恒成立问题的一般解法
- 格式:ppt
- 大小:846.00 KB
- 文档页数:19
高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
“恒成立”问题的常见类型及一般解法陕西蓝田县城关中学 靳小平恒成立问题包容性强,涵盖初等数学的许多方面,渗透着换元、化归、构造函数,分类讨论、数形结合、函数与方程等思想方法,体现着在变化中把握不变量的数学特征,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用,故而在考试中被广泛采用.本文试图列举、归纳恒成立的常见基本类型并探索相应类型的解决办法.1.恒成立的常见表述形式:对于任意实数x D ∈,()0f x >恒成立; 对于任意实数x D ∈,都有()0f x >; 对于任意实数x D ∈,总有()0f x >;对于一切满足条件……的实数x ,都有()0f x >; 比较隐蔽的形式是可转化为恒成立的问题,例如已知函数2()3(6)f x x a a x b =-+-+,若()f x =0有一根小于1,另一根大于1,且6b >-,求实数a 的值;本例可转化为“对于任意实数6b >-,都有(1)0f >,求实数a 的值”而与此相对的是若()f x =0有一根小于1,另一根大于1,当6b >-,且b 为常数时,求实数a 的取值范围。
如此则不是恒成立问题,相当于对于满足条件(1)0f >,且常数6b >-时,求(与b 相依的)实数a 的取值范围.2.含单参数的恒成立问题的基本类型和一般解法2.1与函数定义域有关的简单恒成立问题与函数定义域有关的恒成立问题较为普遍,解题通法当是直接法解决,至关重要的是把握等价关系即充分必要条件.例1.(2007年高考重庆卷理科第13题)若函数()f x =R ,则a 的取值范围为 .解析:依题意,222222022210,21,22,20,44010xax axax axax ax R x R x R x ax a x R a a a -------≥∈⇔≥∈⇔≥∈⇔--≥∈⇔∆=+≤⇔-≤≤故[]1,0a ∈-的取值范围是a例2.设函数22()c f x x ax a=++,其中a 为实数.(Ⅰ)若()f x 的定义域为R ,求a 的取值范围; (Ⅱ)当()f x 的定义域为R 时,求()f x 的单减区间. 解析:(Ⅰ)依题意220,4004x ax a x R a a a ++≠∈⇔∆=-<⇔<< 故(0,4)a a ∈的取值范围是 (Ⅱ)(略)例3.已知函数2lg(2)y ax ax =++(Ⅰ)若其定义域为R,则a 的取值范围是?(Ⅱ)若其值域为R,则a 的取值范围是?解析:(Ⅰ)函数定义域为R220020,00080000808a a ax ax x R a a a a a a a a >>⎧⎧⇔++>∈⇔=⇔=⇔⎨⎨∆<-<⎩⎩>⎧=⇔≤<⎨<<⎩或或或(Ⅱ)2200R 208080a a ax ax a a a >>⎧⎧⇔++>⇔⇔⇔≥⎨⎨∆≥-≥⎩⎩函数值域为在例3(Ⅱ)中函数值域为R ,即对任何有意义的x ,函数值恒为实数,其充要条件是220ax ax ++>(而不是大于某正数),即00a >⎧⎨∆≥⎩.2.2.与函数值域有关的较为复杂的恒成立问题这类恒成立问题的一般分为两类:可直接分离参数的:解法可概括为四步:第一步,分离参数;第二步,不等式一边函数化;第三步,求函数值域;第四步,确定参数范围,恒大取大,恒小取小(形象地说是“擒贼先擒王”).第二类:不便于直接分离参数的,解法是:第一步,分离常数项;第二步,代数式一边函数化(构造函数);第三步,求函数值域;第四步,确定参数范围,恒大取大,恒小取小.例4.设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(Ⅰ)求函数8()()y f x g x =-的单调区间;(Ⅱ)求证:①当0x >时,()()t f x g x ≥对任意正实数t 成立;②有且仅有一个正实数0x ,使得800()()t g x g x ≥对任意正实数t 成立. 解析:(Ⅰ)略(Ⅱ)证明:①2332332'2311'3311''33min 20()()00330()02(),33(),()0-(0,)()0,();(,)()0()()(t x x f x g x t x t x t t x k x t x k x t x t k x x t k x x t x t x t k x k x x t k x k x k x k t >≥⇔>-+≥⇔>≥=-+=-===∈<∈+∞>∴=当时,对任意正实数成立,对任意正实数恒成立时,对任意正实数恒成立而令解得或(舍去)时为减函数时,为增函数132)033t t t =-+=证明:②2380023162()()4332164+033t g x g x t x t x t t t x x t t ≥⇔-≥-⇔--≤对任意正实数恒成立对任意正实数恒成立对任意正实数恒成立23216()=4+33h t t x x t --令3113333233333max 2333222()=(1),()=0333(0,)()0,()(,+)()0,()216116()()()4+4.33332161164+0403333116()433x xh t h t t x t tx x h t h t x x h t h t h t h x x x x x x x t x x t t x x x x x ϕ''-=-=''∈>∈∞<∴==--=-+∴--≤⇔-+≤=-+'解得时为增函数;时为减函数对任意正实数恒成立再令2min 3000023()4()=2-2(0,2)()0,()(2,+)()0,()()(2)116=2()4=0332164+033x x x x x x x x x x x x x x x x t x x t t ϕϕϕϕϕϕϕϕϕ-'==''∈<∈∞>∴=∴=-+--≤=解0得或(舍去)时为减函数;时为增函数=0存在唯一正实数使从而使对任意正实数恒成立小结:例4中反复用了构造函数解决问题的方法. 2.3.与自然数命题有关的恒成立问题这种类型的恒成立问题,往往是对任意自然数,或某个范围内的自然数,某种命题恒成立.由于自然数不满足实数的连续性,所以在解决问题的过程中还需谨慎对待.22722.09(21)9n n x x n x ≤+-≤+例5不等式对任意自然数均成立,解关于实数的不等式2222222272209(21)92722+(21)99(21)1721+11992+22+222272722+0=1999999n n n n n n n nn n x x n x x n x x n x x x x x x ≤+-≤⇔+≤+≤⇔++≤+≤⇔++≤+≤⇔+⇔==-解析:对任意自然数均成立对任意自然数均成立对任意自然数均成立或 小结:例5中21721+11992+22+222n n n nx x ≤+≤++恒成立需要求左式112+22n n +的最大值,求右式21+192+22n n+的最小值,而求这两个最值关系到122n n+的最值. 2.4.与函数图像有关的恒成立问题这种类型的恒成立问题,其基本特点是数形的深刻结合,离开函数图像的“形”的特征,运算会变得复杂而困难.相反地,利用数形结合的原理则可简单直观的解决问题.1201,(),(1,1)(),2x a a f x x a x f x a >≠=-∈-<例6:已知且当时,均有则实数的取值范围是1111.0,[2,),.[,1)(1,4],.[,1)(1,2],.(0,][4,2422A B C D ⎛⎤+∞+∞ ⎥⎝⎦解析:()()()()()2,,f xg x x g x x x ϕϕ=-=令其图像如图1所示, 由指数函数的性质可得2(1)2110110112,(1,1)11112(1)(1)(1)(1)(1)1222211212a a a a x x a x g g a a a a ϕϕ-><<><<⎧⎧⎧⎧⎪⎪⎪⎪-<∈-⇔⇔⎨⎨⎨⎨---<-<--<-<⎪⎪⎪⎪⎩⎩⎩⎩⇔<<<<或或或 小结:借助函数图像,通过数形结合把问题转化为对区间一端函数值的比较,从而达到简化问题的目的.2.5. 与几何(立体几何或解析几何)图形有关的恒成立问题这类问题主要体现在对于一个(或若干个)参量在其取值范围内的任意值,某些几何图形要素例如点、线或面具备某种确定不变的几何性质或数量特征.解决问题的关键是寻找满足题意的充分必要条件.例7:如图2,四棱锥S-ABCD 的底面是正方形,SD ⊥平面ABCD,SD=2a .点E 是SD 上的点,且DE=a λ,(0<λ<2)(I)求证:对任意的(0,2],AC BE λ∈⊥都有图1(II)设二面角C-AE-D 的大小为θ,直线BE 与平面ABCD 所成的角为ϕ,若t a n t a n 1,θϕ⋅=求λ的值.解析:(I)证明:对任意的(0,2],AC BE λ∈⊥都有⇔ 对任意(0,2],0AC BE λ∈⋅= )(+DE =AB BC BD λ⇔∈+⋅对任意(0,2],()0C (+D S =C +CD S =C +CD S =A B D A B D A A B D A λλλλλλ⇔∈⋅⇔∈⋅⋅∈⋅⋅对任意(0,2],)0对任意(0,2],0而依题意,对任意(0,2],0显然成立. (II)(解略)3. 其他类型的恒成立问题及特殊解法3.1利用不等式性质解决恒成立问题利用基本不等式可以很简洁明快的解决某些恒成立问题. 例8.设22110,2()x a a x a x <<+≥-恒成立,求的取值范围 22min 222222211.()110,22()1112802()()2()282,0 2.x x a x x a x x a x ax a x x a x x a x x a x a a a +-<<+≥⇔≥-<<+≥≥==+---∴≥<≤解析:令f()=恒成立f()而时,.(时等号成立)解得1()()9,ax y x y a x y++≥例9:已知不等式对任意正实数恒成立,则正实数的最小值为( )S ABCD图2A .2B .4C .6D .8min 2211()()(),()()9,()91()()1()()993244a af x x y x y x y x y x yf x a x y x y a x y a x y a =++++≥⇔≥++≥∴++≥⇔≥⇔≥⇔⇔≥∴解析:令对任意正实数恒成立而(1(1(1的最小值为小结:利用基本不等式,解决恒成立问题可以化解分离参数的麻烦,但关键是把握恒成立的本质——寻求充分必要条件. 3.2. 利用主、辅元转换法解决恒成立问题.这种方法尤其适合参变量次数为一次的恒成立问题,通过将表达式中主、辅元转换,可以达到把复杂紊乱的问题简化为简单直观问题的效果. 例10:若不等式221(3)x m x ->-对满足11m -≤≤的所有m 都成立,求x 的范围.解析:我们可以用改变主元的办法,将m 视为主变元,即将原不等式化为:2(3)(21)0m x x ---<,; 令2()(3)(21)f m m x x =---,则11m -≤≤时,0)(<m f 恒成立⇔(1)0(1)0f f -<⎧⎨<⎩⇔221(3)(21)01(3)(21)0x x x x ⎧-⋅---<⎪⎨⋅---<⎪⎩, 所以x的范围是11)x ∈.小结:主副元互换可以实现对问题的有效转化,应用这种方法的过程中关键还是把握恒成立的本质.4. 含双参数的恒成立问题4.1. 有相关联系的双参数问题22().(,),.()()()0()()f x x bx c b c R x R f x f x x f x x c '=++∈∈≤I ≥≤+例11.已知函数对任意的恒有证明:当时,(II )22,()()()b c f c f b M c b -≤-若对满足题设条件的任意,不等式M 恒成立,求的最小值.解析:(I )略(II ).b I ≥由()得,c2222222()()2.f c f b c b b c b c bc b M c b c b b c --+-+>≥==--+当时,有 21,11,2.11()2(11)1b c b t t c b c tg x t t+=<<=-++=--<<+令则-令函数223()(,),23()()()[,)2g x c b f c f b M c b M ∈-∞>-≤-⇔∈+∞因此当时,恒成立22.()()().c b f c f b M c b M R =I ±-≤-⇔∈当时,由()得,b=2,c=2此时恒成立22,3()()()[,).2b c f c f b M c b M -≤-⇔∈+∞综合以上两种情况,对满足题设条件的任意,不等式恒成立 即M 最小值为32. 小结:例11是含双参数的恒成立问题,在解题过程中,.b I ≥由()得,c 所以所含双参数之间存在相关联系,故而后续的步骤中,bt c=令并借助,b c 的关系,推得11t -<<,继而构造新函数1()21g x t=-+(11)t -<<以解决问题.4.2. 两参数之间没有相关联系的恒成立问题例12.已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.解析:(Ⅰ)(略) (Ⅱ)(略)(Ⅲ)解:由条件[2,2]a ∈-,可知29640a ∆=-<,从而24340x ax ++>恒成立. 当0x <时,()0f x '<;当0x >时,()0f x '>.因此函数()f x 在[1,1]-上的最大值是(1)f 与(1)f -两者中的较大者.为使对任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立⇔111))1((f f ≤-≤⎧⎨⎩,即22b a b a ≤--≤-+⎧⎨⎩,在[2,2]a ∈-上恒成立.所以4b ≤-,因此满足条件的b 的取值范围是(,4]-∞-.小结:例12中两个参数,a b 一开始没有相互的联系,按照题意获得22b a b a≤--≤-+⎧⎨⎩这组关系,基于此关系最终解决恒成立问题. 5. 含双变量的恒成立问题此类问题一般解法应该是先将一变量“固定”看成常数,对另一变量进行恒成立的讨论,结果是关于前一变量的关系式,然后再对这一关系式进行恒成立的讨论,即可获得此类恒成立问题的解.特殊的解法是运用数形结合处理双变量的关系.2281,R 20.x y x xy a x a ∈+-+≥例13.已知对一切,不等式恒成立.求实数的取值范围222222max8120,R 812812x xy a x y x a x xy x a x xy x +-+≥∈⇔≤+-+⎧⇔≤+-⎨⎩解:不等式对一切恒成立.222222221222818122229()(29,(,),(,:9:2(0) 6.x xy x xy y y x x x y xM x N y M C xy xN C x y y MN a +--++--=-+-=+=≤≤而采用数形结合如图3所示,设则点在曲线上,点在曲线显然以上所述的恒成立问题仅是笔者在教学过程中积累的一些常见类型。
不等式恒成立、存在性问题的解题方法一、常见不等式恒成立问题解法1、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
解析:我们可以用变换主元的方法,将m 看作主变元,即将原不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x 所以x 的范围是231,271(++-∈x 。
2、利用一元二次函数判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。
3、分离变量法若所给的不等式能通过恒等变换使参数与主元分别位于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值,但它思路更清晰,操作性更强。
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
求解有关恒成立、存在性问题的四种策略对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。
如何突破这一难关呢?关键是细心审题及恰当地转化。
现就如何求解恒成立、存在性问题中的参数问题加以分析。
方法1:分离参数法例1.设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数。
若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。
解:因为f`(x)=-a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥对x∈(1,+∞)恒成立,所以a≥1。
因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。
又g(x)在(1,+∞)上有最小值,则必有e-a<0,即a>e。
综上,可知a的取值范围是(e,+∞)。
点评:求解问题的切入点不同,求解的难度就有差异。
在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。
一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。
方法2:构造函数法例2.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()。
A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。
记g(x)=x2-(2+a)x=(x-)2-。
当<0即a<-2时,g(x)的最小值为-,不可能满足条件。
当≥0即a≥-2时,g(x)的最小值为0,满足题意。
当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤,对x>0恒成立。
令θ(x)=,则θ`(x)=。
设t=x+1,则t>1。
记L(t)=-lnt,则L`(t)=<0,所以L(t)在t∈(1,+∞)上为减函数。
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。