粘土矿物1
- 格式:ppt
- 大小:2.83 MB
- 文档页数:10
立志当早,存高远粘土类矿物的概述在可浮性分类中粘土类矿物属氧化物及硅酸盐、铝硅酸盐类矿物。
粘土一般指天然产出,以含水铝硅酸为主的土状集合体。
除含少量粗粒外,大部分粒度很细,直径数微米或1 微米以上,其矿物组成复杂。
本节的粘土(类)是指粒度极细、可浮性较差的各种极性硅(铝—硅)酸盐土状矿物原料,可以包括高岭土、耐火粘土、膨润土(蒙脱石土)、酸性白土和海泡石等。
其中几个代表矿物的组成如表1。
这些粘土类矿物原料,用途相当广泛。
可用作陶瓷和耐火材料的原料、纸张、橡胶、肥皂的充填剂、脱色剂、粘合剂、钻探泥浆、催化剂等等。
对这类矿物原料的技术加工和产品要求,因用途不同差别很大。
本节以研究较深入的高岭土为基础从浮选加工的角度,对极性粘土原料的浮选略加介绍。
高岭土原料的加工,可能包括下列过程:破碎—磨矿—浮选(磁选)—分级—漂白—浓密—过滤—干燥。
其中:浮选用于脱去锐钛矿(TiO2),磁选(强磁或高梯度磁选)用于除去氧化铁。
漂白用氯气、二氧化硫或硫氰化锌作漂白剂,目的是溶去铁锈等有色物质,增加产品白度(对某些粘土矿物,还要进行活化处理)。
其余过程的目的和原理与一般选矿过程相同。
表1 代表性的极性粘土矿物矿物化学式比重零电点其它高岭土埃洛石蒙脱石海泡石坡缕石Al2Si2O3(OH)4(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2H2OAl2Si2O3 (OH)4·nH2OMg3Si12O30 (OH)4·(OH2)4·8H2OMg3Si8O20 (OH)2·(OH2)4·4H2O2.6092-2.83.4 其主要成分为硅酸盐或铝硅酸盐的粘土矿物,表面电位多为3~4。
由于粒度小,比表面大,特别是海泡石等矿物晶体呈凹凸交替的长条形,有很大的离子交换容量,在浮选中有如下几个共同的特点:(1)药剂消耗量大(脂肪酸类用量可以高达2.5gk/t)(2)浮选浓度低,有较好的选择性。
3粘土矿物的结晶结构及基本特征3.1粘土矿物概念、类型及其结构化学特征粘土的本质是粘土矿物。
粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。
晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。
粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。
粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。
四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。
八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。
由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。
四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。
由一个四面体层与一个八面体层重复堆叠的称为1:1型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。
在高岭石类粘土矿物中,结构单位层间为O与HO(或OH与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。
1、试比较三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。
(1) 高岭石(1:1型铝硅酸盐矿物)由一个硅氧片和一个水铝片,通过共用硅氧顶端的氧原子连接起来的片状晶格构造。
每个晶层的一面是OH离子组(水铝片上的),另一面是O离子(硅氧片上的),因而叠加时晶层间可形成氢键,使各晶层之间紧密相连从而形成大颗粒,晶粒多呈六角形片状。
其分子结构外形特征为OHOHOH .......OH顶层─────────────底层─────────────OOO ........O许多晶片相互重叠形成高岭矿物特点:晶层与晶层间距离稳定,连接紧密,内部空隙小,电荷量少,单位个体小,分散度低。
多出现于酸性土壤。
如高岭石类。
高岭石的性质特点:晶格内的水铝片和硅氧片很少发生同晶替代,因此无永久性电荷。
但水铝片上的--OH在一定条件下解离出氢离子,使高岭石带负电。
晶片与晶片之间形成氢键而结合牢固,水分子及其他离子难以进入层间,并且形成较大的颗粒。
因此其吸湿性、粘结性和可塑性较弱,富含高岭石的土壤保肥性差。
(2)蒙脱石类(2:1型铝硅酸盐矿物)由两片硅氧片和一片水铝片结合成的一个晶片(层)单元,再相互叠加而成的。
每个晶层的两面均由O离子组(硅氧片上的),因而叠加时晶层间不能形成氢键,而是通过“氧桥”联结,这种联结力弱,晶层易碎裂,其晶粒比高岭石小。
特点:胀缩性大,吸湿性强,易在两边硅氧片中以Al3+代Si4+,有时可在硅铝片中,一般以Mg2+代Al3+→带负电→吸附负离子。
如蒙脱石,这类矿物多出现于北方土壤。
如东北、华北的栗钙土、黑钙土和褐土等。
(3)水云母类(2:1型粘土矿物)结构与蒙脱石相类似,只是同晶替代产生的负电荷主要被钾离子中和,而少量被钙镁离子中和.特点:a、永久性电荷数量少于蒙脱石。
b、层与层之间由钾离子中和,使得各层相互紧密结合。
形成的颗粒相对比蒙脱石粗而比高岭石细。
其粘结性、可塑、胀缩性居中。
c、钾离子被固定在硅氧片的六角形网孔中,当晶层破裂时,可将被固定的钾重新释放出来,供植物利用。
黏土矿物形状
黏土矿物是一种常见的矿石,具有多种形状和结构。
它们通常是由细小的颗粒组成的,这些颗粒可以互相黏合在一起形成块状或颗粒状的结构。
在自然界中,黏土矿物可以以不同的形状存在。
有些黏土矿物呈片状,如膨润土。
膨润土是一种吸水性很强的黏土矿物,在水中会膨胀成片状结构。
这种片状结构使得膨润土可以吸附和储存大量的水分,使其成为土壤改良和涂料工业中重要的原料。
另一种常见的黏土矿物形状是颗粒状。
黏土矿物的颗粒可以是微小的粉末状,也可以是较大的颗粒状。
这些颗粒状的黏土矿物通常具有良好的吸附性能,可以吸附并储存有机物和无机物。
除了片状和颗粒状之外,黏土矿物还可以形成纤维状结构。
这种纤维状结构通常是由微细的纤维组成的,这些纤维可以互相交织在一起形成稳定的结构。
纤维状的黏土矿物常用于制造纺织品和过滤材料,因为它们具有良好的强度和过滤性能。
总的来说,黏土矿物具有多种形状和结构,这些形状和结构决定了它们的性质和用途。
通过对黏土矿物形状的研究和了解,我们可以更好地利用它们的特性,满足人类的需求。
无论是片状的膨润土,颗粒状的吸附剂,还是纤维状的过滤材料,黏土矿物都在各个领域发挥着重要的作用。
这些矿物的形状和结构不仅为我们提供了丰富
的资源,也为人类创造了更好的生活环境。
土壤粘土矿物名词解释一、引言土壤粘土矿物是土壤中非常重要的组成部分,它们在土壤形成、土壤肥力、土壤质地和土壤环境等方面发挥着重要作用。
本文将对土壤粘土矿物的定义、分类、成因与分布以及与土壤性质的关系进行详细阐述,以期对这一领域有更深入的理解。
二、土壤粘土矿物的定义土壤粘土矿物是指土壤中那些晶体结构细小、粒径通常在0.005-0.01微米之间、并以结晶或无定形态存在的粘土矿物。
它们是由多种含水铝硅酸盐构成的矿物族,这些矿物可以独立存在,也可以相互之间或者与其它矿物形成复杂的共生关系。
三、土壤粘土矿物的分类根据晶体结构和化学成分,土壤粘土矿物可以分为两大类:一类是含水铝硅酸盐矿物,包括高岭石类、蒙脱石类和水云母类;另一类是含水镁硅酸盐矿物,包括蛭石和绿泥石。
这些矿物在土壤中广泛分布,对土壤的理化性质和肥力状况产生重要影响。
四、土壤粘土矿物的成因与分布土壤粘土矿物的形成是一个非常复杂的过程,涉及到多种地质作用和化学反应。
在成土过程中,原生矿物经过风化作用和成土作用逐渐分解,形成了各种粘土矿物。
这些粘土矿物在土壤中的分布状况取决于气候、地形、母质等多种因素。
同时,人类活动也对土壤粘土矿物的分布和组成产生影响,例如耕作、施肥和灌溉等农业措施。
五、土壤粘土矿物与土壤性质的关系土壤粘土矿物对土壤的性质和肥力状况产生重要影响。
首先,粘土矿物可以影响土壤的物理性质,如土壤质地、保水能力和通气性等。
例如,高岭石类矿物具有较高的阳离子交换能力,可以吸附更多的营养元素,从而提高土壤的肥力水平。
其次,粘土矿物可以影响土壤的化学性质,如酸碱反应和阳离子交换等。
例如,蒙脱石类矿物具有较高的阳离子交换能力,可以影响土壤中阳离子的移动和吸附,进而影响土壤的酸碱反应。
此外,不同种类的粘土矿物对土壤的肥力状况和生产能力也会产生不同的影响。
例如,水云母类矿物能够促进作物根系的发育和养分吸收,而蛭石则具有较强的保温能力,有助于提高作物的抗寒能力。
黏土矿物及项目结构单元类型层间物层间电荷族亚族晶质1:1Si4O10(OH)8无或有水分子x~0高岭石(二八)-蛇纹石(三八)didi-tritri2:1Si4O10(OH)2无x~0叶蜡石-滑石ditri阳离子或水化离子0.2<x<0.6蒙皂石didi-tritri0.6<x<0.9蛭石ditri0.6<x<1伊利石dix~1云母didi-tritrix~2脆云母ditri 2:1:1Si4O10(OH)2氢氧化物层x不定绿泥石didi-tritri 2:1层链状水化阳离子x~0.1纤维棒石di-tritri 2:1规则间层可变x不定规则间层ditri 非晶质矿物及有关层状硅酸盐矿物分类粘土矿物种高岭石、地开石、珍珠陶石、变埃洛石(7Å)、埃洛石(10Å)镁绿泥石、正鲕绿泥石、绿锥石、凯利石(斜)纤蛇纹石、镁铝蛇纹石、叶蛇纹石、斜叶蛇纹石、镍蛇纹石、鳞(利)蛇纹石叶蜡石、铁叶蜡石滑石、镍滑石、砸蛇纹镁皂石蒙脱石、贝得石、绿脱石、铬绿脱石斯温福石皂石、锌皂石、锂皂石、斯皂石、锂蒙脱石二八面体蛭石(黏粒蛭石)三八面体蛭石伊利石、钠伊利石白云母、钠云母、钒云母、多硅白云母、铬云母锂云母、铁锂云母、锂铍云母金云母、黑云母、镁黑云母、铁云母(三八面体)珍珠云母绿脆云母、黄绿脆云母顿绿泥石、硼锂绿泥石须藤绿泥石、锂绿泥石叶绿泥石、斜绿泥石 、鲕绿泥石凹凸棒石、坡缕石、绿紼帖石、锰坡缕石海泡石、镍海泡石累托石、托苏石柯绿泥石、滑间皂石、水黑云母、绿泥间滑石水铝英石、硅铁石、伊毛缟石、硅锰矿。
第一章有机质与粘土矿物的研究现状第一节问题的提出粘土矿物和有机质是泥质烃源岩的二大组成部分,一直是岩石矿物学家和有机地球化学家研究的重点。
在泥质烃源岩中有机质常以分散状、顺层富集状、局部富集状和生物残体等形式分布于粘土矿物中(苗建宇等,1999;张林晔等,2003),二者间相互共存,属统一的地质体,表明粘土矿物与有机质具有密不可分性。
纵观泥质烃源岩的粘土矿物成分主要为蒙脱石和伊利石,在不同地质历史时期油气储量的变化与蒙脱石的变化相一致(Weaver,1960;王行信,1990);在含油气盆地中随着埋藏深度的增加,蒙脱石不断地向伊利石转化,这些特征表明蒙脱石与伊利石相比,具有更大的变化性和不稳定性,与油气的关系更为密切,是更值得重视的无机矿物。
有机地球化学理论认为干酪根是烃源岩中有机质的主体,可以细分为腐殖体、镜质体、壳质体和惰质体等(Durand, 1980; Tissot and Welte, 1984),表明有机质组成的多样性。
干酪根的获得是在实验室中利用各种酸对烃源岩进行处理(Durand, 1980),除去无机矿物后得到的一些有机质,因而,破坏了自然状态下有机质与无机矿物间的相互关系;从干酪根的结构上来看,不论是Ⅰ型干酪根,还是Ⅲ型干酪根,其结构不稳定且多变(傅家谟和秦匡宗. 1995),表明它不是稳定的化合物,而是经各种处理后得到的有机质的混合物。
由此看来,干酪根虽属烃源岩中的有机质,但它脱离了与之共存的无机矿物,不能很好地反映有机质的赋存状态以及有机质与无机矿物间的相互关系,需要探索新的方法开展研究。
综合烃源岩、无机矿物和有机质的特征,认为开展烃源岩中无机矿物与有机质的相互关系研究很有必要,特选取泥质烃源岩中易变化的粘土矿物—蒙脱石与有机质的相互关系作为探索研究的重点。
在石油地质学领域存在有机质的早期成油理论和晚期成油理论之争(黄第藩等,2003);到70年代树立了干酪根热降解的晚期生油理论的核心(Durand,1979,Tissot and Welte,1978),并在此理论指导下不论在海相,还是在陆相的油气勘探中都取得了成果。