar contains thousands of components and high contents of heteroatoms,whichbrings great challenges to the technology of coal tar hydrogenation.The research and development of efficient coaltar hydrogenation technology has become a research hotspot.This paper analyzed the characteristics of coal tar hy-drogenation technology in fixed bed and slurry-phase hydrocracking,respectively.And two kinds of reactor hydro-genation technologies were compared.It is concluded that the catalyst on the slurry-phase hydrocracking reactor isnot easy to coke and deposit carbon,which has better hydrogenation activity,and has more advantages in process-ing coal tar with higher heteroatoms content.Key words:coal tar;hydrogenation;fixed bed;slurry-phase hydrocrackingDOI:10.16247/ki.23-1171/tq.20200782收稿日期:2020-04-25基金项目:国家自然科学基金项目(21163019);新疆维吾尔自治区奎屯市科技计划项目(201604)资助作者简介:李国峰(1987-),男,汉,甘肃武威人,讲师,2014年毕业于新疆大学化学工程与技术专业,硕士,研究方向:工业催化。
氢能电解槽英语术语English Answer:Hydrogen Electrolyzer Terminology.Anode: The electrode in an electrolyzer where oxidation occurs and hydrogen gas is produced.Cathode: The electrode in an electrolyzer where reduction occurs and oxygen gas is produced.Electrolyte: The conductive medium between the anode and cathode that allows the flow of ions.Electrolyzer: A device that uses electricity to split water into hydrogen and oxygen gases.Hydrogen Production Rate (HPR): The rate at which hydrogen gas is produced by an electrolyzer, typically measured in kilograms per hour (kg/h).Alkaline Electrolyzer: An electrolyzer that uses an alkaline electrolyte, such as potassium hydroxide (KOH).Anion Exchange Membrane (AEM) Electrolyzer: An electrolyzer that uses an anion exchange membrane as the electrolyte.Balance of Plant (BOP): The auxiliary equipment and systems that support the operation of an electrolyzer, such as water treatment, gas compressors, and power conditioning.Current Density: The amount of current passing through the electrolyzer per unit area of the electrode, typically measured in amperes per square centimeter (A/cm2).Depolarization: The reduction of the overpotential required for hydrogen evolution, which increases the efficiency of the electrolyzer.Efficiency: The ratio of the amount of energy required to produce hydrogen to the amount of energy stored in thehydrogen gas produced.Electrolysis: The process of using electricity to decompose water into hydrogen and oxygen gases.Faradaic Efficiency: The ratio of the actual amount of hydrogen produced to the theoretical amount that should be produced based on the amount of electricity used.Hydrogen Generation Unit (HGU): A system that combines an electrolyzer with auxiliary equipment, such as water treatment, gas compressors, and power conditioning.Ion Exchange Membrane (IEM) Electrolyzer: An electrolyzer that uses an ion exchange membrane as the electrolyte.Operating Voltage: The voltage required to drive the electrolysis reaction in an electrolyzer.Oxygen Production Rate (OPR): The rate at which oxygen gas is produced by an electrolyzer, typically measured inkilograms per hour (kg/h).Proton Exchange Membrane (PEM) Electrolyzer: An electrolyzer that uses a proton exchange membrane as the electrolyte.Stack: A series of electrolyzer cells connected electrically in series.Thermodynamic Efficiency: The ratio of the maximum possible amount of energy that can be stored in the hydrogen produced to the amount of electricity required to produce it.Water Splitting: The process of splitting water into hydrogen and oxygen gases using electrolysis.中文回答:氢能电解槽术语。
九年级化学元素英语阅读理解25题1<背景文章>Hydrogen is the first element on the periodic table. It is a very light gas with unique properties. Hydrogen has a low density and is colorless, odorless, and tasteless. It is highly flammable and can react explosively with oxygen.Hydrogen has many important uses. It is used as a fuel in fuel cells to generate electricity. Fuel cells are clean and efficient, producing only water as a by-product. Hydrogen is also used in the production of ammonia for fertilizers. In addition, hydrogen can be used to power vehicles, such as hydrogen fuel cell cars.There are several methods for producing hydrogen. One common method is steam reforming of natural gas. In this process, natural gas is reacted with steam to produce hydrogen and carbon dioxide. Another method is electrolysis of water. In electrolysis, an electric current is passed through water to split it into hydrogen and oxygen.Hydrogen plays a crucial role in our lives. It is essential for many chemical processes and is used in a wide range of industries. It also has the potential to be a clean and sustainable energy source in the future.1. Hydrogen is ________.A. heavy and colorfulB. light and colorlessC. smelly and tastelessD. dense and explosive答案:B。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期有机液体储氢技术催化脱氢过程强化研究进展盖宏伟1,张辰君2,屈晶莹3,孙怀禄3,脱永笑1,王斌4,金旭2,张茜2,冯翔3,CHEN De 1,5(1 中国石油大学(华东)新能源学院,山东 青岛266580;2 中国石油天然气股份有限公司勘探开发研究院,北京100083;3 中国石油大学(华东)化学化工学院,山东 青岛266580;4 西安交通大学化学工程与技术学院,陕西 西安 710049;5 挪威科技大学化学工程系,挪威 特隆赫姆N-7491)摘要:氢能是实现化石能源清洁高效利用和支撑可再生能源大规模发展的理想互联媒介,然而氢的储运是制约氢能规模化应用的关键技术瓶颈。
有机氢化物(LOHC )储氢技术具有成本低、储氢密度大、安全稳定等优势,可匹配现有化石能源输运架构,有望在大规模、长距离和分布式的氢储运场景中发挥重要作用。
但是,在LOHC 储氢循环中,相对于发展较为成熟的加氢技术,LOHC 脱氢过程效率低、稳定性差,是制约该技术发展的关键。
基于此,本文综述了LOHC 储氢技术催化脱氢过程强化的研究进展和发展趋势,概述了LOHC 储氢基本概念和催化脱氢反应基本原理,从催化过程强化、产物分离强化、能量效率强化等方面总结了脱氢过程强化策略,通过对比不同技术手段的特点,分析了LOHC 储氢技术催化脱氢过程目前亟需解决的难题,即开发高效的脱氢催化剂、提高催化脱氢过程的传热传质效率以及降低脱氢过程能耗,这对LOHC 储氢技术的实际应用具有重要的参考和借鉴意义。
关键词:有机液体储氢;传热;传质;催化剂;催化剂载体中图分类号:TQ032 文献标志码:A 文章编号:1000-6613(2024)01-0164-22Research progress on catalytic dehydrogenation process intensificationfor liquid organic hydride carrier hydrogen storageGAI Hongwei 1,ZHANG Chenjun 2,QU Jingying 3,SUN Huailu 3,TUO Yongxiao 1,WANG Bin 4,JIN Xu 2,ZHANG Xi 2,FENG Xiang 3,CHEN De 1,5(1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shangdong, China; 2 ResearchInstitute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China; 3 College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shangdong, China;4College of Chemical Engineering and Technology, Xi ’an Jiaotong University, Xi ’an 710049, Shaanxi; 5 Department ofChemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway)Abstract: Hydrogen energy serves as an ideal intermediary for the clean and efficient utilization of fossilfuels and large-scale development of renewable energy. However, the storage and transportation ofhydrogen are the key technical bottlenecks that limit the application of hydrogen energy. Liquid organichydride carrier (LOHC) hydrogen storage technology, with its advantages of low cost, high hydrogen特约评述DOI :10.16085/j.issn.1000-6613.2023-1265收稿日期:2023-07-23;修改稿日期:2023-11-07。
ROSIN RESINS SOLUTION FOR SOLDERING FLUX> Modified Resin SystemSOLDERINGFLUXESLiquid soldering flux for electronics has the property to remove the oxidizing materials on the PCB surface. Gum Rosin, Modified Rosins Resins are the key raw materials have 1~45 %Wt. in the formulation of Rosin Fluxes, and have 2~8 %Wt. in the Low-Solids/No-Clean Fluxes. The actives of rosin acid remove the oxides and extending tin material on the PCB surface. Also forming a coating on the solder joints to prevent re-oxidation.Rosin-based flux used for soldering in electronics industry because it has a combination of favorable properties:•Rosin acid is able to remove the metaloxides at soldering temperature andprotects the cleaned metal.•Wetting PCB surface and has a sufficientlylow viscosity to remove reaction productswith a good thermal conductivity whenmelting.•Wide process window and long process lifeCHOOSE THECORRECT ROSINRESINS FORSOLDERINGFLUXA correct soldering flux product is required following features…✓Removes the oxides and wetting the PCB surface.✓Melting as liquid soldering flux at the soldering temperature and forming a coating on the PCB surface.✓The brightness flux has heat stabilization, easy to dry, free of moisture and hygroscopy.✓The low surface tension. Easy flowing after heating.✓No splash in melting.✓Eco-friendly. Do not produce harmful gases and irritating odors.✓Non conductive, non corrosive, non side-effect of residues.Low-Solids/No-Clean Fluxes to the IPC designatorsFLUX TYPE FLUX COMPOSITIONPARTIAL DESIGNATORSOLVENTSOLIDS CONTENT (MOST COMMONLY)DESIGNATOR MARKET PRESENCE/AVAILABILITYCONTAINING HALIDESLow-solids/No-cleanRosinROAlcohol2% to 8%ROL1/0Most CommonROM1/0Rare ROH1/0NeverModified ResinREAlcohol2% to 8%REL1/0Most CommonREM1/0RareREH1/0Never VOC-free Low-solids/NCOrganicORAlcohol (non VOC-free)Water (VOC-free)1.5% to 6.0%ORL1/0Most Common ORM1/0Occasionally ORH1/0UncommonIPC DESIGNATORSJ-STD-004SOURCE:Choosing the Correct Soldering Flux Types and Their Advantages/Disadvantages ©Eddie Groves,Jonathan WolMany Low-solids/No-clean fluxes contain two or more types of gum rosin, modified resins to achieve their best performance. FOREVEREST supplies the full range of rosin resins for soldering fluxes.CODE CHEMICALS NAMECAS COLOR SOFTENING POINTACID VALUE SUBSTITUTEAR120240Acrylic Acid Modified Rosin 83137-13-7●○○○○●●○○○●●●○○D459Disproportionated Rosin 8050-09-7●●●○○●●○○○●●●○○H106Hydrogenated Rosin 65997-06-0●●●○○●●○○○●●●●○MR75Maleated Rosin 8050-28-0●●●●●●●○○○●●●●●DA125200Modified Rosin -●○○○○●●●●○●●●●●Arakawa ™KE-604FPR-95Polymerized Rosin 65997-5-9●●●●●●●●○○●●●○○FPR-115Polymerized Rosin 65997-5-9●●●●●●●●○○●●●○○FPR-140Polymerized Rosin65997-5-9●●●●●●●●●○●●●○○H101Water-White Hydrogenated Rosin65997-06-0○○○○○●●○○○●●●●○H103Water-White Hydrogenated Rosin65997-06-0○○○○○●●○○○●●●●○Foral ™AX-E Table 1.Modified Rosin List for Soldering Fluxes•Rosin resin color can effect the color of residues, especially on the BGA reworking process. • A lower softening point will produce the sticky residues and may cause pseudo soldering.•In manufacturing, the acid value of rosin resins can be used to measure the raw materials purity and process control level.CODE CHEMICALS NAME CAS COLOR SOFTENING POINT ACID VALUE SUBSTITUTER/X Gum Rosin8050-09-7●●○○○●○○○○●●●●●YPR/WW Gum Rosin8050-09-7●●○○○●○○○○●●●●●Table2.Gum Rosin List for Soldering FluxesCODE CHEMICALS NAME CAS COLOR SOFTENING POINT ACID VALUE SUBSTITUTEGEHR100D Colorless GlycerylHydrogenated Rosinate65997-13-9○○○○○●●○○○○○○○○Arakawa™KE-311/ KE-100GEHR100H Colorless GlycerylHydrogenated Rosinate65997-13-9○○○○○●●○○○○○○○○Arakawa™KE-311/ KE-100PEHR100D Colorless PentaerythritolHydrogenated Rosinate64365-17-9○○○○○●●○○○○○○○○Arakawa™KE359PEHR100E Colorless PentaerythritolHydrogenated Rosinate64365-17-9○○○○○●●○○○●○○○○Arakawa™KE359105Hydrogenated TerpeneResin106168-39-2○○○○○●●○○○○○○○○Clearon™P105Table3.Colorless Rosin Ester List for Soldering FluxesREMARKa)The columns of color, softening point, acid value are designed by the visualized relative index. Kindly contact us for TDS documents, or download TDS online via Document Center.b)Arakawa™is a trademark of Arakawa Chemical Industries, Ltd. Foral™is a trademark of Eastman Chemical Company. Clearon™is a trademark of Clearon Corporation.•Halogenated hydrocarbon solvents show detergency and rapid decontamination effetely.But toxic and pollute the environment.•Eco-friendly organic solvents have powerful dissolving power for soldering residues.anic Solvents List for Soldering ApplicationCODE/PURITY CHEMICALS NAME CAS APPLICATIONGER85Glyceryl Rosinate8050-31-5Forming AgentG1004Glyceryl Rosinate8050-31-5Forming AgentGMS40Glyceryl Monostearate123-94-4Forming AgentGMS90Glyceryl Monostearate123-94-4Forming AgentRA908Rosin Amine61790-47-4Surfactant95%α-Pinene80-56-8Cosolvent98%Β-Pinene127-91-3Cosolvent85%Turpentine8006-64-2CosolventAlthough rosin esters and hydrogenated terpene resin can't remove the metal oxides effectivelydue to the low acid value, they still can bring benefits like increased viscosity, improveduniformity and gloss, and better thermal conductivity when added at a proper proportion.Welcome to contact FOREVEREST for more details.PRODUCT DESCRIPTION FEATURE BENEFITS FOR FLUXESAR120240 A derivative from additive reaction of gum rosinwith acrylic acid.•Higher softening point•High acid value•Improved oxidation resistance•Improved thermal stability•Light color•Not easy to crystallize•Higher activation temperature limit•Good rheological, wettability, thermalstability and oxidize resistance•Less flux residue•Significantly improved activity owing to thehigh acid valueD459A compound of dehydroabietic acid anddihydroabietic acid, the D459 is processedthrough catalytic reaction of gum rosin onproper temperature.•Improved oxidation resistance•Improved thermal stability•Lower acid value*not easy to crystallize•Good rheological, wettability, thermalstability and oxidize resistance•Lower acid value may affect the chemicalactivity of fluxes in certain degreeH106Gum rosin that has been partially/fullyhydrogenated via a catalytic process. It chieflyconsists of different resin acids, especially abieticacid.•Good oxidation resistance•Good thermal stability•Light color•Not easy to crystallize•Good rheological, wettability, thermalstability and oxidize resistance•Light color flux residue after solderingH101 H103MR75Made from gum rosin and maleic anhydride bycompounding reacting.•High acid value•Improved oxidation resistance•Improved thermal stability•Not easy to crystallize•Higher activation temperature limit•Good rheological, wettability, thermalstability and oxidize resistance•Less flux residue•Significantly improved activity owing to thehigh acid valueTable5.1Buyer Guide For Soldering FluxPRODUCT DESCRIPTION FEATURE BENEFITS FOR FLUXESDA125200Modified Rosin •Good oxidation resistance•Good thermal stability•Higher softening point•Light color•Not easy to crystallize•Excellent rheological, wettability, thermalstability and oxidize resistance•Higher activation temperature limit•Less flux residue•Significantly improved activity owing to thehigh acid valueFPR-95Made from gum rosin by polymerization viacatalyst which composed predominately ofdimeric acids derived from rosin with lesseramounts of monomeric resin acids and neutralmaterials of rosin origin.•Higher softening point•Improved oxidation resistance•Improved thermal stability•Not easy to crystallize•Good rheological, wettability, thermalstability and oxidize resistance•Higher activation temperature limitFPR-115FPR-140Table5.2Buyer Guide For Soldering FluxTable5.3Buyer Guide For Soldering FluxPRODUCT DESCRIPTION FEATURE BENEFITS FOR FLUXESR/X Also called colophon, produced by steam-distilling fresh liquid pine resin to vaporize thevolatile liquid terpene components. It chieflyconsists of different resin acids, especially abieticacid.•Easily softened and oxidized•Poor thermal resistance•Tend to crystallize•Base rosin for general use•Suitable chemistry for fluxesYPR/WWTable5.4Buyer Guide For Soldering FluxPRODUCT DESCRIPTION FEATURE BENEFITS FOR FLUXESGEHR100DA kind of super light color tackifying rosin resin,which is esterified from refined hydrogenatedrosin and edible glycerol, and through seriescombined technologies units of catalytichydrogenation. •Good oxidation resistance•Good thermal stability•High purity•Higher softening point•High tack•Very light color•Not easy to crystallize•As a tackifier to improve the rheological,stability and viscosity of flux paste•Good film-forming property•Good thermal conductivityGEHR100HPEHR100DA kind of super light color tackifying polyols resin,which is esterified from refined gum rosin bypentaerythritol, and through series combinedtechnologies units of catalytic hydrogenation.•Good oxidation resistance•Good thermal stability•High purity•Higher softening point•High tack•Very light color•Not easy to crystallize•As a tackifier to improve the rheological,stability and viscosity of flux paste•Good film-forming property•Good thermal conductivityPEHR100E105Hydrogenated Terpene Resin •Good oxidation resistance•Good thermal stability•High purity•Higher softening point•High tack•Very light color•Not easy to crystallize•As a tackifier to improve the rheological,stability and viscosity of flux paste•Good film-forming property•Good thermal conductivityBUYER GUIDETable5.5Buyer Guide For Soldering Flux APPLICATION DESCRIPTIONForming Agent •Forming agent is the role of the flux solvent is volatilized after the active agent carrying a uniform film on theprinted board, the ability to obtain better on the tin to prevent the tin solder splash and uneven.Surfactant •To improve the flux performance to meet the different needs of different uses, opt-inhibitor, foaming agent, brightener or matting agent.Cosolvent •The cosolvent is used for improving the solubility ofsurfactants and forming agents. Reduce deposition, andincreases the wettability of the pastes.BACK TO LISTTHANK YOU Foreverest Resources Ltd. is a family-owned company, which specializes in pine chemicals and provides reliable and comprehensive solutions for pre-sale & after-sale services. With 30 years of history in R&D of forest chemicals products in China, we focus on supplying the substitutes of natural products.Our products include modified resins, terpene based derivatives, flavour & fragranceingredients, and other biobased chemicals.Phone: 86.0592.5105533Fax: 86.0952.5151667*************************************A1112-1113 ONEPARK WUYUAN BAY XIAMEN 361010 CHINA More Details…➢Products List➢Rosin Derivatives➢Polyterpene Resins➢Solution Center➢Tackifier Center➢Electronic Industry cn=Foreverest,o=ForeverestResourcesLtd.,ou=DigitalMarketingDivision,email=****************,c=CN。
2015年9月第23卷第9期 工业催化INDUSTRIALCATALYSIS Sept.2015Vol.23 No.9综述与展望收稿日期:2015-02-03;修回日期:2015-05-05 作者简介:王明进,1963年生,湖南省岳阳市人,硕士,高级工程师,研究方向为化工催化剂研究开发。
通讯联系人:童凤丫,博士。
浆态床渣油加氢催化剂研究进展王明进1,童凤丫2(1.中国石化催化剂有限公司长岭分公司,湖南岳阳414012;2.中国石化石油化工科学研究院,北京100083)摘 要:渣油加氢技术主要有固定床、沸腾床、移动床和浆态床。
浆态床技术不存在催化剂的失活问题,几乎能处理各种性质的原料,是近年来的研究热点。
浆态床技术通过加入催化剂达到劣质渣油改质的目的,使用的催化剂可分为不具有加氢活性的添加剂和具有加氢活性的催化剂两大类,添加剂的作用在渣油高转化率下较明显,所起的作用是阻隔生焦中间相的聚集以减少生焦;催化剂主要通过提供活性氢抑制大分子自由基的缩合和生焦并改质劣质渣油。
对浆态床渣油加氢催化剂和添加剂的使用情况与机理进行总结,对未来发展进行展望,认为低成本有加氢活性的催化剂是未来浆态床渣油加氢催化剂的研究重点。
关键词:石油化学工程;渣油;浆态床;加氢催化剂;添加剂doi:10.3969/j.issn.1008 1143.2015.09.001中图分类号:TE624.9+3;TQ426.95 文献标识码:A 文章编号:1008 1143(2015)09 0659 07Developmentinthecatalystsforresidualoilhydrocrakinginslurry bedWangMingjin1,TongFengya2(1.ChanglingBranchofSinopecCatalystCo.,Ltd.,Yueyang414012,Hunan,China;2.SinopecPetrochemicalResearchInstitute,Beijing100083,China)Abstract:Thetechnologiesforresidualoilupgradingmainlyincludethetechniquesoffix bed,ebullated bed,moving bedandslurry bed.Withthehighflexibilitytorawmaterialsandwithoutthecatalystdeacti vationproblem,theslurry bedtechnologyhasbeenthehotspotofresearch.Inordertoachieveresidueupgrading,catalysthastobeusedinslurrybedtechnology.Thehydrocrakingcatalystsusedintheslurrybedscanbedividedintotwokinds:theadditiveswhichhadnohydrogenationactivityandcatalystswhichhadcatalyticactivity.Theadditivepossessedobviousinfluenceontheresidualoilhydrogenationprocessundertheconditionofhighresidueconversion,andplayedaroleofprohibitingphysicaladsorptionofthecokemesophaseduringthecokingformationprocess.Thecatalystsmainlypreventedtheaggregationofmacromolecularfreeradicalbyofferingactivehydrogenatom,andfinallyreducedthecokeformation.Inthisarticle,theapplicationstatusandmechanismsofthecatalystsandtheadditivesusedforresidualoilhydrogenationinslurry bedprocesseswerereviewed,andtheirdevelopmentprospectsinthefuturewereoutlined.Itispointedoutthattheresearchonresidualoilhydrotreatingcatalystsusedfortheslurrybedswillbefocusedonthecatalystswithlow costandhydrogenationactivity.Keywords:petrochemicaltechnology;residualoil;slurry bed;hydrogenationcatalyst;additivedoi:10.3969/j.issn.1008 1143.2015.09.001CLCnumber:TE624.9+3;TQ426.95 Documentcode:A ArticleID:1008 1143(2015)09 0659 07Copyright ©博看网. All Rights Reserved. 660 工业催化 2015年第9期 2013年的IEA预测数据表明,在未来的20年,化石能源仍将占据全球能源构成中的最大板块,约为30%,石油需求将从2011年的4.52亿吨增加到2035年的5.29亿吨[1]。
储氢综述491428787@一.前提随着科技的不断发展,人们对能源需求不断加大。
传统的煤矿虽早已应用于大规模的生产供能,但是受其不可再生的限制,以及大气污染日益严重,人们不得不开始寻找清洁的新能源,于是热值大、燃烧产物只有的水的氢能脱颖而出。
具有可移动性是能源的必备条件之一,就储氢方法来说,主要有传统的高压、液化储氢,以及新兴的金属氢化物储氢、碳纳米管储氢、有机液体储氢和有机金属框架储氢。
但如何实现既具有经济效益又能达到储氢能力标准,目前其仍具有挑战性。
二.关键词氢能、储氢方法、储氢能力、氢经济。
三.正文氢气单位体积能量密度高,1kg氢气的热值为34000kcal,是汽油的三倍1。
其燃烧产物只有水,如果能够通过光解水来产氢,则可实现理想循环。
而在其存储运输方面,有早先的高压储氢和液化储氢。
高压储氢,通过施加20-25MPa压强增加H2的密度使其尽可能多的压缩在一个钢瓶里。
通常来说,压强越大,储氢量越大,但压强加倍其储氢量却只能增加40-50%2,对储氢容器要求耐高压、轻便等。
液化储氢,在标准大气压下降温到20K使其液化,给运输带来方便而减少消耗的能量可轻易的抵消其液化所耗的能量,其储氢容器为双壁结构以减尽可能绝热,但目前其容器每天都有气体的泄漏,实验数据和技术也不完善2,虽也有将两者相结合的方法进行储氢2,其可在35MPa的压力下,用180L的容器储存7.3kg的H2,但是其储氢容器的材质需重新寻找。
传统储氢方法虽已有相对较长的历史,是现在主要的储氢途径,但究其效率和安全性,使得氢能无法得到大规模应用。
所以,科学家开始寻找新的储氢方法。
1.金属氢化物储氢金属、合金或金属间化合物与氢反应可以生成的氢化物,无论是离子型氢化物、金属型氢化物还是共价型氢化物在一定条件下均可释放氢气,来实现储氢。
这样把气体转换成固体,安全便于运输且体积利用率高。
但其吸氢放氢在动力学和热力学有很大的局限性。
例如NaAlH4储氢4,反应如下:其理论储氢力为 5.6wt%,但反应极慢且要求温度为260℃,即使加入催化剂TiCl3,其反应速率大幅度增加,但动力学问题仍未解决。
技术应用/TechnologyApplication油井化学堵水效果评价方法及应用付亚荣刘泽姜春磊翟中杨杨亚娟吴泽美季保汐敬小龙唐光亮(中国石油华北油田公司)摘要:我国油田堵水调剖技术已经历60多年的发展历程,油井堵水、注水井调剖、调驱以及深部液流转向等技术经历了起源、试验、发展、成熟、更替的过程,取得了很好的增油效果。
大多学者重点关注堵水技术和方法的研究,堵水效果如何评估研究较少。
为此,将油井化学堵水波及油层分为内、外两区域,增加的原油产量在达西渗流线性系统中理论上无限叠加,以内区、外区、交界面等3个产出液流动控制方程为理论依据,基于Duhamdl 原理的反褶积算法,建立油井井口压力模型、有效渗透率模型、产油量计算模型等评价油井化学堵水效果。
在50多口油井应用后,评价符合率达到95%以上,消除了技术人员习惯直接利用堵水前后产油量的差值判断堵水效果所带来的不确定性,为油井化学堵水效果评价提供了一种新的方法。
关键词:油井;高含水;化学堵水;反褶积算法;评价符合率DOI :10.3969/j.issn.2095-1493.2024.03.001Evaluation method and application of chemical plugging effect in oil wellsFU Yarong,LIU Ze,JIANG Chunlei,ZHAI Zhongyang,YANG Yajuan,WU Zemei,JI Baoxi,JING Xiaolong,TANG Guangliang North China Oilfield Company,CNPCAbstract:China's oilfield water plugging and profile control technology has experienced more than 60years of development.The water plugging in oil wells,profile control in water injection wells,profile control and flooding,as well as deep fluid flow diversion and other technologies have gone through the process of origin,test,development,maturity and replacement,which achieved good oil increase effect.Most scholars mainly focus on the research of water plugging technology and methods,but there are few research on how to evaluate the water plugging effect.Hence,the oil well chemical water plugging wave and oil layer are divided into internal and external areas.The Darcy percolation linear system that was increased crude oil production is infinitely superposed in theory,and the three pro-duced fluid flow control equations of the inner zone,the outer zone and the interface are taken as the theoretical basis.Based on the anti-convolution algorithm of Duhamd l principle,the well head pres-sure model,effective permeability model and oil production calculation model are established to evalu-ate the effect of oil well chemical water plugging.After the application of more than 50oil wells,the coincidence rate of evaluation is more than 95%,which eliminates the uncertainty caused by technical personnel that are accustomed to directly judging the water plugging effect through using the difference in oil production before and after water plugging and provides a new method for evaluating the chemi-cal water plugging effect of oil wells.Keywords:oil well;high water content;chemical plugging;anti-convolution algorithm;coinci-dence rate of evaluation第一作者简介:付亚荣,教授级高级工程师,1987年毕业于重庆石油学校(油田应用化学专业),从事油气田开发技术研究与应用工作,引文:付亚荣,刘泽,姜春磊,等.油井化学堵水效果评价方法及应用[J].石油石化节能与计量,2024,14(3):1-5.FU Yarong,LIU Ze,JIANG Chunlei,et al.Evaluation method and application of chemical plugging effect in oil wells[J].Energy Conservation and Measurement in Petroleum &Petrochemical Industry,2024,14(3):1-5.付亚荣等:油井化学堵水效果评价方法及应用第14卷第3期(2024-03)陆相水驱开发油藏油层内部纵向非均质严重,油井出水是普通存在的问题。
2015年11月第23卷第11期 工业催化INDUSTRIALCATALYSIS Nov.2015Vol.23 No.11综述与展望收稿日期:2014-12-02;修回日期:2015-10-20作者简介:魏 璨,1989年生,女,山西省大同市人,在读硕士研究生,研究方向为碳五石油树脂加氢的催化剂研究。
通讯联系人:魏 璨。
石油树脂应用与改性研究进展魏 璨1,赵 明2,张谦温1,徐 聪1(1.北京石油化工学院化学工程学院,北京102617;2.北京化工大学化学工程学院,北京100029)摘 要:介绍了C5~C9石油树脂的分类、制备、应用及发展概况,综述石油树脂的催化加氢改性技术和化学改性技术,石油树脂的催化加氢改性是近年来发展较迅速的领域,其技术的关键是针对树脂原料的不同类型找到合适的催化加氢催化剂和加氢条件,重点介绍石油树脂催化加氢工艺和使用的催化剂。
目前,研究的树脂加氢催化剂主要有贵金属钯系列催化剂、负载型镍系列催化剂和新型磷化物系列催化剂,而石油树脂的化学改性技术关键在于向石油树脂分子中引入合适的活性基团。
石油树脂经改性后,应用范围扩大,经济效益大幅增加。
关键词:石油化学工程;石油树脂;树脂改性;催化加氢改性doi:10.3969/j.issn.1008 1143.2015.11.004中图分类号:TQ426.95;O643.36 文献标识码:A 文章编号:1008 1143(2015)11 0866 08ResearchprogressinapplicationandmodificationofpetroleumresinWeiCan1,ZhaoMing2,ZhangQianwen1,XuCong1(1.SchoolofChemicalEngineering,BeijingInstituteofPetrochemicalTechnology,Beijing102617,China;2.CollegeofChemicalEngineering,BeijingUniversityofChemicalTechnology,Beijing100029,China)Abstract:Theclassification,preparation,applicationanddevelopmentstatusofC5-C9petroleumresinwereintroduced.Thetechnologiesofcatalytichydrogenationmodificationandchemicalmodificationofpetroleumresinwerereviewed.Thetechnologyofcatalytichydrogenationmodificationofpetroleumresinwasrapidlydevelopedinrecentyears.Thekeypointwastofindthesuitablecatalytichydrogenationcatalystfordifferentresinfeedstockandhydrogenationconditions.Thepetroleumresinhydrogenationprocessesandcatalystsweremainlyintroduced.Atpresent,themainresearchonthisfieldfocusesonmetalcata lysts,suchaspalladiumcatalysts,nicklecatalystsandphosphidecatalysts.Thekeyofthechemicalmodi ficationtechnologiesofpetroleumresinwastointroduceappropriateactivegroupsintopetroleumresinmolecules.Theapplicationrangeofthemodifiedpetroleumresinwasexpanded,andtheeconomicefficiencywasgreatlyincreased.Keywords:petrochemicalengineering;petroleumresin;resinmodification;catalytichydrogenationmodificationdoi:10.3969/j.issn.1008 1143.2015.11.004CLCnumber:TQ426.95;O643.36 Documentcode:A ArticleID:1008 1143(2015)11 0866 08 石油树脂是以烃类裂解产物中C5~C9的芳烃和烯烃组分为主要成分,直接聚合或在催化剂作用下聚合生成的一种合成树脂。
化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第10期·3180·二氧化碳加氢逆水汽变换反应的研究进展徐海成,戈亮(海军装备部装备采购中心,北京 100071)摘要:化石能源的热能利用产生大量的CO2,破坏了地球生态系统中的碳平衡,严重威胁人类的可持续发展。
利用可再生能源产生的氢气与CO2通过逆水汽变换(RWGS)反应产生CO可以作为F-T合成的主要原料,有望部分替代煤制合成气路线,与此同时还是解决“弃风”、“弃光”等问题的有效方案之一。
本文归纳了近年来研究RWGS反应所使用的催化体系,包括负载型金属催化剂、复合氧化物催化剂和过渡金属碳化物催化剂;介绍了在不同催化剂上RWGS反应的反应机理。
重点分析了影响CO2加氢制CO选择性的因素,包括催化剂活性组分的颗粒尺寸、载体效应、助剂、反应条件等以及如何提高催化剂的高温稳定性。
总结了RWGS反应在不同催化体系上的优缺点,可为进一步设计高性能的RWGS反应催化剂提供借鉴。
关键词:二氧化碳;加氢;逆水汽变换;催化剂中图分类号:TQ 032.4 文献标志码:A 文章编号:1000–6613(2016)10–3180–10DOI:10.16085/j.issn.1000-6613.2016.10.023Progress on the catalytic hydrogenation of CO2via reverse water gas shiftreactionXU Haicheng,GE Liang(Naval Equipment Procurement Center,Beijing 100071,China)Abstract:The excess emission of CO2 through the combustion of fossil fuels,have triggered a severe crisis to the carbon balance in the earth’s ecological system and thus threatened the sustainable development of our economy and society. An attractive way to mitigate the problem is to utilize CO2 and the excess H2 generated from renewable energy sources,to produce CO via the reverse water gas shift reaction (RWGS),which can be used as feedstock in the successive Fischer-Tropsch synthesis,and therefore could replace partially the coal-to-syngas route. Meanwhile,this strategy could provide a reference to the abandoned wind and light energy issues. In this review,the catalytic systems for the study of RWGS reaction in recent years were summarized,including supported metal catalysts,metal oxide catalysts and transition metal carbide catalysts. We also introduced the reaction mechanisms of RWGS reaction over different types of catalysts. The factors affecting the selectivity of CO2 hydrogenation to CO were analyzed,mainly including the particle size of active component,supports,promoters,reaction conditions,as well as the strategy to improve the catalyst stability when exposed toa high temperature environment. Moreover,the advantages and disadvantages of different catalysts inthe RWGS reaction were discussed,which can provide a guidance for the development of high-performance RWGS catalysts with increases CO selectivity and life.Key words:carbon dioxide;hydrogenation;reverse water gas shift reaction;catalyst收稿日期:2016-01-19;修改稿日期:2016-03-23。
二氧化碳加氢制甲醇焓变【文章标题】:二氧化碳加氢制甲醇焓变解析【引言】在当今社会,人们对于可持续发展和环境保护的重要性有了更深刻的认识。
而在能源领域,二氧化碳减排和清洁能源的开发一直是研究的热点。
二氧化碳加氢制甲醇作为一种绿色的能源转化技术,引起了广泛的关注。
本文将从深度和广度两个方面,探讨二氧化碳加氢制甲醇的焓变过程,旨在帮助读者更全面、深刻地理解这一技术。
【正文】1. 二氧化碳加氢制甲醇的基本原理二氧化碳加氢制甲醇是一种将二氧化碳与氢气通过催化剂反应,转化为甲醇的过程。
该过程常采用催化剂,如铜锌铝氧化物,来加速反应速率。
在反应中,二氧化碳与氢气发生氢化反应,生成甲醇和水。
这一过程不仅可以减少二氧化碳的排放,还能将二氧化碳转化为可用的燃料或化工原料,具有重要的应用价值。
2. 二氧化碳加氢制甲醇焓变过程二氧化碳加氢制甲醇的焓变过程包括两个关键步骤:氧化态的还原和还原态的氧化。
二氧化碳在催化剂表面还原为一价的甲醇。
这一步骤涉及到甲醇的吸附和活化,需要消耗能量。
产生的一价甲醇被氢气进一步加氢生成二价甲醇。
在这一步骤中,甲醇分子结构发生改变,焓变释放能量。
整个过程中,焓变量的计算可以通过热力学模型和实验数据得到,对于催化剂的选择和反应条件的控制至关重要。
3. 二氧化碳加氢制甲醇的环境效益通过二氧化碳加氢制甲醇技术,可以将排放的二氧化碳转化为甲醇,从而减少温室气体的排放。
与传统的甲醇合成工艺相比,这一技术不需要使用化石燃料作为原料,减少了化石能源的消耗和碳排放。
二氧化碳加氢制甲醇还可以利用再生能源如风能和太阳能提供的电力来产生所需的氢气,进一步降低了对传统能源的依赖,实现了清洁能源的利用和可持续发展的目标。
4. 个人观点和理解二氧化碳加氢制甲醇是一项具有巨大潜力的绿色能源转化技术。
通过将二氧化碳转化为甲醇,不仅可以解决现代社会面临的能源压力问题,还能减少温室气体的排放,实现环境保护和可持续发展的目标。
然而,该技术仍面临一些挑战,如催化剂的开发和过程的能量效率等方面,需要进一步的研究和探索。