浅析“恒成立问题”的几种常用题型解法
- 格式:pdf
- 大小:115.12 KB
- 文档页数:2
恒成立问题基本题型及解题方法恒成立问题一直以来都有是数学中的一个重点、难点,这类问题也没有一个固定的思想方法去处理,各类考试以及高考中都屡见不鲜。
如何更好地简单,准确,快速解决这类问题并更好地认识把握,本文通过举例说明这类问题的一些常规解题方法。
一 转化为二次函数,利用分类讨论思想解题例1. 已知函数f(x)=x 2-2ax+4在区间[-1,2] 上都不小于2,求a 的值。
解:由函数f(x)=x 2-2ax+4的对称轴为x=a所以必须考察a 与-1,2的大小,显然要进行三种分类讨论1.当a ≥2时f(x)在[-1,2]上是减函数此时min )(x f = f(2)=4-4a+42≥ 即a 23≤ 结合a ≥2,所以a 的解集为φ 2.当a 1-≤ 时 f(x)在[-1,2]上是增函数, min )(x f = f(-1)=1+2a+42≥结合a 1-≤ 即123-≤≤-a 3.当-1<a<2时 m i n )(x f = f(a)=a 2-2a 2+4 2≥ 即≤-2a 2≤ 所以21≤<-a综上1,2,3满足条件的a 的范围为:223≤≤-a 二 确定主元,构造函数,利用单调性解题 例2.对于满足0≤a ≤4的所有实数a 求使不等式x 2+ax>4x+a-3都成立的x 的取值范围。
解:不等式变形为x 2+(x-1)a-4x+3>0设f(a)= (x-1)a+x 2-4x+3,则其是关于a 的一个一次函数:是单调函数结合题意有⎩⎨⎧>>0)0(0)4(f f 即 得1-<x 或3>x 三 利用不等式性质解题例3.若关于x 的不等式|x-2|+|x+3|≥a 恒成立,试求a 的范围 解:由题意知只须min )32(++-≤x x a 由5)3(232=+--≥++-x x x x 所以 5≤a四 构造新函数,利用导数求最值:例4.已知)1lg(21)(+=x x f )2lg()(t x x g +=若当]1,0[∈x 时)()(x g x f ≤在[0,1]恒成立,求实数t 的取值范围。
不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
浅谈函数中的恒成立问题常用解决方法一、恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题。
函数在给定区间上某结论成立问题,其表现形式通常有:①在给定区间上某关系恒成立;②某函数的定义域为全体实数R;③某不等式的解为一切实数;④某表达式的值恒大于a等等……恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
二、恒成立问题解决的基本策略(一)两个基本思想解决”恒成立问题”思路1、mf(x)在x∈D上恒成立m[f(x)]max思路2、mf(x)在x∈D上恒成立m[f(x)]min如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f(x)的最值。
这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。
(二)赋值型--利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得。
例1.由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(x+1)+b4 定义映射f:(a1,a2,a3,a4)→b1+b2+b3+b4,则f:(4,3,2,1)→ ()A.10B.7C.-1D.0略解:取x=0,则a4=1+b1+b2+b3+b4,又a4=1,所以b1+b2+b3+b4 =0 ,故选D例2.如果函数y=f(x)=sin2x+acos2x的图象关于直线x=-π8对称,那么a=().A.1B.-1 C .2 D. -2略解:取x=0及x=-π4,则f(0)=f(-π4),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想。
恒成立问题常见求解技巧“恒成立”问题是数学中常见的问题,涉及到一次函数、二次函数、指数函数、对数函数的性质、图象,渗透着换主元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点。
恒成立问题在解题过程中解法通常有:①变量分离法;②构造函数法;③变换主元法;④数形结合法(图像法).一、构造函数法:(一)一次函数法给定一次函数()(0)f x kx b k =+≠,若在在区间[],m n 上恒有()0f x >,则()0()0f m f n >⎧⎨>⎩; 若在在区间[],m n 上恒有()0f x <,则()0()0f m f n <⎧⎨<⎩. 例. 若不等式221(1)x m x ->-对[]2,2m ∈-恒成立,求实数x 的取值范围。
(二)二次函数法1. 20(0)ax bx c a ++>≠对x R ∈恒成立00a >⎧⇔⎨∆<⎩;20(0)ax bx c a ++<≠对x R ∈恒成立00a <⎧⇔⎨∆<⎩; 2. 若是二次函数在指定区间上的恒成立问题,还可以利用二次函数的图像求解。
例. 已知函数y =R ,求实数m 的取值范围.例. 不等式212x px p x ++>-对(1,)x ∈+∞恒成立,求实数p 的取值范围。
二.变量分离法若在等式或者不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,切容易通过恒等变形将两个变量分别置于等号或者不等号两边,则可将恒成立问题转化为函数的最值问题求解。
理论依据是:()a f x >恒成立max ()a f x ⇔>;()a f x <恒成立min ()a f x ⇔<.例. 当(1,2)x ∈时,不等式240x mx ++<恒成立,求实数m 的取值范围。
恒成立问题常见类型及解法恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。
一、一次函数型给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的图象(线段)可得①0()0>⎧⎨>⎩k f m 或②0()0<⎧⎨>⎩k f n ,也可合并成f (m)0f (n)0>⎧⎨>⎩,同理,若在[,]m n 内恒有()0<f x ,则有f (m)0f (n)0<⎧⎨<⎩.典例1.若不等式2x -1>()21-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。
【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数=y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。
考察区间端点,只要(2)(2)-⎧⎨⎩<0,<0f x f 即x的取值范围是(12,12). 二、二次函数型若二次函数2(0,)=++≠∈y ax bx ca x R 的函数值大于(或小于)0恒成立,则有a 00>⎧⎨∆<⎩(或00a ì<ïïíïD <ïî),若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及二次函数的图象求解。
典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。
【解析】方法1(利用韦达定理)设3x=t,则t>0.那么原方程有解即方程t 2+(4+a )t+4=0有正根。
1212Δ0(4)040≥⎧⎪∴+=-+>⎨⎪=>⎩g x x a x x ,即2(4a)160a 4⎧+-≥⎨<-⎩,a 0a 8a 4≥≤-⎧∴⎨<-⎩或,解得a ≤-8.方法2(利用根与系数的分布知识)即要求t 2+(4+a )t+4=0有正根。
恒成立问题的方法
恒成立问题的解决方法取决于具体问题的性质和条件。
在解决恒成立问题时,以下是一些常见的方法:
1. 代入法:将问题中给定的条件代入待证明的恒等式中,以验证等式是否在所有可能的情况下都成立。
2. 推导法:通过逻辑推理和数学推导来证明等式的恒成立。
这可能涉及使用已知的数学定理、性质和规则,以及逻辑推理的方法(例如,归谬法、数学归纳法等)。
3. 反证法:假设待证明的等式不成立,然后通过逻辑推理和数学推导,推导出矛盾的结论。
这证明了原始的假设是错误的,从而证明了恒成立。
4. 直接证明法:对待证明的等式进行等式变换和运算,将其化简为其他已知的等式或恒等式。
通过逐步展示所有步骤的正确性,从而证明恒成立。
5. 归纳法:适用于需要对自然数(或其他递归结构)进行证明的问题。
通过首先证明基本情况,然后假设恒等式在某个特定情况下成立,最后证明在下一个情况下也成立,从而归纳论证恒成立。
6. 构造法:通过构造一个满足条件的例子或特殊情况,来证明待证明的等式的恒成立。
这些方法可以单独使用,或者在解决问题时结合使用。
同时,不同的问题可能需要使用不同的方法和技巧,因此在解决恒成立问题时,灵活、创造性和逻辑性是非常重要的。
恒成立问题常见类型及解法重庆清华中学 张忠在近年高考试题中,常见条件中出现“恒”、“都”、“总”、“永远”、“一切”等关键词的试题,我们习惯上称之为恒成立问题。
对此类题,许多学生常常一筹莫展,但如果了解它的题型,选择合适的对策,解决问题就会游刃有余。
高中数学中的恒成立问题,总体上分为两种典型类型:等式的恒成立和不等式的恒成立。
一、等式的恒成立问题(恒等问题)【例】 是否存在常数a 、b 、c 使得等式:122311122222··…++++=+++n n n n an bn c ()()()对一切自然数n 都成立?证明你的结论。
(一). 利用多项式恒等定理,建立方程组求参数多项式f(x)g(x)的充要条件是:对于a 的任意一个取值,都有f (a )g (a );或者两个多项式各同类项的系数对应相等。
解法一:因为3222)1(n n n n n ++=+所以12231222··…++++n n ()=++++++++++++=++++++=+++()()()()()()()()()1232121212131211411231110222333222………n n n n n n n n n n n n n n显然当a b c ===31110,,时等式对一切自然数n 都成立。
(二). 待定系数法和数学归纳法对策:先用待定系数法探求a 、b 、c 的值,再利用数学归纳法证明等式对一切自然数n 都成立。
解法二:令n=1,n=2,n=3可得,解得。
以下用数学归纳法证明:等式1·22+2·32+…+n(n+1)=(3n 2+11n+10)对一切自然数n 都成立(证略)。
(三)、根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)((f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立。
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
恒成立题型及解题方法一 一次函数型:给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象 (直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例、对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。
二次函数型1、由二次函数的性质求参数的取值范围例、若关于的不等式在上恒成立,求实数的取值范围.2、转化为二次函数的最值求参数的取值范围例1、已知二次函数满足,而且,请解决下列问题 (1)求二次函数的解析式。
(2)若在区间上恒成立 ,求的取值范围。
例2、设f(x)=x 2-2ax+2,当x[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。
三.变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求, 且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成 函数的最值问题求解。
例、已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。
x 2220ax x ++>R a (0)1f =(1)()2f x f x x +-=()2f x x m >+[1,1]-m四.根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x),(f(-x)=f(x))恒成立 若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立。
例、若f(x)=sin(x+α)+cos(x-α)为偶函数,求α的值。