中考数学 第1讲 实数复习教案2 (新版)北师大版
- 格式:doc
- 大小:62.00 KB
- 文档页数:7
九年级数学上册教案(北师大版)一、教学目标1. 知识与技能:使学生掌握九年级数学上册的基本概念、公式、定理,提高学生的数学运算能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探究、实践操作等活动,培养学生独立思考、创新能力和团队协作精神。
3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,提高学生的自主学习能力。
二、教学内容1. 第一章:实数与方程1.1 实数的概念与性质1.2 一元一次方程1.3 不等式与不等式组2. 第二章:多边形的计算2.1 三角形的面积计算2.2 四边形的面积计算2.3 多边形的面积计算3. 第三章:数据的整理与分析3.1 数据的收集与整理3.2 数据的描述与分析3.3 数据的处理与展示4. 第四章:函数的初步认识4.1 函数的概念与性质4.2 一次函数的图象与性质4.3 二次函数的图象与性质5. 第五章:几何图形的证明5.1 平行线的性质与判定5.2 三角形的性质与判定5.3 四边形的性质与判定三、教学方法1. 启发式教学:通过问题引导,激发学生的思考,培养学生的创新能力和解决问题的能力。
2. 合作学习:组织学生进行小组讨论、探究,培养学生的团队协作精神和沟通能力。
3. 实践操作:引导学生动手操作,提高学生的实践能力和数学运算能力。
4. 信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学效果。
四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如态度、参与度、合作能力等。
2. 终结性评价:通过考试、测验等方式,检测学生对知识与技能的掌握程度。
3. 自我评价:鼓励学生进行自我反思,提高学生的自主学习能力。
五、教学资源1. 教材:九年级数学上册(北师大版)2. 教辅资料:习题集、解析、教学课件等。
3. 网络资源:相关数学教学网站、视频、论坛等。
4. 教学仪器:黑板、粉笔、多媒体设备等。
六、教学计划1. 第六章:概率初步6.1 随机事件与概率6.2 排列组合6.3 概率的计算与应用2. 第七章:初中数学综合应用7.1 数学与生活7.2 数学与科学7.3 数学与社会科学3. 第八章:数学阅读与写作8.1 数学阅读8.2 数学写作8.3 数学语言表达4. 第九章:数学思想方法9.1 化归思想9.2 数形结合思想9.3 分类讨论思想5. 第十章:总复习10.1 复习要点与方法10.2 中考数学考试大纲解析10.3 模拟测试与真题演练七、教学策略1. 第六章:概率初步运用实例引入概率的概念,通过实践活动让学生体验概率的计算过程,培养学生的实际应用能力。
第二章实数6.实数教学目标:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)有理数集合无理数集合知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
八年级数学上册实数(2)教案北师大版教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算3.正确运用公式.(二)能力训练要求1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:,并能用规律进行计算教学难点:1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了.如:,所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1); (2);(3)(2)2;(4).2.做一做填空:(1)=_________,=_________;(2)=_________,=_________;(3)=_________,=_________;(4)_________,=_________.[师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?(a≥0,b≥0);(a≥0,b>0)并作一些练习. 化简:(1); (2)-4;(3)(-1)2;(4);(5).3.例题讲解[例题]化简:(1);(2);(3)(+1)2;(4).Ⅲ.课堂练习(一)随堂练习化简:(1);(2);(3)(1+)(2-);(4)()2.(二)补充练习1.化简:(1);(2)(1+)(-2);(3);(4);(5);(6)Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2. (a≥0,b≥0);(a≥0,b>0)的推导及运用.Ⅴ.课后作业习题2.91.化简:(1);(2);(3);(4)-21. Ⅵ.活动与探究下面的每个式子各等于什么数?.由此能得到一般的规律吗?对于一个实数a、一定等于a吗?当a≥0时,=a.当a<0时,有所以当a<0时,有=-a.板书设计:教学反思:这节内容是两个公式的推导与运用。
2019-2020学年九年级数学下册《实数复习》教案北师大版教学目标:1.帮助学生建立实数体系,使学生对实数有一个全面完整的了解,并能够进行简单的实数运算.2.通过复习提高运算能力,提高分析问题、解决问题的能力,增强数学的应用意识.教学重点与难点:重点:通过概念的复习和典型例题评析,使学生掌握实数的有关概念和实数的分类,并通过适当的练习得到提高.难点:数形结合思想的渗透.教法及学法指导:实数是初中数学重要内容之一,知识点比较多,相对比较简单,考查形式常以选择、填空、形式出现.所以复习中主要以学生的自主、合作探究为主体,教师的适时引导为辅的教学方式,帮助学生掌握知识.课前准备:多媒体课件教学过程:一、导:1.导入新课:第一轮复习是总复习的基础,是重点,是侧重双基训练.在这个阶段,我给同学们提几点建议(多媒体展示)①重视课本,系统复习;②夯实基础,学会思考;③重视对数学思想理解及运用④养成良好的解题习惯.2.导入目标:通过本节课的学习我们将达到以下目标:①理解互为相反数、倒数、绝对值、平方根、无理数等概念.②理解实数的加、减、乘、除、乘方、开放的意义,会运用其运算规律,按照规定的运算法则进行实数的混合运算.③了解近似数和有效数字的概念,会用科学计数法表示数.设计意图:一开始向学生出示复习内容及复习目标,让学生对本节课的内容及要达到的目标有大致的了解,利于学生尽早进入学习状态.二、学:(一)自学:【知识梳理】1、实数的概念及分类: 和 统称为实数; 整数(包括:正整数、0、负整数)和 (包括:有限小数和无限环循小数)统称为有理数. 叫无理数.⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎭⎩⎩⎪⎪⎧⎫⎨⎬⎪⎭⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 2、实数a 、b 互为相反数,则a +b = ;实数a 、b 互为倒数则a ﹒b = .3、2000a a a a a ⎧⎪⎪===⎨⎪⎪⎩>< 4、设a 为实数,则a 0,a 2 0,a 0(a >0). 5、实数的运算顺序是:先算 ,再算 ,最后算 .如果有括号,先算 的.6、一般地,一个绝对值较大(或较小)的数可以表示成 的形式,其中 ,n 是整数,这种记数法叫做科学记数法.7、一个近似数,从 边笫一个 的数字起,到精确的数位止,所有的数字,都叫做这个近似数的有效数字.8、ab = ﹒ (a ≥0,b ≥0);a b= (a ≥0,b >0). (二)互学:小组交流自学结果,相互帮助解决自学中存在的问题.设计意图:学生几分钟时间,让学生回顾实数相关知识.明确知识间的联系,通过知识梳理,让学生对概念,性质加以巩固.(自学检测)1、112-的倒数是 ;315.π-= ;4的相反数是 . 2、(2012 枣庄)已知a 、b 为两个连续..的整数,且28a b <<,则a b += . 3、(2012 潍坊)许多人由于粗心, 经常造成水龙头“滴水”或 “流水”不断.根 据测定,一般情况下一个水龙头“滴水”1小时可以溜掉3.5千克水.若1年按365天 计算,这个水龙头1年可以溜掉( )千克水.(用科学计数法表示,保留3个有效数字)A .3.1× 104B .0.31× 105C .3.06× 104D .3.07× 1044、(2012 毕节)实数a b ,在数轴上对应点的位置如图所示,下列式子正确的是( )A .0a b +>B .0a b -<C .0ab >D .0a b< 5、下列说法错误的是:( ) A 、无理数是无限小数; B 、任何一个无理数都可以用数轴上的点表示;C 、开方开不尽的数是无理数;D 、2π是分数. 6、根据下图中箭头指向的规律,从2011到2012再到2013,箭头的方向是( )7、(2012 莱芜)计算:2-2-22-()+6sin45°-18= . 8、(2011 茂名)已知,一个正数的两个平方根分别为2a -2和a -4,则这个数为 . 9、2012年枣庄市参加中考的人数约为3.21×104人,对于这个近似数,有 位有效数字,精确到 位.10、观察下面两个等式:222+=233;333+=388,仿照例子写一个类似的等式 . 设计意图:本题组留给学生10分钟时间,让学生自主在导学案上完成, 再让学生交流解题思路及结果. 加深学生对相关概念的理解.在解题的同时,要明确每题用到的知识点,只有明确问题考查的知识点,才能正确的运用知识解决问题.培养学生灵活运用知识的能力.三、析(一)学生评析:b a题4图题6图(对自学结果在交流的基础上进行评析,讲清知识点与解题过程)T 1:因为-3.15π是负数,负数的绝对值等于它的相反数,所以315.π-=315-.π T 2:因为252836<<,所以a =5,b =6,a b +=11T 3:因为365×24×3.5=30660,根据四舍五入和保留三位有效数字,十位的6可以进一,所以本题选择 D.T 4:由数轴可以看出a >0, b <0,a b <,由运算法则可知,答案是:D .T 5:π是无理数,所以2π也是无理数,答案是:D. T 6:由图可以看出规律,每隔四个数字按方式循环,2011除以4余3,所以从2011到2012再到2013的箭头的方向和从3到4再到5的箭头的方向一样,答案为:C .T 7:2-2-22-()+6sin45°-18=212263222-+⨯-=74- T 8:一个正数的两个平方根互为相反数,所以(2a -2)+(a -4)=0,a =2.即:所求的这个数的平方根为2和-2,所以这个数为4.T 9:有3位有效数字,精确到百位.T 10:444+=41515(答案符合22+=11n n n n n n --即可) (二)教师评析:教师对学生展示的结果进行综合评析,结合目标引导学生归纳相关知识点.(课件展示)T 3:把数字m 用科学计数法表示成a ×10n 时,当1m ≤时,n 等于第一个非零数字前面零的个数的相反数;当1m ≥时,n 等于原数的整数位数减1.T 5:常见的无理数有以下几种:(1)根号型,如324,等开方开不尽的数,但是带根号的不一定是无理数,比如348,.(2)三角函数型,如sin29°,t a n60°等(sin30°、t a n45°不是无理数).(3)构造型,如2.010010001…(每两个1之间0的个数依次加1)等无限不循环小数.(4)具有特殊意义的常熟,如π等T 7:规定:a 0=1,a -p =1p a(a ≠0)设计意图:学生分析可以让教师了解学生掌握哪些,掌握到什么程度,针对学生暴露出来的问题,教师再做重点补充、拓展,真正把基础知识掌握透彻.四、练:1. 计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 122. 若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 3.(2011 义乌)一个正方形的面积为15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间4. (2012 河南)一种花瓣的花粉颗粒直径约为0.000 006 5米,0.000 006 5用科学计数法表示为( )A .-56510.⨯米B .-66510.⨯米C .-76510.⨯米D .-66510⨯米5. 若n m ,互为相反数,=-+555n m .6. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省元.7. 将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .8:计算:232(2)2sin 60---++1301()20.12520132--⨯+ 设计意图:对自我检测中暴漏出的问题进行针对性的训练,巩固师生分析的效果.五、颗粒归仓师:通过这节课的复习你有何收获?(学生总结反思自己的所学所得,畅谈收获,拾遗补缺.)…….设计意图:复习课大多是学生自主探究、交流、提高的过程,教师只做点拨.因此,小结的过程不妨大胆交给学生,听听学生的感悟、体会,以便教师更好的了解学生学习经验的获得情况.第一排 第二排 第三排 第四排 6 ┅┅ 10 9 8 7 3 2 1 5 4 第 7题图六、达标检测1、(2012聊城)在如图所示的数轴上,点B和点C关于点A对称,A,B两点对应的实数分别为3和-1,则点C所对应的实数是()A. 1+3B. 2+3C. 23-1D. 23+12、(2012潍坊)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A. 32B. 126C. 135D. 1443、(2012德州)5-1122.(填“>”“<”或“=”)4、文文设计了一个关于实数运算的程序,按照此程序输入一个数后,输出的数是比输入的数小的最大的整数,如果输入的是7,则输出的数字是.5、如果(a+2)2与1b 互为相反数,则a-b= .6、(2012陕西)计算:2cos45°-38+(1-2)0= .7、PM 2.5是指大气中直径小于或等于0.000 002 5 m的颗粒物,将0.000 002 5用科学计数法表示为.8、(2012河北)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为.设计意图:要求学生在5~7分钟内完成,规定时间和内容,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解答问题的能力.七、布置作业,落实目标必做题:中考复习丛书13页,第11、14、15、16题.预习作业:考点2 整式知识梳理板书设计:学生板演区 第一讲 考点一 实数知识梳理自学检测 典例分析: 教学反思:本节课是九年级系统复习的第一节课,涉及的概念多,运算定律多,且使学生考试丢分的填空、选择、计算多在这节内容里.加之九年级下期复习时间极紧张.为此,只能设计最实用的教案.设计这一教案,意在一节引导复习,对于使用课件进行教学,虽然知识点全面,但是课堂容量也很大.对于复习本课时我的思路是先梳理知识点,再典型例题分析,再训练题的思路,但在自己上课过程中发现,许多知识点太简单,一一梳理有点浪费时间,最好选用课前小检查暴露知识后,再对症下药,复习更有针对性,效果更好一些.针对自己的当堂实战,我总结了本节复习课的最好思路:1、复习课不宜上的太大,应当小步子,密台阶.本节涉及概念多,运算种类多,应当加强练习.2、复习课“先测后析”效果较好.测试最能说明问题,课前小小测试能暴露知识掌握中的漏洞,使教师学生复习更有针对性.3、复习题的大小选择很重要,对基础知识部分应当题小而面广,能力提升题要选代表性题目.4、要坚持以训练为主线,老师少讲精讲即可.。
课题:第一讲实数教学目标:1.明确实数的有关概念:有理数、无理数、数轴、互为相反数、倒数、绝对值、平方根、立方根.2.能够正确理解实数的分类,并进行实数的大小的比较.3.会运用运算规律,按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算.4.了解近似数,会用科学记数法表示较大或较小的数.教学重点与难点:重点:明确实数的有关概念,会运用运算规律,按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算.难点:能按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算,尤其是掌握有关绝对值、负指数幂、零指数幂、算术平方根、特殊三角函数值的运算.课前准备:学生课前复习准备、多媒体课件.教学过程:一、复习导入(导入语)师:同学们,现在我们开始对三年以来学习的知识进行一个梳理.在这一轮复习过程中,同学们重点是完成对基本知识梳理,同时也要对基本的数学技能进一步完善提高.今天我们首先开始复习第一讲实数(教师板书课题).问题:本章有哪些知识点?处理方式:学生小组内分工合作,对本讲的知识点进行总结梳理.时间5分钟.设计意图:学生自己首先对本章各知识点进行简要回顾,使学生对本章知识内容有进一步的理解和掌握,对本章内容的认识更全面、更系统化.二、知识梳理活动内容:梳理知识点1.实数的分类实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数无理数⎩⎪⎨⎪⎧正无理数负无理数2.实数的相关概念(1)数轴:规定了________、________和____________的直线叫数轴.(2)相反数:实数a 的相反数是________,a 与b 互为相反数,则a +b =________. (3)倒数:实数a (a ≠0)的倒数是________,a 与b 互为倒数,则ab =________. (4)绝对值:数轴上表示数a 的点与________的距离叫做数a 的绝对值. |a |=⎩⎪⎨⎪⎧a (a>0),0(a =0),-a (a<0).3.近似数与科学记数法近似数:将一个数四舍五入得到的数.科学记数法:把一个数表示成a ×10n(1≤|a|<10,n 为整数)的形式. 4.平方根、算术平方根和立方根5.实数的运算(1)零指数幂:a 0=________(a ≠0).如(3-π)0=1.(2)负整数指数幂:a -p =________(a ≠0,p 为正整数).如2015-1=12015.(3)(-1)n=1(n 为偶数),如(-1)2014=1;(-1)n =-1(n 为奇数),如(-1)2015=-1.(4)实数运算的顺序:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.处理方式:各小组代表展示梳理的知识点,小组之间可相互补充,教师根据学生情况及时完善学生的梳理结果.设计意图:通过知识点梳理,帮助学生梳理本节课的主要知识点,整理出本章的知识结构,理清各板块内容间的联系,教师进行全班展示,学生对照自己的总结查缺补漏.三、典例分析考点一:实数的相关概念 【例1】5的相反数是________.考点分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可. 变式题1: [2014·甘肃] -3的绝对值是( )A .3B .-3C .-13D . 13变式题2: [2014·襄阳] 有理数-53的倒数是( )A . 53B .-53C . 35D .-35变式题3: [2014·潍坊] 下列实数中,是无理数的是( )A .227B .2-2C .5.1·5·D .sin 45° 方法提炼(1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)一个正数有两个平方根,它们互为相反数;(4)判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:①含根号且开不尽方的数;②化简后含π(圆周率)的式子;③有规律但不循环的无限小数,掌握常见的无理数类型有助于识别无理数.考点二:科学记数法【例2】[2014·云南] 据统计,2013年我国义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法可表示为( )A .1.394×107B .13.94×107C .1.394×106D .13.94×105考点分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.变式题: [2014·泰安] PM 2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A .2.5×10-7B .2.5×10-6C .25×10-7D .0.25×10-5考点三:实数的运算【例3】 [2014·莱芜] 计算:|3-2 3|+(π-2014)0+⎝ ⎛⎭⎪⎫12-1考点分析:综合考查了绝对值、零次幂、负整数指数幂等相关概念及实数的基本运算. 解:原式=2 3-3+1+2=2 3.变式题1:[2014·台州] 计算:|2 3-1|+(2-1)0-(13)-1.(答案3)变式题2:计算:⎣⎢⎡⎦⎥⎤213×⎝ ⎛⎭⎪⎫-12-23×3-8÷16×(-6).(答案:41) 变式题3:计算:32÷(-3)2+⎪⎪⎪⎪⎪⎪-16×(-6)+49.(答案:7)处理方式:每例均由学生先尝试独立完成,再小组内交流矫正,最后师生共同进行题后分析,明确每例的考点,真正发挥例题的典型作用.每例后的变式练习是对每个考点类型完善补充,为提高解题效率,可由小组间进行比赛的形式完成.方法提炼有关实数的运算,往往综合零指数幂、负整数指数幂、二次根式、三角函数值和实数的运算等,需要一步一步算.设计意图:选取紧扣中考,并以典型例题的形式对相关考点进行呈现,针对中考题型强化训练,让学生知道中考怎么考,考什么,提高实效性.其中变式训练是中考中的常见题型,通过变式使学生更好地理解考点,提升学生对重点知识的理解力.四、强化训练1.实数227,sin 30°,2+1,2π,(3)0,|-3|中,有理数有( )A .2个B .3个C .4个D .5个2.4的平方根是( )A .±8B .±4C .±2D .±13.如图1-1-3,数轴上点A 所表示的数为3,点B 到点A 的距离为1个单位长度,则点B 所表示的数是( )A .3-1B .3+1C .3-1或3+1D .1-3或1+ 3 4.下列各组数中,互为相反数的是( )A .-2与-12B .|-2|与 2C .(-2)2与3-8D .3-8与-385.[2014·贺州] 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A .0.845×104亿元B .8.45×103亿元C .8.45×104亿元D .84.5×102亿元6.下列说法:①无限小数都是无理数;②无理数都是无限小数;③-2是4的平方根;④带根号的数都是无理数.其中正确的有( )A .3个B .2个C .1个D .0个7.下列说法正确的是( )A .(-3)2的算术平方根是3B .225的平方根是±15C .当x =0或x =2时,x x -2=0D .32是分数 8.下列式子中成立的是( )A .-|-5|<4B .3<|-3|C .-|-4|=4D .|-5.5|<59.计算:|-2015|=________.10.若|m +6|=0,则m =_____________________.11.请你写出一个大于0而小于1的无理数_____________________. 12.大于3且小于10的整数是________.处理方式:由学生先尝试独立完成,再小组内交流矫正,最后师生共同对统一答案,并对个别题目点拨.设计意图:设置强化训练目的使学生对所复习数学知识进行巩固,同时对学生的解题的速度、灵活水平等各方面能力进行训练.五、回顾反思,提炼升华图1-1-3师:同学们,各位同学表现非常积极,相信通过本节课的复习,你的收获一定不少,先思考一下,把你的收获与不足和大家一起分享吧!处理方式:学生畅谈自己的收获!设计意图:鼓励学生通过自己的思考、归纳、总结本节课所学的知识要点,组织学生小结,并作适当的补充,使知识进一步系统化,并通过小组内的交流,进一步加深学生的记忆,提高复习效果.六、达标检测,反馈提高 (多媒体演示) 1.16的平方根是( )A .4B .±4C .2D .±22.-8的立方根与4的平方根之和是( )A .0B .4C .0或-4D .0或43.设26=a ,则下列结论正确的是( )A .4.5<a<5.0B .5.0<a<5.5C .5.5<a<6.0D .6.0<a<6.54.下列各式中正确的是( )A .16=±4B .364=4 C .-9=3 D .2519=5135.下列计算正确的是( )A .31=0B .-|-3|=-3C .(-3)2=-3D .9=±36.已知0<x <1,那么在x ,1x,x ,x 2中最大的数是( )A .xB .x 2C .xD .1x7.扬州市某天的最高气温是6 ℃,最低气温是-2 ℃,那么当天的日温差是________℃. 8.计算(-2)2-(-2)3的结果是________.9.(2)0=________,⎝ ⎛⎭⎪⎫12-2=________.10.[2014·曲靖] 计算:|-2|-⎝ ⎛⎭⎪⎫14-1+(2-1.414)0+9.处理方式:学生在练习本独立完成,教师巡视,及时发现学生出现的问题,并给予指导.完成后各小组内进行交流矫正,看哪个小组完成的又对又快,并对表现好的小组进行表扬.设计意图:通过达标检测,及时获知学生对所复习知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.五、布置作业,课堂延伸A类:初中复习丛书:第5页强化训练部分1-8题.B类:初中复习丛书:第6-7页强化训练部分9、10、11、12、13、14题.设计意图:本作业是巩固实数的基础题和能力提升题.采取分层做题,使学生根据自身的实际学习情况选择不同的作业,既满足了不同层次学生的需求,又提高了作业的实效性,促进学生学习兴趣与质量的提高.使学生保持爱好数学的兴趣,让优等生有一个长足的发展的广阔空间.板书设计:2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.452.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.93.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC 的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.146.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠8.下列现象,能说明“线动成面”的是( ) A .天空划过一道流星B .汽车雨刷在挡风玻璃上刷出的痕迹C .抛出一块小石子,石子在空中飞行的路线D .旋转一扇门,门在空中运动的痕迹9.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( ) A .B .-C .4D .-110.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( ) A .8374y xy x+=⎧⎨-=⎩B .8374x yx y+=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374y xy x -=⎧⎨+=⎩11.点M(a ,2a)在反比例函数y =8x的图象上,那么a 的值是( ) A .4B .﹣4C .2D .±212.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( ) A .30°B .50°C .40°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.14.分解因式:3x 3﹣27x =_____.15.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)17.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为_____.18.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.(6分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.21.(6分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA5个单位长度得到点B,判断四边形OABC的形状并证明你的结论.22.(8分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=5,求tan∠ABD的值.23.(8分)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =,21y =.24.(10分)若关于x 的方程311x a x x --=-无解,求a 的值. 25.(10分)计算:131|132sin 60(2016)83π-︒︒⎛⎫+-+- ⎪⎝⎭2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =. 26.(12分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.27.(12分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB ⊥BD ,∠BAD =18°,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD 的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m ,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba=故选B2.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.3.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.4.A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.6.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.7.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C 、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D 、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.9.A【解析】【分析】根据根与系数的关系和已知x 1+x 2和x 1•x 2的值,可求a 、b 的值,再代入求值即可.【详解】解:∵x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,∴x 1+x 2=﹣a=﹣2,x 1•x 2=﹣2b=1,解得a=2,b=,∴b a =()2=.故选A .10.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x y x y -=⎧⎨+=⎩, 故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.11.D 【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.12.A【解析】【分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.14.3x(x+3)(x﹣3).【解析】【分析】首先提取公因式3x,再进一步运用平方差公式进行因式分解.【详解】3x 3﹣27x=3x (x 2﹣9)=3x (x+3)(x ﹣3).【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.1【解析】设点P (m ,m+2),∵OP=10, ∴()222m m ++ =10,解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.16.6π 【解析】试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.试题解析:如图所示:连接BO ,CO ,∵正六边形ABCDEF 内接于⊙O ,∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中{BWA OWC BAW OCW AB CO∠=∠∠=∠=,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC=2 6013606ππ⨯=.考点:正多边形和圆.17.(﹣3,1)【解析】如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,90CEO AFOCOE OAFOC OA⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(13,∴CE=OF=1,3∴点C坐标(﹣3,1),故答案为(3,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.18.20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.20.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.21.(1)2 yx =(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为kyx=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为kyx=(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在kyx=上,∴k21-=-,解得k=2.,∴反比例函数的解析式为2yx =.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.(3)四边形OABC是菱形.证明如下:∵A(﹣1,﹣2),∴OA=.由题意知:CB∥OA且CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴OC OC=OA.∴平行四边形OABC是菱形.22.(1)90°;(1)证明见解析;(3)1.【解析】【分析】(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DE AD DC=,∴DC1=AD•DE∵AC=15DE,∴设DE=x,则AC=15x,则AC1﹣AD1=AD•DE,期(15x)1﹣AD1=AD•x,整理得:AD1+AD•x﹣10x1=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.23.9【解析】【分析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】()()()2(2)5x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+9xy =当1x =,1y =时,原式)911= ()921=⨯-91=⨯9=【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.24.1-2a =或【解析】 分析:该分式方程311x a x x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x (x-a )-1(x-1)=x (x-1),去括号得:x 2-ax-1x+1=x 2-x ,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a 无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.25.(1)1;(2)-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式1﹣﹣1+1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.26.(1)12;(2)316【解析】【详解】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红。
第二章《实数复习》教学设计
议
22
23
33(0)x a x a x a x a x a x a a x
x a x a x a x a x a a a ⎧⎧⎨
⎪⎪⎩⎨
⎧⎪⎨⎪⎩⎩
⎧=⎪⎪==±⎨⎪=⎪⎩
⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式
二次根式最简二次223333()(0)()(0,0)(0,0)
a a a a a a a a a a
b ab a b a
a a
b b b ⎧⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎧⎨⎪⎨
⎪⎪⎩⎪
⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪
⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪
⎪⎪=≥≥⎪⎪⎩⎪
⎪⎩
根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用
梳理本章知识结构,建立知识网络,回顾本章知识点
实数分类及其相关概念
无理数的倒数化成最简二次根式
分类讨论的思想
数形结合
在数轴上表示无理数,会
比较无理数的大小,表示
无理数的整数部分和小
数部分
比较平方根、算数平方
根、立方根,进一步理解
它们的本质
通过对平方根、算数平方
根、立方根的练习,掌握练
易错点,提升能力。
北师大版实数教案教案标题:引入实数概念与实数性质教学目标:1. 了解实数的概念,并能够将实数与自然数、整数、有理数进行比较。
2. 掌握实数的性质,包括实数的有序性、稠密性以及无理数的存在性。
3. 能够应用实数的性质解决实际问题。
教学内容:1. 实数的概念:引导学生了解实数的定义,将实数与其他数集进行比较,并通过实际例子说明实数的应用场景。
2. 实数的有序性:通过数轴的引入,帮助学生理解实数的大小关系,并能够根据数轴上的点表示实数。
3. 实数的稠密性:通过实际例子呈现实数的稠密特性,如介于两个实数之间总存在其他实数等。
4. 无理数的存在性:介绍无理数的概念,并通过开方运算展示无理数的存在。
教学步骤:引入部分:1. 引入实数的概念,简要解释实数与其他数集的关系和区别。
2. 展示实数的应用场景,如温度、时间、长度等,以提高学生对实数的兴趣和认知。
核心教学部分:3. 介绍数轴的概念和使用方法,帮助学生理解实数的有序性。
4. 引导学生根据数轴上的点表示实数,并进行实数的大小比较练习。
5. 通过实际问题,如简单的消费计算等,让学生应用实数的有序性解决问题。
巩固拓展部分:6. 介绍实数的稠密性,通过例题和练习加深学生对实数稠密特性的理解。
7. 引入无理数的概念,使用开方运算展示无理数的存在,并和有理数的关系进行对比。
课堂练习:1. 学生完成数轴上实数大小比较的练习题。
2. 学生解决应用实数的有序性解决实际问题的练习题。
3. 学生完成关于实数稠密性和无理数的练习题,巩固对概念和性质的理解。
教学反思:1. 通过练习题,及时发现学生的问题和困惑,并及时给予指导和解答。
2. 鼓励学生积极思考,提高对实数概念和性质的理解和应用能力。
3. 课后进行总结和复习,巩固学生对实数的理解,同时为下节课的教学做好铺垫。
课题:第一讲实数教学目标:1.明确实数的有关概念:有理数、无理数、数轴、互为相反数、倒数、绝对值、平方根、立方根.2.能够正确理解实数的分类,并进行实数的大小的比较.3.会运用运算规律,按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算.4.了解近似数,会用科学记数法表示较大或较小的数.教学重点与难点:重点:明确实数的有关概念,会运用运算规律,按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算.难点:能按照规定的运算法则进行实数的加、减、乘、除、乘方、开方混合运算,尤其是掌握有关绝对值、负指数幂、零指数幂、算术平方根、特殊三角函数值的运算.课前准备:学生课前复习准备、多媒体课件.教学过程:一、复习导入(导入语)师:同学们,现在我们开始对三年以来学习的知识进行一个梳理.在这一轮复习过程中,同学们重点是完成对基本知识梳理,同时也要对基本的数学技能进一步完善提高.今天我们首先开始复习第一讲实数(教师板书课题).问题:本章有哪些知识点?处理方式:学生小组内分工合作,对本讲的知识点进行总结梳理.时间5分钟.设计意图:学生自己首先对本章各知识点进行简要回顾,使学生对本章知识内容有进一步的理解和掌握,对本章内容的认识更全面、更系统化.二、知识梳理活动内容:梳理知识点1.实数的分类实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数无理数⎩⎪⎨⎪⎧正无理数负无理数2.实数的相关概念(1)数轴:规定了________、________和____________的直线叫数轴.(2)相反数:实数a 的相反数是________,a 与b 互为相反数,则a +b =________. (3)倒数:实数a (a ≠0)的倒数是________,a 与b 互为倒数,则ab =________. (4)绝对值:数轴上表示数a 的点与________的距离叫做数a 的绝对值. |a |=⎩⎪⎨⎪⎧a (a>0),0(a =0),-a (a<0).3.近似数与科学记数法近似数:将一个数四舍五入得到的数.科学记数法:把一个数表示成a ×10n(1≤|a|<10,n 为整数)的形式. 4.平方根、算术平方根和立方根5.实数的运算(1)零指数幂:a 0=________(a ≠0).如(3-π)0=1.(2)负整数指数幂:a -p =________(a ≠0,p 为正整数).如2015-1=12015.(3)(-1)n=1(n 为偶数),如(-1)2014=1;(-1)n =-1(n 为奇数),如(-1)2015=-1.(4)实数运算的顺序:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.处理方式:各小组代表展示梳理的知识点,小组之间可相互补充,教师根据学生情况及时完善学生的梳理结果.设计意图:通过知识点梳理,帮助学生梳理本节课的主要知识点,整理出本章的知识结构,理清各板块内容间的联系,教师进行全班展示,学生对照自己的总结查缺补漏.三、典例分析考点一:实数的相关概念 【例1】5的相反数是________.考点分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可. 变式题1: [2014·甘肃] -3的绝对值是( )A .3B .-3C .-13D . 13变式题2: [2014·襄阳] 有理数-53的倒数是( )A . 53B .-53C . 35D .-35变式题3: [2014·潍坊] 下列实数中,是无理数的是( )A .227B .2-2C .5.1·5·D .sin 45° 方法提炼(1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)一个正数有两个平方根,它们互为相反数;(4)判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:①含根号且开不尽方的数;②化简后含π(圆周率)的式子;③有规律但不循环的无限小数,掌握常见的无理数类型有助于识别无理数.考点二:科学记数法【例2】[2014·云南] 据统计,2013年我国义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法可表示为( )A .1.394×107B .13.94×107C .1.394×106D .13.94×105考点分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.变式题: [2014·泰安] PM 2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A .2.5×10-7B .2.5×10-6C .25×10-7D .0.25×10-5考点三:实数的运算【例3】 [2014·莱芜] 计算:|3-2 3|+(π-2014)0+⎝ ⎛⎭⎪⎫12-1考点分析:综合考查了绝对值、零次幂、负整数指数幂等相关概念及实数的基本运算. 解:原式=2 3-3+1+2=2 3.变式题1:[2014·台州] 计算:|2 3-1|+(2-1)0-(13)-1.(答案3)变式题2:计算:⎣⎢⎡⎦⎥⎤213×⎝ ⎛⎭⎪⎫-12-23×3-8÷16×(-6).(答案:41) 变式题3:计算:32÷(-3)2+⎪⎪⎪⎪⎪⎪-16×(-6)+49.(答案:7)处理方式:每例均由学生先尝试独立完成,再小组内交流矫正,最后师生共同进行题后分析,明确每例的考点,真正发挥例题的典型作用.每例后的变式练习是对每个考点类型完善补充,为提高解题效率,可由小组间进行比赛的形式完成.方法提炼有关实数的运算,往往综合零指数幂、负整数指数幂、二次根式、三角函数值和实数的运算等,需要一步一步算.设计意图:选取紧扣中考,并以典型例题的形式对相关考点进行呈现,针对中考题型强化训练,让学生知道中考怎么考,考什么,提高实效性.其中变式训练是中考中的常见题型,通过变式使学生更好地理解考点,提升学生对重点知识的理解力.四、强化训练1.实数227,sin 30°,2+1,2π,(3)0,|-3|中,有理数有( )A .2个B .3个C .4个D .5个2.4的平方根是( )A .±8B .±4C .±2D .±13.如图1-1-3,数轴上点A 所表示的数为3,点B 到点A 的距离为1个单位长度,则点B 所表示的数是( )A .3-1B .3+1C .3-1或3+1D .1-3或1+ 3 4.下列各组数中,互为相反数的是( )A .-2与-12B .|-2|与 2C .(-2)2与3-8D .3-8与-385.[2014·贺州] 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A .0.845×104亿元B .8.45×103亿元C .8.45×104亿元D .84.5×102亿元6.下列说法:①无限小数都是无理数;②无理数都是无限小数;③-2是4的平方根;④带根号的数都是无理数.其中正确的有( )A .3个B .2个C .1个D .0个7.下列说法正确的是( )A .(-3)2的算术平方根是3B .225的平方根是±15C .当x =0或x =2时,x x -2=0D .32是分数 8.下列式子中成立的是( )A .-|-5|<4B .3<|-3|C .-|-4|=4D .|-5.5|<59.计算:|-2015|=________.10.若|m +6|=0,则m =_____________________.11.请你写出一个大于0而小于1的无理数_____________________. 12.大于3且小于10的整数是________.处理方式:由学生先尝试独立完成,再小组内交流矫正,最后师生共同对统一答案,并对个别题目点拨.设计意图:设置强化训练目的使学生对所复习数学知识进行巩固,同时对学生的解题的速度、灵活水平等各方面能力进行训练.五、回顾反思,提炼升华图1-1-3师:同学们,各位同学表现非常积极,相信通过本节课的复习,你的收获一定不少,先思考一下,把你的收获与不足和大家一起分享吧!处理方式:学生畅谈自己的收获!设计意图:鼓励学生通过自己的思考、归纳、总结本节课所学的知识要点,组织学生小结,并作适当的补充,使知识进一步系统化,并通过小组内的交流,进一步加深学生的记忆,提高复习效果.六、达标检测,反馈提高 (多媒体演示) 1.16的平方根是( )A .4B .±4C .2D .±22.-8的立方根与4的平方根之和是( )A .0B .4C .0或-4D .0或43.设26=a ,则下列结论正确的是( )A .4.5<a<5.0B .5.0<a<5.5C .5.5<a<6.0D .6.0<a<6.54.下列各式中正确的是( )A .16=±4B .364=4 C .-9=3 D .2519=5135.下列计算正确的是( )A .31=0B .-|-3|=-3C .(-3)2=-3D .9=±36.已知0<x <1,那么在x ,1x,x ,x 2中最大的数是( )A .xB .x 2C .xD .1x7.扬州市某天的最高气温是6 ℃,最低气温是-2 ℃,那么当天的日温差是________℃. 8.计算(-2)2-(-2)3的结果是________.9.(2)0=________,⎝ ⎛⎭⎪⎫12-2=________.10.[2014·曲靖] 计算:|-2|-⎝ ⎛⎭⎪⎫14-1+(2-1.414)0+9.处理方式:学生在练习本独立完成,教师巡视,及时发现学生出现的问题,并给予指导.完成后各小组内进行交流矫正,看哪个小组完成的又对又快,并对表现好的小组进行表扬.设计意图:通过达标检测,及时获知学生对所复习知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.五、布置作业,课堂延伸A类:初中复习丛书:第5页强化训练部分1-8题.B类:初中复习丛书:第6-7页强化训练部分9、10、11、12、13、14题.设计意图:本作业是巩固实数的基础题和能力提升题.采取分层做题,使学生根据自身的实际学习情况选择不同的作业,既满足了不同层次学生的需求,又提高了作业的实效性,促进学生学习兴趣与质量的提高.使学生保持爱好数学的兴趣,让优等生有一个长足的发展的广阔空间.板书设计:。