培优专题2_运用公式法进行因式分解(含答案)
- 格式:doc
- 大小:380.00 KB
- 文档页数:8
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。
初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。
因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。
初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。
2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。
3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。
一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。
专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). (4)1952+195×10+52. 1191010⨯⨯⨯195×5+521.用简便方法计算2008﹣4016×2007+2007的结果是_____.2.利用因式分解计算:22111021198⨯-⨯的结果是______.3.利用因式分解简便运算:2252.847.2-=_____.4.利用因式分解计算2221000252248=-__________. 5.计算:2222020200119=200119--⨯__. 6.利用因式分解计算:3.4614.70.5414.729.4⨯+⨯-=______.7.利用因式分解计算:2022+202×196+982=______.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.9.利用因式分解计算(1)2900894906-⨯(2)2.6815.731.415.7 1.32⨯-+⨯10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+12.利用因式分解进行简便计算:(1)3×852﹣3×152;(2)20212﹣4042×2019+20192.13.利用因式分解计算:225652443524⨯-⨯.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯; (3)20.9990.9990.001+⨯;(4)已知2004+=a b ,1003=ab ,求22222-+a b a b ab 的值.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯;(3)2200820081664-⨯+.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()232021⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦17.简便计算(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-19.用简便方法计算:(1)22429171-(2)2220220219698⨯++20.利用因式分解计算:22015201520152016+-⨯21.利用因式分解计算:(1)342+34×32+162(2)38.92-2×38.9×48.9+48.9222.计算:①2032﹣203×206+1032②20192﹣2018×2020.23.用简便方法计算.(1)227.29 2.71-(2)44134 23.7 1.35555 -⨯+⨯-⨯24.利用因式分解计算:3232 2018320182015 201820182019-⨯-+-25.利用因式分解简便计算:11 1009922⨯26.利用因式分解计算:(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯. 27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). 221191010⨯⨯⨯195×5+52,1.用简便方法计算2008【答案】1.【分析】共三项,其中4016是2×2008,用完全平方公式分解因式即可解答.【解答】20082﹣4016×2007+20072,=20082﹣2×2008×2007+20072,=(2008﹣2007)2,=1.【点评】此题考查公式法在有理数计算中的应用,正确分析出所应用的公式是解题的关键. 2.利用因式分解计算:22111021198⨯-⨯的结果是______.【答案】8800【分析】先提出11,再根据平方差公式计算即可.【解答】原式=2211(10298)⨯-=11(10298)(10298)⨯+⨯-=112004⨯⨯=8800.故答案为:8800.【点评】本题主要考查了应用因式分解计算,掌握平方公式是解题的关键.即22()()a b a b a b -=+-.3.利用因式分解简便运算:2252.847.2-=_____.【答案】560【分析】利用平方差法进行因式分解,再进行计算;【解答】原式=()()52.847.252.847.2+⨯-=100 5.6⨯=560.故答案为:560.【点评】本题考查利用公式法因式分解进行简便运算.熟练掌握公式法因式分解是解题的关键.4.利用因式分解计算2221000=__________.5.计算:2020200119=--__.6.利用因式分解计算:______.【答案】29.4【分析】根据提取公因式法,提取公因数14.7,进行简便计算,即可. 【解答】原式=(3.46+0.542)14.7-⨯=214.7⨯=29.4故答案为:29.4.【点评】本题主要考查提取公因式法分解因式,提取公因数14.7,进行简便计算,是解题的关键.7.利用因式分解计算:2022+202×196+982=______.【答案】90000.【分析】将式子改写为完全平方公式的形式进行计算.【解答】原式2220222029898=+⨯⨯+2(20298)=+2300=90000=.故答案为90000.【点评】本题考查利用完全平方公式计算,熟练掌握公式的形式是关键.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.【答案】(1)25(2)-1【分析】(1)根据完全平方公式计算即可;(2)根据平方差公式计算即可【解答】(1)4.3212+8.642×0.679+0.6792224.3212 4.3210.6790.679=+⨯⨯+()24.3210.679=+ 25=25=(2)2020×2022-20212()()220211202112021=-+-222=202112021--1=-【点评】本题考查了利用乘法公式简便计算,掌握乘法公式是解题的关键.9.利用因式分解计算(1)2900894906-⨯ (2)2.6815.731.415.7 1.32⨯-+⨯【答案】(1)36(2)31.4【分析】(1)先将894906⨯变形为()()a b a b +-的形式,再利用平方差公式求解;(2)先提取公因式15.7,再进行计算即可.【解答】(1)解:2900894906-⨯222222290090(9006)(9006)(9006)9609000630--⨯+=--=-+==(2)解:2.6815.731.415.7 1.32⨯-+⨯15.7(2.682 1.32)15.7231.4=⨯-+=⨯= 【点评】本题考查通过因式分解进行简化计算,解题关键是提取公因式或根据数字特点将所求式子进行变形后利用公式求解.10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.【答案】(1)314;(2)508000【分析】(1)利用提取公因式法计算;(2)应用平方差公式计算.【解答】解:(1)原式 3.14(216217)314=⨯++=;(2)原式(758258)(758258)1016500508000=+-=⨯=.【点评】本题考查因式分解的应用,属于基础题型.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+【答案】(1)2021;(2)40000【分析】(1)观察式子,利用提公因式法进行求解;(2)根据式子的特点,利用完全平方公式进行求解.【解答】(1)解:原式()20.2129721=⨯+-20.21100=⨯2021=.(2)解:原式2210129910199=+⨯⨯+()210199=+ 2200=40000=【点评】本题考查因式分解的应用,解题的关键是根据每个式子中的特点选择适当的因式分解的方法(如提公因式法、公式法等),从而简化计算.12.利用因式分解进行简便计算:(1)3×852﹣3×152; (2)20212﹣4042×2019+20192.【答案】(1)21000;(2)4【分析】(1)提取公因式,利用平方差公式进行因式分解计算即可;(2)对原式进行变形,利用完全平方公式直接分解因式计算即可.【解答】解:(1)3×852﹣3×152=3×(852-152)=3×(85+15)×(85-15)=3×100×70=21000;(2)20212﹣4042×2019+20192=20212-2×2021×2019+20192=(2021-2019)2=22=4.【点评】本题考查了因式分解的应用,熟练掌握平方差公式和完全平方公式是解题的关键. 13.利用因式分解计算:225652443524⨯-⨯.【答案】3120000【分析】先提取24,再利用平方差公式即可求解.【解答】225652443524⨯-⨯=()2224565435⨯-=()()24565435565435⨯+⨯-=241000130⨯⨯=3120000.【点评】此题主要考查因式分解的运用,解题的关键是熟知平方差公式的运用.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯;(3)20.9990.9990.001+⨯; 2222)a (a -原式()1003200420062006=⨯-=-.【点评】本题考查了因式分解的应用,掌握因式分解的方法是解题的关键.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯; (3)2200820081664-⨯+.【答案】(1)45.8;(2)80;(3)4000000【分析】(1)利用平方差公式即可求解;(2)提取8,故可求解;(3)利用完全平方公式即可求解.【解答】(1)227.29 2.71-=()()7.29 2.717.29 2.71+⨯-=10×4.58=45.8;(2)2.887.680.48⨯+⨯-⨯=()8 2.87.60.4⨯+-=8×10=80(3)2200820081664-⨯+=2220082200888-⨯⨯+=()220088-=20002=4000000.【点评】此题主要考查因式分解的应用,解题的关键是熟知提公因式法、公式法分解因式.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥ 112021⎛⨯⨯+ ⎝20222021⨯⨯⨯20202021⨯⨯⨯【点评】本题考查了因式分解的应用,熟练掌握完全平方公式、平方差公式是解本题的关键.(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++【答案】(1)6.332;(2)90000【分析】(1)先利用同底数幂的乘法变形,再利用平方差公式计算;(2)利用完全平方公式变形计算.【解答】解:(1)221.2229 1.3334⨯-⨯=22221.2223 1.3332⨯-⨯=()()221.2223 1.3332⨯-⨯=223.666 2.666-=()()3.666 2.666 3.666 2.666+-=6.332;(2)2220220219698+⨯++=2220222029898+⨯⨯+=()220298+=90000【点评】本题考查了同底数幂的乘法,平方差公式,完全平方公式,计算时注意乘法公式的应用.18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-(1)22429171-(2)2220220219698⨯++【答案】(1)154800;(2)90000.【分析】(1)利用平方差公式进行计算即可得到答案;(2)把原式化为:2220222029898+⨯⨯+,再利用完全平方公式进行计算即可得到答案.【解答】解:(1)22429171-()()429171429171=+-600258154800=⨯=(2)2220220219698⨯++2220222029898=+⨯⨯+()220298=+ 230090000.==【点评】本题考查的是利用平方差公式与完全平方公式进行简便计算,掌握两个公式的特点是解题的关键.20.利用因式分解计算:22015201520152016+-⨯【答案】0【分析】先提取公因数2015进行分解,然后再进行计算即可.【解答】22015201520152016+-⨯=()2015120152016⨯+-=20150⨯0=.【点评】本题考查了利用因式分解进行计算,熟练掌握提公因式法是解此题的关键.21.利用因式分解计算:(1)342+34×32+162 (2)38.92-2×38.9×48.9+48.92【答案】(1)2500;(2)100.【分析】(1)转化为完全平方公式形式,计算即可;(2)根据完全平方公式计算即可.【解答】解:(1)342+34×32+162=342+2×34×16+162=(34+16)2=502=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=(-10)2=100.【点评】本题考查了根据完全平方公式因式分解,熟练掌握完全平方式的特点是解题关键.22.计算:①2032﹣203×206+1032 ②20192﹣2018×2020.【答案】①10000;②1.【分析】①根据完全平方公式计算即可;②根据平方差公式计算即可.【解答】解:①原式=2032﹣2×203×103+1032=(203﹣103)2=1002=10000; ②原式=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣1)=20192﹣20192+1=1.【点评】本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:()()22a b a b a b +-=-.完全平方公式:()2222a b a ab b ±=±+.23.用简便方法计算.(1)227.29 2.71-(2)4413423.7 1.3-⨯+⨯-⨯24.利用因式分解计算:322018320182015-⨯-25.利用因式分解简便计算:10099⨯(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯.【答案】(1)97800;(2)0.0386【分析】(1)提取公因式978后进行计算;(2)提取公因式3.86后进行计算.【解答】(1)原式()9788578=⨯++97800=.(2)原式()3.86 3.86 3.85=⨯-0.0386=.【点评】本题考查利用因式分解对有理数进行简便运算,利用提取公因式因式分解是解答此题的关键.27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.【答案】(1)1(2)9960.04【分析】(1)观察算式,把2018和2020分别用2019-1和2019+1表示,利用平方差公式对这一部分进行运算,然后再去括号相加减即可;(2)将99.8表示成100-0.2,然后利用完全平方公式展开运算即可.【解答】(1)原式22019(20191)(20191)=--⨯+()2222019201911=--=(2)原式2(1000.2)=-2210021000.20.2=-⨯⨯+9960.04=【点评】本题考查了乘法公式,熟练掌握平方差公式和完全平方公式并运用是解题的关键.。
章节复习之因式分解(培优篇) 因式分解的方法一——基本方法知识要点:因式分解的基本方法有提公因式法、公式法、分组分解法和十字相乘法。
在对一个多项式进行因式分解时,应根据多项式的特点选择合理的分解方法。
A 卷一、填空题1、分解因式:_______________419122=+-+y x x n n . 2、(河南省竞赛题)分解因式:_______________63522=++++y y x xy x . 3、已知242--ax x 在整数范围内可以分解因式,则整数a 的可能取值为 .4、(2000年第16届“希望杯”竞赛题)分解因式:()()__________122=++-+b a b a ab . 5、(2005年第16届“希望杯”初二年级培训题)如果x 、y 是整数,且12005200422=-+y xy x ,那么_________=x ,_________=y .二、选择题6、如果多项式9142++kx x 是一个完全平方式,那么k 的值是( ) A 、6- B 、6 C 、32或32- D 、34或34- 7、(2005年第16届“希望杯”初二年级培训题)已知二次三项式c bx x ++22分解因式后为()()132+-x x ,则( )A 、3=b ,1-=cB 、6-=b ,2=cC 、6-=b ,4=cD 、4-=b ,6-=c8、(江苏省南通市2005年中等学校招生考试题)把多项式1222-+-b ab a 分解因式,结果为( )A 、()()11--+-b a b aB 、()()11-++-b a b aC 、()()11-+++b a b aD 、()()11--++b a b aB 卷一、填空题9、研究下列算式:252514321==+⨯⨯⨯;21112115432==+⨯⨯⨯;==+⨯⨯⨯36116543219;22984117654==+⨯⨯⨯,……用含n 的代数式表示此规律(n 为正整数)是 .二、选择题10、对于这5个多项式:①12222---b a b a ;②322327279a xa ax x -+-;③()x x 422+-;④()()m n n n m m -+-63;⑤()()b d c c b d y d c b x 222-+-----+其中在有理数范围内可以进行因式分解的有( )A 、①②⑤B 、②④⑤C 、③④⑤D 、①②④11、已知二次三项式10212-+ax x 可以分解成两个整系数的一次因式的积,那么( ) A 、a 一定是奇数 B 、a 一定是偶数 C 、a 可为奇数也可为偶数 D 、a 一定是负数 三、解答题 12、分解因式:(1)(2000年第12届“五羊杯”数学竞赛试题)分解因式:()()()33322y x y x -----(2)122229227131+++--n n n x x x (3)2222222ab x b b a abx bx x a ax +-+-+- (4)()222224b a abx x b a +--- (5)()()()b a c a c b c b a -+-+-222 (6)613622-++-+y x y xy xC 卷一、解答题13、n (1 n )名运动员参加乒乓球循环赛,每两人之间正好只进行一场比赛。
专题02 因式分解A 组 基础巩固1.(2022·福建省福州第一中学模拟预测)下列各式的因式分解正确的是( )A .B .()221a a a a -=-224(4)(4)a b a b a b -=+-C .D .228(2)8a a a a --=--221142a a a ⎛⎫-+=- ⎪⎝⎭【答案】D【解析】【分析】因式分解是把多项式写成几个整式积的形式,对各选项分析判断后利用排除法求解,【详解】A ,故此选项不符合题意.()21,a a a a -=-B ,故此选项不符合题意.224(2)(2),a b a b a b -=+-C ,不是因式分解,故此选项不符合题意.228(2)8,a a a a --=--D ,故此选项符合题意.2211,42a a a ⎛⎫-+=- ⎪⎝⎭故选:D .【点睛】本题主要考查了判断因式分解是否正确,因式分解与整式的乘法是互为逆运算,要注意区分.2.(2022·福建漳州·八年级期中)已知能运用完全平方公式因式分解,则的值为22916x mxy y ++m ( )A .12B .C .24D .12±24±【答案】D【解析】【分析】根据题意可知,由此即可得到答案.()222223491691624x mxy y x y y y x x +±++=±=【详解】解:能运用完全平方公式因式分解,()()222291634x mxy y x mxy y =++++∴,()222223491691624x mxy y x y y y x x +±++=±=∴,24m =±故选D .【点睛】本题主要考查了完全平方公式分解因式,熟知完全平方公式是解题的关键.3.(2022·浙江·杭州市十三中教育集团(总校)模拟预测)因式分解:( )2mn m -=A .B .C .D .()()m n m n -+()21m n -()1mn n -()()11m n n -+【答案】D【解析】【分析】先提公因式m ,再用平方差公式分解即可.【详解】解:mn 2-m =m (n 2-1)=m (n +1)(n -1),故选:D .【点睛】本题考查提公因式与公式法综合运用,注意分解因式要彻底,分解到每个因式都不能再分解为止.4.(2022·广西柳州·三模)下列各式从左到右的变形中,是因式分解的为( )A .B .()++=++2x 3x 2x x 32()()2422x x x -=+-C .D .()a x y ax ay -=-2623x y x xy=⋅【答案】B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;B 、把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;C 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;D 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;故选:B .【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.5.(2022·浙江杭州·九年级期末)下列因式分解正确的是( )A .B .()222x y x y +=+()2222x xy y x y ++=-C .D .()21x x x x +=-()()22x y x y x y -=+-【答案】D【解析】【分析】根据公式法和提公因式法分解因式即可求得答案.【详解】解:平方差公式:,22()()x y x y x y -=+-完全平方公式:,2222()x xy y x y ±+=±,2(1)x x x x +=+故选D .【点睛】本题考查了公式法和提公因式法分解因式,熟练掌握平方差公式、完全平方公式及提公因式法因式分解是解题的关键.6.(2022·浙江·杭州市杭州中学七年级期中)如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .B .C .D .()()62b a b a --()()32b a b a --()()5b a b a --()22b a -【答案】A【解析】【分析】先表示出底面积和侧面积,然后求它们的差,再提取公因式分解因式即可.【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .【点睛】本题考查了因式分解,灵活提取公因式是本题关键.7.(2022·江苏徐州·七年级期中)下列各式因式分解正确的是( )A .B .222249(23)x xy y x y -+=-24(4)x x x x -+=-+C .D .3222422(1)x x x x x -+=-()()4221644x x x -=+-【答案】C【解析】【分析】根据因式分解的方法、因式分解与整式乘法的关系即可判断.【详解】A 、,故分解错误;222(23)4129=-+-x xy y y x B 、,故分解错误;2(4)4x x x x -+=--C 、,故分解正确;2232221(1)()2422x x x x x x x x --==+-+D 、,故分解错误;()()42221644(4)(2)(2)x x x x x x -=+-=++-故选:C .【点睛】本题考查了因式分解的概念,因式分解是与整式乘法相反的一种变形,因此因式分解正确与否可用整式乘法进行验证;注意:在给定的范围内,因式分解一定要分解到再也不能分解为止.8.(2022·重庆·西南大学附中九年级期中)已知正整数a ,b ,c ,d 满足,且a b c d <<<,关于这个四元方程下列说法正确的个数是( )2222a b c d d c b a +++=-+-①,,,是该四元方程的一组解;1a =2b =3c =4d =②连续的四个正整数一定是该四元方程的解;③若,则该四元方程有21组解;10a b c d <<<<④若,则该四元方程有504组解.2022a b c d +++=A .1B .2C .3D .4【答案】D【解析】【分析】将,,,代入到四元方程中看等式两边是否相等即可判断①;设1a =2b =3c =4d =,然后代入四元方程即可判断②;先证明,同理得123a k b k c k d k ==+=+=+,,,()220d c d c --+≥到,即可推出得到,据此即可判断③;根据()220b a a b --+≥1010d c b a --=--=,11b a d c =+=+,③所求可以推出,由此即可判断④.1010a c +=【详解】解:当,,,时,方程左边,方程右边,1a =2b =3c =4d ==1234=10+++2222=4321=10-+-∴方程左右两边相等,∴,,,是四元方程的一组解,故①正确;1a =2b =3c =4d =设,123a k b k c k d k ==+=+=+,,,∴,12346a b c d k k k k k +++=++++++=+()()()22222222321d c b a k k k k -+-=+-+++-2222694421k k k k k k k =++---+++-,46k =+∴当,四元方程左右两边相等,123a k b k c k d k ==+=+=+,,,∴连续的四个正整数一定是该四元方程的解,故②正确;∵,,且c 、d 均为正整数,()()()()()()221d c d c d c d c d c d c d c --+=+--+=+--d c >∴,100d c d c --≥+>,∴,()220d c d c --+≥同理,()220b a a b --+≥∴,2222d c b a a b c d -+-≥+++又∵,2222a b c d d c b a +++=-+-∴,1010d c b a --=--=,∴,11b a d c =+=+,∴时,或或或或或,12a b ==,34c d ==,45c d ==,56c d ==,67c d ==,78c d ==,89c d ==,同理时,或或或或,23a b ==,45c d ==,56c d ==,67c d ==,78c d ==,89c d ==,时,或或或,34a b ==,56c d ==,67c d ==,78c d ==,89c d ==,,时,,67a b ==,89c d ==,∴当,该四元方程一共有组解,故③正确;10a b c d <<<<654321=21+++++由③得,11b a d c =+=+,∵,2022a b c d +++=∴,112022a a c c +++++=∴,1010a c +=∵a ,c 都是正整数,且,a c <∴当时,,1a =1009c =当时,,2a =1008c =,当时,,504a =506c =∴满足题意的a 、b 、c 、d 的值有504组,∴若,则该四元方程有504组解,故④正确;2022a b c d +++=故选D .【点睛】本题主要考查了因式分解的应用,二元一次方程的解,解题的关键在于能够正确理解题意,以及方程的解得含义.9.(2022·山东临沂·二模)下列运算正确的个数是( )①;②;③;④;⑤.()3133a a --=-2391139a a ⎛⎫= ⎪⎝⎭23523a a a +=3128-=221(1)x x +=+0=A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据单项式乘多项式、幂的乘方与积的乘方、合并同类项、负指数幂、因式分解、二次根式的加减,分别计算即可得到答案.【详解】解:①,正确;()3133aa --=-②,错误;2361139a a⎛⎫= ⎪⎝⎭③,不是同类项,不能合并,故此项错误;232a a +④,正确;3128-=⑤,不能因式分解,故此项错误;21x +,故此项正确,0==故正确的个数为3个.故选C .【点睛】本题考查了幂的乘方与积的乘方、有理数的除法,合并同类项的法则,二次根式的加减等,熟练掌握各法则是解题的关键.10.(2022·广东东莞·八年级阶段练习)若的值为x =y =222x xy y ++( )A .12B .4C .2022D.8【答案】D【解析】【分析】先将代数式进行因式分解,然后代入求值即可.【详解】解:,()2222x xy yx y ++=+当,x =y =∴原式=2=(2=8,故选:D .【点睛】题目主要考查因式分解、二次根式的化简求值,求代数式的值,熟练掌握完全平方公式进行计算是解题关键.11.(2022·山东·日照港中学二模)下列命题中,假命题的个数是( )①;②分解因式:3;④如果方程()323626ab a b =21(1)(1)x x x -+=-+--有两个不相等的实数根,则实数;⑤在一次数学答题比赛中,五位同学答对题目的个2210ax x ++=1a <数分别为7,5,3,5,10,则这组数据的中位数是5.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】①,②分解因式: ,④如果方()323628=ab a b ()()2111x x x -+=-++=程有两个不相等的实数根, 那么Δ=4-4a >0,a <1,且a ≠0,⑤把7,5,3,5,10,从小2210ax x ++=到大排列:3,5,5,7,10,中位数为5.【详解】①,()323626ab a b =∵,()323628=ab a b 故此命题是假命题;②分解因式:,21(1)(1)x x x -+=-+--∵,()()2111x x x -+=-++故此命题是假命题;3,∵,=故此命题是假命题;④如果方程有两个不相等的实数根,则实数,2210ax x ++=1a <∵方程有两个不相等的实数根,2210ax x ++=∴Δ=4-4a >0,a <1,且a ≠0,故此命题是假命题;⑤在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的中位数是5,∵五个数从小到大排列为:3,5,5,7,10,∴中位数为:5.故此命题是真命题.故假命题有4个.故选D .【点睛】本题考查了积的乘方,分解因式,算术平方根,一元二次方程根的判定,中位数,熟练掌握积乘方的法则,用平方差公式分解因式,算术平方根的定义,一元二次方程的定义与根的判别式,中位数的定义及求法,是解决此题的关键.12.(2022·河北保定·一模)下列变形中,属于因式分解且正确的是( )A .B .262(3)x x +=+2(1)a a a a +=+C .D .2(1)(1)x x x x x -=+-231(3)1x x x x -+=-+【答案】A【解析】【分析】利用因式分解的定义逐一判断即可.【详解】A 、,符合因式分解的定义,且分解正确;262(3)x x +=+B 、,是整式的乘法,不是分解因式;2(1)a a a a +=+C 、,分解因式不正确;()()()2111x x x x x x x -=-≠+-D 、,分解因式不正确,231(3)1x x x x -+=-+故选:A【点睛】本题考查了因式分解的定义,理解掌握把一个多项式化成几个整式乘积的形式,这种变形叫做因式分解,分解因式要分解到不能再分解为止.13.(2022·贵州铜仁·一模)下列等式不正确的是( )A B .2()2222a b a ab b -=++C .D .2212x y xy x yy x --=--()()33x y xy xy x y x y -=+-【答案】B【解析】【分析】对A 进行计算,对B 进行乘法运算,对C 进行约分化简,对D 进行因式分解,然后进行判断即可.【详解】解:A ,正确,故不符合要求;2=B 中,错误,故符合要求;()2222222a b a ab b a ab b -=-+≠++C 中,正确,故不符合要求;()22212x y y x xy x y y x y x --==----D 中,正确,故不符合要求;()()33x y xy xy x y x y -=+-故选B .【点睛】本题考查了算术平方根,分式的基本性质,运用完全平方公式进行运算,综合提公因式与公式法进行因式分解等知识.解题的关键在于对知识的熟练掌握与灵活运用.14.(2022·重庆巴蜀中学一模)对于二次三项式(m 为常数),下列结论正确的个数有22x mxy x +-( )①当时,若,则1m =-220x mxy x +-=2x y -=②无论x 取任何实数,等式都恒成立,则223x mxy x x +-=()225x my +=③若,,则226x xy x +-=228y xy y +-=1x y +=④满足的整数解共有8个()()22220x xy x y xy y +-+--≤(),x y A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①代入求值后因式分解计算即可;②提取公因式x 后根据恒成立找关系即可;③两个方程相加后因式分解即可解题;④去括号后因式分解判断即可.【详解】①当时,若,则1m =-220x mxy x +-=22(2)0x xy x x x y --=-=-∴或者,故①错误;20x y --=0x =②等式化简后为223x mxy x x +-=(5)0x my x +-=∵无论x 取任何实数,等式都恒成立,223x mxy x x +-=∴,即50x my +-=5x my +=∴,故②正确;()225x my +=③若,,则两个方程相加得:,226x xy x +-=228y xy y +-=222214x xy x y xy y +-++-=∴2()2()14x y x y +-+=2(1)15x y +-=∴,故③错误;1x y +=④整理得:()()22220x xy x y xy y +-+--≤22220x y x y +--≤∴22(1)(1)2x y -+-≤∵整数解(),x y ∴,,,22(1)0(1)0x y ⎧-=⎨-=⎩22(1)0(1)1x y ⎧-=⎨-=⎩22(1)1(1)0x y ⎧-=⎨-=⎩22(1)1(1)1x y ⎧-=⎨-=⎩∴,,,, ,,,,,11x y =⎧⎨=⎩12x y =⎧⎨=⎩10x y =⎧⎨=⎩21x y =⎧⎨=⎩01x y =⎧⎨=⎩00x y =⎧⎨=⎩02x y =⎧⎨=⎩20x y =⎧⎨=⎩22x y =⎧⎨=⎩∴ 整数解共9对,故④错误;(),x y 综上所述,结论正确的有②;故选:A .【点睛】本题综合考查因式分解的应用,熟练的配方是解题的关键,题目还考查了因式分解法解一元二次方程.15.(2022·四川省渠县中学一模)下列因式分解正确的是( )A .x 2-y 2=(x -y )2B .x 2+4x +9=(x +9)2C .x 2-6x +9=(x -3)2D .a 3+4a 2+a =a 2(a -4)【答案】C【解析】【分析】A 用平方差分式分解因式,C 用完全平方公式分解因式,D 用提取公因式法分解因式即可求解.解:A .,原选项因式分解错误,此项不符合题意;()()22x y x y x y -=+-B .不能因式分解,原选项因式分解错误,此项不符合题意;249x x ++C .,原选项因式分解正确,此项符合题意;()22693x x x -+=-D .,原选项因式分解错误,此项不符合题意.()322441a a a a a a ++=++故选:C .【点睛】本题考查了公式法,提公因式法分解因式.熟练掌握完全平方公式和平方差公式,提取公因式法分解因式的方法是解本题的关键.16.(2022年辽宁省朝阳市初中升学模拟考试(三)数学试题)分解因式:___________.5232m m -+=【答案】()()()22422m m m m -++-【解析】【分析】先提出公因式,再利用平方差公式计算,即可求解.【详解】解:5232m m-+()4216m m =--()()22244m m m =-+-()()()22444m m m m =-++-故答案为:()()()22422m m m m -++-【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,注意分解彻底是解题的关键.17.(2022·浙江·宁波市第十五中学三模)因式分解:______.()229a b b +-=【答案】(a +4b )(a −2b )【解析】【分析】直接应用平方差公式即可.解:原式=(a +b )2−(3b )2=(a +b +3b )(a +b −3b )=(a +4b )(a −2b ).故答案为:(a +4b )(a −2b ).【点睛】本题考查公式法分解因式,熟练掌握平方差公式是解题的关键.18.(2022·天津南开·二模)将多项式分解因式,其结果是___.22363a ab b -+【答案】23()a b -【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.完全平方公式:a 2-2ab +b 2=(a -b )2.【详解】解:3a 2-6ab +3b 2=3(a 2-2ab +b 2)=3(a -b )2.故答案为:3(a -b )2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和PQMN ②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.,AE a DE b ==a b>(1)若a ,b 是整数,则的长是___________;PQ (2)若代数式的值为零,则的值是___________.222a ab b --ABCD PQMN SS 四边形矩形【答案】 -a b 3+【分析】(1)根据图象表示出PQ 即可;(2)根据分解因式可得,继而求得,根据这四个2220a ab b --=()()0a b a b --=a b =矩形的面积都是5,可得,再进行变形化简即可求解.55,EP EN a b ==【详解】(1)①和②能够重合,③和④能够重合,,,AE a DE b ==,PQ a b ∴=-故答案为:;-a b (2),2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=--=或,即(负舍)或0a b ∴-=0a b -=a b =a b =这四个矩形的面积都是5,,55,EP EN a b ∴==,()()()()()()()()22555555ABCD PQMN a b a b a b a b S b a ab a b S a b a b a b b a ab ⎛⎫++⋅++⋅⎪+⎝⎭∴===-⎛⎫----⋅ ⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+3==+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.20.(2022·浙江温州·八年级期中)已知,,则代数式______.2x 2y 22x y -=【答案】-【解析】【分析】将原式进行因式分解,然后代入求值.【详解】解:原式,x y x y -=(+)()∵,,2x 2y∴原式2222⎡⎤⎡⎤--⎣⎦⎣⎦2222--4-,-=故答案为:-【点睛】本题考查二次根式的混合运算,理解二次根式的性质,掌握平方差公式和是解题22a b a b a b --(+)()=关键.21.(2022·浙江杭州·九年级期末)分解因式____________.294x -=【答案】()()3232x x -+【解析】【分析】利用平方差公式进行因式分解即可得出.【详解】222943(2)(32)(32)x x x x -=-=-+【点睛】此题考查了因式分解的方法,熟练应用平方差公式进行因式分解是解决本题的关键.22.(2022·江苏扬州·二模)下列四个代数式①,②,③,④,若,4mn 224+m n 224m n +22m n +0m n >>则代数式的值最大的是______.(填序号).【答案】③【解析】【分析】利用作差法比较大小即可.【详解】解:∵,0m n >>令②-①得:,∴②>①,()2224042mn m n m n -=-+>令③-②得:,∴③>②,22222244330m n m n m n +--=->令③-④得:,∴③>④,22222430m n m n m +--=>∴代数式的值最大的是③,故答案为:③【点睛】本题考查不等式的性质,利用不等式性质比较代数式的大小,解题的关键是掌握作差法比较大小.23.(2022·山西晋中·二模)计算:______.()2222aa ab a b a b +÷=--【答案】1a b-【解析】【分析】根据分式的运算法则计算.【详解】解:原式=()()()()2a a b aa b a b a b +÷+--=()2aa b aa b -⨯-=1a b-故答案为.1a b -【点睛】本题考查分式的应用,熟练掌握分式的运算法则是解题关键 .24.(2022·安徽合肥·二模)因式分解:______.3221236a a b ab -+=【答案】2(6)a ab -【解析】【分析】先提出公因式,再利用完全平方公式,即可求解.【详解】解:原式()221236a ab b a -+=,()26b a a =-故答案为:.()26a a b -【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法解答是解题的关键.25.(2022·广西柳州·二模)添项、拆项是因式分解中常用的方法,比如分解多项式可以用如下方法21a -分解因式:①;()()()()22111111a a a a a a a a a -=-+-=-+-=-+又比如多项式可以这样分解:31a -②;()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++仿照以上方法,分解多项式的结果是______.51a -【答案】()()43211a a a a a -++++【解析】【分析】直接根据添项、拆项的方法进行因式分解即可.【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-,()()43211a a a a a =-++++故答案为:()()43211a a a a a -++++【点睛】本题考查添项与拆项法对多项式进行因式分解,解题的关键是熟练运用提公因式法,也考查了学生的观察能力和整体思想.26.(2022·四川眉山·八年级期末)已知:,,,则20212020a x =+20212021b x =+20212022c x =+的值_______.222a b c ab bc ac ++---【答案】3【解析】【分析】对a 2+b 2+c 2-ab -bc -ac 提公因式,进而进行因式分解,再将a 、b 、c 的值代入即可.12【详解】解:∵a =2021x +2020,b =2021x +2021,c =2021x +2022,∴,20212020(20212021)1a b x x -=+-+=-,20212021(20212022)1b c x x -=+--=-20212020(20212022)2a c x x -=+-+=-∴a 2+b 2+c 2-ab -bc -ac =(2a 2+2b 2+2c 2-2ab -2bc -2ac )12= [(a -b )2+(b -c )2+(a -c )2]12= [(-1)2+(-1)2+(-2)2]12=×612=3.故答案为:3.【点睛】本题是因式分解的应用,解题的关键是会对所求代数式进行变形.B 组 能力提升27.(2021·全国·七年级专题练习)(多选题)下列因式分解不正确的是( )A .B .22(2)x x x x -=+26(2)(3)a a a a --=-+C .D .22244(2)a ab b a b +-=-224(2)(2)x y x y x y -=+-【答案】ABC【解析】【分析】利用提公因式法、公式法以及十字相乘法对各项分解因式得到结果,判断即可.【详解】解:A 、原式=x (x ﹣2),故A 选项符合题意;B 、原式=(a ﹣3)(a +2),故B 选项符合题意;C 、原式不能分解,故C 选项符合题意;D 、原式=(2x +y )(2x ﹣y ),故D 选项不符合题意,故选:ABC .【点睛】此题考查了因式分解﹣十字相乘法以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.28.(2021·全国·七年级专题练习)(多选题)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码记忆方便.原理是:如对于多项式,因式分解的结果是,若44x y -()22()()x y x y x y -++取时,则各个因式的值是,于是就可以把“018162”作为一9,9x y ==()22()0,()18,162x y x y x y -=+=+=个六位数的密码.对于多项,取,用上述方法产生的密码可能是( )32x xy -20,10x y ==A .B .C .D .【答案】BCD【解析】【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】,3222()()()x xy x x y x x y x y -=-=+-当时,,2010x y ==,203010x x y x y =+=-=,,用上述方法产生的密码是:,301 020,.故选:BCD .【点睛】此题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出产生密码的方法是解本题的关键.29.(2021·全国·七年级专题练习)(多选题)下列各式能运用公式法进行因式分解的是( )A .B .22a b -+221625m n-C .D .2292016p pq q-+21()4a b a b ++++【答案】ABD【解析】【分析】根据公式法因式分解,逐项分析即可.【详解】A.,能因式分解,符合题意;()()22a a a b b b =--++B. ,能因式分解,符合题意;()()2241525465m m n n m n =+--C. 不能因式分解,不符题意;2292016p pq q -+D. ,能因式分解,符合题意.21()4a b a b ++++()()221142a b a b a b ⎛⎫=++++=++ ⎪⎝⎭故选ABD【点睛】本题考查了公式法因式分解,掌握公式法因式分解的方法是解题的关键.30.(2021·全国·七年级专题练习)(多选题)将多项式加上一个单项式后,使它能成为另一个整式244x +的完全平方,下列添加单项式正确的是( )A .B .C .D .4x8x 8x -4x 【答案】BCD【解析】【分析】把分别加上各选项的单项式,再按完全平方公式分解因式即可得到答案.244x +【详解】解:不是完全平方式,故不符合题意;()2244+441x x x x +=++A 是完全平方式,故符合题意;()()22244+842141,x x x x x +=++=+B 是完全平方式,故符合题意;()()22244842141,x x x x x +-=-+=-C 是完全平方式,故符合题意;()2242442,x x x ++=+D 故选:,,.B C D 【点睛】本题考查的是完全平方式,利用完全平方公式分解因式,理解完全平方式是解题的关键.31.(2022·江苏·南京外国语学校七年级期中)分解因式:(1)2363ab ab a-+(2)22()8()a a b a b ---【答案】(1)23(1)a b -(2)2()(2)(2)a b a a -+-【解析】【分析】(1)先提公因式,再用完全平方公式,分解即可;(2)先提公因式,再用平方差公式,分解即可.(1)解:3ab 2−6ab +3a=3a ·b 2-3a ·2b +3a ·1=3a (b 2-2b +1)=3a (b −1)2;(2)2a 2(a −b )−8(a −b )=2(a −b ) (a 2−4)=2(a −b ) (a 2−22)=2(a −b ) (a +2) (a −2).【点睛】此题考查了因式分解的提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.32.(2022·安徽·六安市第九中学七年级期中)分解因式:(1);231212m n mn n -+(2)22()()a ab b b a -+-【答案】(1);()232-n m (2)2()()a b a b -+【解析】【分析】(1)先提取公因式3n ,再根据完全平方公式分解因式;(2)先提取公因式(a -b ),再利用平方差公式分解因式.(1)解:231212m n mn n-+=()2344n m m -+=;()232-n m (2)22()()a ab b b a -+-=22()()a ab b a b ---=()22()a b a b --=.2()()a b a b -+【点睛】此题考查了多项式的分解因式,掌握因式分解的方法:提公因式法和公式法是解题的关键.33.(2022·浙江·杭州市杭州中学七年级期中)根据条件求值:(1)先化简,再求值:,其中()()()()2212222x x x x x --+---x =(2)已知,,求的值.5x y +=3xy =22x y xy +【答案】(1),725x +(2)15【解析】【分析】(1)根据乘法公式和单项式乘以多项式,先化简,再合并同类项即可,最后将x 的值代入求解;(2)先把进行因式分解,再代入数据求解即可.22x y xy +(1)解:()()()()2212222x x x x x --+---=222441(4)(24)x x x x x -+----=222441424x x x x x -+-+-+=.25x +当=.x =2(5257-+=+=(2)解:22x y xy+=.()3515xy x y +=⨯=【点睛】本题考查了完全平方公式、平方差公式、单项式与多项式的乘法法则及因式分解,熟练运用整式的相关法则和公式是解题的关键.34.(2022·黑龙江齐齐哈尔·二模)(1)计算:201(2022)2tan 602-⎛⎫-+--︒ ⎪⎝⎭π(2)因式分解:32234363x y x y xy -+-【答案】(1;(2).3()223xy x y --【解析】【分析】(1)根据零次幂,负整数指数幂,二次根式的性质化简及特殊角的三角函数值求解即可;(2)先提公因式,再运用完全平方公式因式分解即可得出答案.【详解】解:(1)21(2022)2tan602-⎛⎫--+--︒⎪⎝⎭π412=+-3-(2)32234363x y x y xy-+-()22232xy x xy y=--+()223xy x y=--【点睛】本题考查了实数的混合运算及因式分解,掌握特殊角的三角函数值及完全平方公式是解题的关键.35.(2021·全国·八年级期末)(1)计算:.23-+(2)因式分解:244x y xy y-+【答案】(1)-1;(2)()221y x-【解析】【分析】(1)利用乘方,平方根,绝对值,与立方根先求出各数,再相加即可.(2)根据题意,首先提取公因式,再根据完全平方公式的性质计算,即可得到答案;【详解】解:(1),23-=-9+4+1+3,=-1.(2)244x y xy y-+=2(441)x x y=-+.()221y x=-【点睛】本题考查了实数的混合运算和因式分解的知识,熟练掌握乘方,平方根,绝对值,与立方根概念,完全平方公式,以及是数混合运算法则是解本题的关键.36.(2022·山西晋中·八年级期中)请阅读下列材料,并完成相应的任务:(1)探究发现;小明计算下面几个题目①;②;③;④后发现,形如的两个()2x +()4x -()4x -()1x +()4y +()2y -()5y -()3y -()()x p x q ++多项式相乘,计算结果具有一定的规律,请你帮助小明完善发现的规律:.()()x p x q ++=()()()x ++(2)面积说明:上面规律是否正确呢?小明利用多项式乘法法则计算发现这个规律是正确的,小明记得学习()()x p x q ++乘法公式时,除利用多项式乘法法则可以证明公式外,还可以利用图形面积说明乘法公式,于是画出右面图形说明他发现的规律.(3)逆用规律:学过因式分解后,小明知道了因式分解与整式乘法是逆变形,他就逆用发现的规律对下面因式分解的多项式进行了因式分解,请你用小明发现的规律分解下面因式:.2710x x -+(4)拓展提升现有足够多的正方形和矩形卡片(如图),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重复,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为并利用你所拼的图形面积对进行因式分解.2223a ab b ++2223a ab b ++【答案】(1);(2)(3);2x p q pq +,,()()2()x p x q x p q x pq ++=+++()()2710=25x x x x -+--(4),画图见解析()()22232a ab b a b a b ++=++【解析】【分析】(1)利用多项式乘以多项式的法则进行运算,总结即可;(2)利用面积的两种计算方法可证明公式;()()2()x p x q x p q x pq ++=+++(3)分别确定公式当中的,再利用公式计算即可;,p q (4)由可得此长方形是有2张1号卡片、3张2号卡片和1张3号卡片拼成的矩形,再画出2223a ab b ++拼图,从而可得答案.【详解】解:(1),()()x p x q ++=2()x p q x pq +++故答案为:;2x p q pq +,,(2)长方形的面积为:()(),x p x q ++长方形的面积等于四个小长方形的面积之和为:,2()x p q x pq +++所以.()()x p x q ++=2()x p q x pq +++(3)按照小明发现的规律:2710x x -+()()()()22525x x =+-+-+-⨯-⎡⎤⎣⎦()()25x x =--(4)由可得此长方形是有2张1号卡片、3张2号卡片和1张3号卡片拼成的矩形,所以拼2223a ab b ++图如下:∴.()()22232a ab b a b a b ++=++【点睛】本题考查的是多项式乘以多项式,因式分解,利用图形面积证明多项式乘以多项式的运算法则以及因式分解,熟练构建长方形证明多项式的乘法与因式分解是解本题的关键.37.(2022·山西·大同市云州区初级示范中学校二模)(1)()101120222tan452π-⎛⎫---+-︒ ⎪⎝⎭(2)下面是小明同学进行因式分解的过程,请认真阅读并完成相应任务.因式分解:()()2233a b a b +-+解:原式 第一步()()22229669a ab b a ab b =++-++ 第二步2288a b =- 第三步()228a b =-任务一:填空:①以上解题过程中,第一步进行整式乘法用到的是___________公式;②第三步进行因式分解用到的方法是___________法.任务二:同桌互查时,小明的同桌指出小明因式分解的结果是错误的,具体错误是______________________.任务三:小组交流的过程中,大家发现这个题可以先用公式法进行因式分解,再继续完成,请你写出正确的解答过程.【答案】(1)0(2) 完全平方;提公因式 因式分解不彻底(或还可以进行因式分解) 22a b -8()()a b a b +-【解析】【分析】(1)先根据绝对值的意义,零指数幂、负整数指数幂的运算法则,特殊角的三角函数值进行化简,然后再进行运算即可;(2)按照给出的解答过程,进行分析解答即可.(1)解:原式.11221=-+-⨯0=(2)任务一:①以上解题过程中,第一步进行整式乘法用到的是完全平方公式;②第三步进行因式分解用到的方法是提公因式法;任务二:小明因式分解的结果不彻底,还可以进行因式分解;22a b -任务三:原式[(3)(3)][(3)(3)]a b a b a b a b =++++-+(44)(22)a b a b =+-=8()()a b a b +-故答案为:任务一:①完全平方;②提公因式;任务二:因式分解不彻底(或a 2−b 2还可以进行因式分解);任务三:8(a +b )(a −b ).【点睛】本题主要考查了实数的混合运算,因式分解,熟练掌握实数混合运算法则,平方差公式和完全平方公式,是解题的关键.。
用公式法分解因式练习题一、一元二次方程式因式分解1. 分解因式:x^2 92. 分解因式:x^2 163. 分解因式:x^2 6x + 94. 分解因式:x^2 + 8x + 165. 分解因式:x^2 10x + 256. 分解因式:x^2 + 14x + 497. 分解因式:x^2 4x + 48. 分解因式:x^2 12x + 369. 分解因式:x^2 + 20x + 10010. 分解因式:x^2 18x + 81二、一元二次多项式因式分解1. 分解因式:x^2 5x 362. 分解因式:x^2 + 7x 303. 分解因式:x^2 3x 404. 分解因式:x^2 + 9x 225. 分解因式:x^2 8x 336. 分解因式:x^2 + 11x 287. 分解因式:x^2 13x 428. 分解因式:x^2 + 15x 349. 分解因式:x^2 6x 2710. 分解因式:x^2 + 17x 32三、含有公因式的多项式因式分解1. 分解因式:2x^2 8x2. 分解因式:3x^2 + 12x3. 分解因式:4x^2 16x4. 分解因式:5x^2 + 20x5. 分解因式:6x^2 24x6. 分解因式:7x^2 + 28x7. 分解因式:8x^2 32x8. 分解因式:9x^2 + 36x9. 分解因式:10x^2 40x10. 分解因式:11x^2 + 44x四、交叉项因式分解1. 分解因式:x^2 + 5y^22. 分解因式:2x^2 + 8y^23. 分解因式:3x^2 + 12y^24. 分解因式:4x^2 + 16y^25. 分解因式:5x^2 + 20y^26. 分解因式:6x^2 + 24y^27. 分解因式:7x^2 + 28y^28. 分解因式:8x^2 + 32y^29. 分解因式:9x^2 + 36y^210. 分解因式:10x^2 + 40y^2五、综合练习1. 分解因式:x^3 272. 分解因式:x^3 + 643. 分解因式:x^4 164. 分解因式:x^4 815. 分解因式:x^6 646. 分解因式:x^6 7297. 分解因式:2x^2 188. 分解因式:3x^2 249. 分解因式:4x^2 3610. 分解因式:5x^2 50六、差平方与和平方因式分解1. 分解因式:x^2 4y^22. 分解因式:9x^2 25y^23. 分解因式:16x^2 9y^24. 分解因式:25x^2 36y^25. 分解因式:x^2 + 4y^26. 分解因式:9x^2 + 16y^27. 分解因式:4x^2 + 25y^28. 分解因式:16x^2 + 9y^29. 分解因式:25x^2 + 36y^210. 分解因式:x^2 + 49y^2七、三项式因式分解1. 分解因式:x^3 3x^2 + 2x2. 分解因式:x^3 + 4x^2 5x3. 分解因式:x^3 6x^2 + 9x5. 分解因式:x^3 8x^2 + 12x6. 分解因式:x^3 + 9x^2 13x7. 分解因式:x^3 10x^2 + 15x8. 分解因式:x^3 + 11x^2 16x9. 分解因式:x^3 12x^2 + 18x10. 分解因式:x^3 + 13x^2 19x八、多项式因式分解1. 分解因式:x^4 162. 分解因式:x^4 813. 分解因式:x^4 2564. 分解因式:x^4 6255. 分解因式:x^4 + 166. 分解因式:x^4 + 817. 分解因式:x^4 + 2568. 分解因式:x^4 + 6259. 分解因式:x^5 3210. 分解因式:x^5 243九、特殊多项式因式分解1. 分解因式:x^3 + x^2 6x2. 分解因式:x^3 x^2 + 4x3. 分解因式:x^3 + 2x^2 3x4. 分解因式:x^3 2x^2 + 5x5. 分解因式:x^3 + 3x^2 8x7. 分解因式:x^3 + 4x^2 12x8. 分解因式:x^3 4x^2 + 9x9. 分解因式:x^3 + 5x^2 16x10. 分解因式:x^3 5x^2 + 11x十、拓展练习1. 分解因式:x^2y^2 162. 分解因式:x^2 + 8xy + 16y^23. 分解因式:x^3y xy^34. 分解因式:x^4 y^45. 分解因式:x^5 + 32x6. 分解因式:2x^3 8x^2 + 8x7. 分解因式:3x^4 24x^28. 分解因式:4x^3y^2 16xy^29. 分解因式:5x^2y^2 + 20xy^210. 分解因式:6x^3 + 18x^2 24x 答案一、一元二次方程式因式分解1. (x 3)(x + 3)2. (x 4)(x + 4)3. (x 3)^24. (x + 4)^25. (x 5)^26. (x + 7)^28. (x 6)^29. (x + 10)^210. (x 9)^2二、一元二次多项式因式分解1. (x 9)(x + 4)2. (x + 10)(x 3)3. (x 5)(x + 8)4. (x + 11)(x 2)5. (x 11)(x + 3)6. (x + 14)(x 2)7. (x 14)(x + 3)8. (x + 16)(x 2)9. (x 9)(x + 3)10. (x + 17)(x 2)三、含有公因式的多项式因式分解1. 2x(x 4)2. 3x(x + 4)3. 4x(x 4)4. 5x(x + 4)5. 6x(x 4)6. 7x(x + 4)7. 8x(x 4)8. 9x(x + 4)10. 11x(x + 4)四、交叉项因式分解1. (x + 3y)(x 3y)2. 2(x + 2\sqrt{2}y)(x 2\sqrt{2}y)3. 3(x + 2\sqrt{3}y)(x 2\sqrt{3}y)4. 4(x + 3\sqrt{2}y)(x 3\sqrt{2}y)5. 5(x + 2\sqrt{5}y)(x 2\sqrt{5}y)6. 6(x + 2\sqrt{6}y)(x 2\sqrt{6}y)7. 7(x + 2\sqrt{7}y)(x 2\sqrt{7}y)8. 8(x + 2\sqrt{2}y)(x 2\sqrt{2}y)9. 9(x + 2\sqrt{3}y)(x 2\sqrt{3}y)10. 10(x + 2\sqrt{10}y)(x 2\sqrt{10}y)五、综合练习1. (x 3)(x^2 + 3x + 9)2. (x + 4)(x^2 4x + 16)3. (x 2)(x + 2)(x^2 + 4)4. (x 3)(x + 3)(x^2 + 9)5. (x 2)(x^2 + 2x + 4)(x^2 2x + 4)6. (x 3)(x^2 + 3x + 9)(x^2 3x + 9)7. 2(x^2 9)8. 3(x^2 8)9. 4(x^2 9)10. 5(x^2 10)六、差平方与和平方因式分解1. (x 2y)(x + 2y)2. (3x 5y)(3x + 5y)3. (2x 3y)(2x + 3y)4. (5x 6y)(5x + 6y)5. (x + 2y)(x 2y)6. (3x + 4y)(3x 4y)7. (2x + 5y)(2x 5y)8. (4x + 3y)(4x 3y)9. (5x + 6y)(5x 6y)10. (x + 7y)(x 7y)七、三项式因式分解1. x(x 1)(x 2)2. x(x + 1)(x。
2、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±()立方和、立方差公式 a b a b a ab b 3322±=±⋅+()()补充:欧拉公式:a b c abc a b c a b c ab bc ca 3332223++-=++++---()()=++-+-+-12222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++=(2)当c =0时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
下面我们就来学习用公式法进行因式分解【分类解析】1. 把a a b b 2222+--分解因式的结果是( )A. ()()()a b a b -++22B. ()()a b a b -++2C. ()()a b a b -++2D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。
再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。
说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。
同时要注意分解一定要彻底。
2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式232x x m -+有一个因式是21x +,求m 的值。
分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。
解:根据已知条件,设221322x x m x x ax b -+=+++()()则222123232x x m x a x a b x b -+=+++++()() 由此可得21112023a a b m b+=-+==⎧⎨⎪⎪⎩⎪⎪()()()由(1)得a =-1 把a =-1代入(2),得b =12把b =12代入(3),得m =123. 在几何题中的应用。
例:已知a b c 、、是∆ABC 的三条边,且满足a b c ab bc ac 2220++---=,试判断∆ABC 的形状。
分析:因为题中有a b ab 22、、-,考虑到要用完全平方公式,首先要把-ab 转成-2ab 。
所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。
解: a b c ab bc ac 2220++---=∴++---=2222220222a b c ab bc ac∴-++-++-+=()()()a ab b b bc c c ac a 2222222220∴-+-+-=()()()a b b c c a 2220()()()a b b c c a -≥-≥-≥222000,,∴-=-=-=a b b c c a 000,,∴==a b c∴∆ABC 为等边三角形。
4. 在代数证明题中应用例:两个连续奇数的平方差一定是8的倍数。
分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。
解:设这两个连续奇数分别为2123n n ++,(n 为整数)则()()232122n n +-+=++++--=+=+()()()()2321232124481n n n n n n由此可见,()()232122n n +-+一定是8的倍数。
5、中考点拨:例1:因式分解:x xy 324-=________。
解:x xy x x y x x y x y 32224422-=-=+-()()()说明:因式分解时,先看有没有公因式。
此题应先提取公因式,再用平方差公式分解彻底。
例2:分解因式:2883223x y x y xy ++=_________。
解:288244322322x y x y xy xy x xy y ++=++()=+222xy x y ()说明:先提取公因式,再用完全平方公式分解彻底。
题型展示:例1. 已知:a m b m c m =+=+=+121122123,,, 求a ab b ac c bc 222222++-+-的值。
解:a ab b ac c bc 222222++-+-=+-++()()a b c a b c 222=+-()a b c 2a mb mc m =+=+=+121122123,, ∴原式=+-()a b c 2=+++-+⎡⎣⎢⎤⎦⎥=()()()1211221231422m m m m说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。
例2. 已知a b c a b c ++=++=00333,,求证:a b c 5550++=证明: a b c abc a b c a b c ab bc ca 3332223++-=++++---()()∴把a b c a b c ++=++=00333,代入上式,可得abc =0,即a =0或b =0或c =0若a =0,则b c =-,∴++=a b c 5550若b =0或c =0,同理也有a b c 5550++= 说明:利用补充公式确定a b c ,,的值,命题得证。
例3. 若x y x xy y 3322279+=-+=,,求x y 22+的值。
解: x y x y x xy y 332227+=+-+=()()且x xy y 229-+=)1(92322=++=+∴y xy x y x ,又x xy y 2292-+=()两式相减得xy =0所以x y 229+= 说明:按常规需求出x y ,的值,此路行不通。
用因式分解变形已知条件,简化计算过程。
【实战模拟】1. 分解因式:(1)()()a a +--23122 (2)x x y x y x 5222()()-+-(3)a x y a x y x y 22342()()()-+-+-2. 已知:x x +=-13,求x x441+的值。
3. 若a b c ,,是三角形的三条边,求证:a b c bc 22220---<4. 已知:ωω210++=,求ω2001的值。
5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=03333,,试求(1)a b c ++的值;(2)a b c b c a c a b()()()111111+++++的值。
【试题答案】1. (1)解:原式=++-+--[()()][()()]a a a a 231231=+-+()()4123a a=-+-()()4123a a说明:把a a +-231,看成整体,利用平方差公式分解。
(2)解:原式=---x x y x x y 5222()()=--x x y x 2321()()=--++x x y x x x 22211()()()(3)解:原式=-+-+-()[()()]x y a a x y x y 2222=-+-()()x y a x y 222. 解: ()x x x x+=++121222 ∴+=+-=--=x xx x 2222112327()() ∴+=∴++=()x x x x 222441491249, ∴+=x x 44147 3. 分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。
证明: a b c bc 2222--- =-++=-+=++--a b bc c a b c a b c a b c 222222()()()()a b c ,,是三角形三边∴++>a b c 0且a b c <+∴++--<()()a b c a b c 0即a b c bc 22220---<4. 解 ωω210++=∴+++=()()ωωω1102,即ω310-=∴=∴==ωωω32001366711()5. 分析与解答:(1)由因式分解可知a b c abc a b c 3333++-=++()⋅++---()a b c ab bc ca 222 故需考虑a b c ab bc ca 222++---值的情况,(2)所求代数式较复杂,考虑恒等变形。
解:(1) a b c abc 3333++=∴++-=a b c abc 33330又 a b c abc 3333++-=++++---()()a b c a b c ab bc ca 222∴++++---=()()a b c a b c ab bc ca 2220而a b c ab bc ca a b b c c a 22222212++---=-+-+-[()()()] a b c ,,不全相等∴++--->a b c ab bc ca 2220∴++=a b c 0(2) abc ≠0∴原式=+++++1222abca b c b c a c a b [()()()] 而a b c ++=0,即a b c =-+()∴原式=+--1333abcb c b c [()] =+13abc bc b c [()] =-=-133abc abc ()说明:因式分解与配方法是在代数式的化简与求值中常用的方法。