专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(同步练习)
- 格式:docx
- 大小:97.75 KB
- 文档页数:4
专题突破天体运动中的“三大难点”(时间:40分钟)基础巩固练1.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起。
如图1所示,某双星系统中A、B两颗天体绕O点做匀速圆周运动,它们的轨道半径之比r A∶r B =1∶2,则两颗天体的()图1A.质量之比m A∶m B=2∶1B.角速度之比ωA∶ωB=1∶2C.线速度大小之比v A∶v B=2∶1D.向心力大小之比F A∶F B=2∶1解析双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,F=m Aω2r A=m Bω2r B,所以m A∶m B=2∶1,选项A 正确,B、D错误;由v=ωr可知,线速度大小之比v A∶v B=1∶2,选项C错误。
答案 A2.(2018·浙江名校协作体)关于环绕地球运动的卫星,下列说法正确的是() A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合解析环绕地球运动的卫星,由开普勒第三定律R3T2=k,当椭圆轨道半长轴与圆形轨道的半径相等时,两颗卫星周期相同,故A错误;沿椭圆轨道运行的卫星,只有引力做功,机械能守恒,在轨道上相互对称的地方(到地心距离相等的位置)速率相同,故B 正确;所有地球同步卫星相对地面静止,运行周期都等于地球自转周期,由G Mm R 2=m 4π2R T 2,解得R =3GMT 24π2,轨道半径都相同,故C 错误;同一轨道平面、不同轨道半径的卫星,相同轨道半径、不同轨道平面的卫星,都有可能(不同时刻)经过北京上空,故D 错误。
答案 B3.2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X 射线调制望远镜卫星“慧眼”。
剖析宇宙中的双星、三星模型(答题时间:30分钟)1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()A. m1:m2做圆周运动的角速度之比为2:3B. m1:m2做圆周运动的线速度之比为3:2C. m1做圆周运动的半径为D. m2做圆周运动的半径为L2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()A. 1:6400B. 1:80C. 80:1D. 6400:13. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是.....()A. 两颗星有相同的角速度B. 两颗星的旋转半径与质量成反比C. 两颗星的加速度与质量成反比D. 两颗星的线速度与质量成正比4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()A. 双星做圆周运动的角速度不断减小B. 双星做圆周运动的角速度不断增大C. 质量较大的星体做圆周运动的轨道半径渐小D. 质量较大的星体做圆周运动的轨道半径增大5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
天体运动问题破解之道——千篇一律“金三角”天体运动问题是高考的重点内容之一,近几年对这类题目考查的频率很高,无论是全国卷还是独立命题的省份,几乎年年必考,但年年各不相同,真可谓是千变万化.其实这些题在解法上却是千篇一律的,有惊人的相似之处.下面总结一下这类问题的解题方法.一、常用公式总结天体运动问题中公式看似有很多,但仔细归纳起来就三个. 1向万F F =当天体在高空运行时,设天体质量为m ,环绕的中心天体质量为M ,轨道半径为r ,则有2r MmGF =万;当天体在星球表面近地环绕运行时,设天体质量为m ,中心天体绕质量为M ,星球半径为R,则有2R MmGF =万.圆周运动的向心力公式又有多种表达形式,即r Tm r m r v m ma F 22224πω====向当天体做匀速圆周运动时,中心天体对它的万有引力提供所需的向心力,所以有向万F F =.又因为万有引力有高空和近地两种形式,向心力又有四种表达式,因此向万F F =就有有8种具体形式.例如ma r Mm G =2,R v m RMm G 22=,r Tm r Mm G 2224π=等等.2mg F =万如果不考虑地球的自转, 物体m 在星球表面时mg F =万,设天体质量为M ,半径为R ,其表面的重力加速度为g ,则有mg RMmG=2; 天体在星球高空时,设距球心r 处的重力加速度为g ',则有g m rMmG '=2.3向F mg =当天体在星球表面近地环绕运行时,也可以看成绕行天体的重力提供所需的向心力,设绕行天体的质量为m,星球表面的重力加速度为g ,则有向F mg =;当天体在高空环绕运行时,天体所在轨道的重力加速度为g ',则有向F g m ='.又因为重力近地时为mg ,高空时为g m ',向心力又有四种表达式,因此向F mg =也有8种具体形式.如果把以上公式总结一下,可以用这样一个三角形表示,如图所示.这个三角形表示的公式几乎可以求解所有的天体运动问题,所以我们称之为“金三角”.下面分别举例说明.二、天体运动问题归类例析 1星球半径问题例1 (2015年海南卷)若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为7:2.已知该行星质量约为地球的7倍,地球的半径为R ,由此可知,该行星的半径为( )A.R 21 B. R 27 C. 2R D.R 27解析 设行星表面的重力加速度为g ',水平方向运动的距离为x ',运动时间为t ',在行星表面根据平抛运动公式得t v x '='0 221t g h ''=解得2202x hv g '=' ;同理在地球表面上有222x hv g =,两式相比得4722='='x x g g 在地球表面上有mg RMmG=2在行星表面上有g m R mM G '''=2 以上两式相比得27147=⨯⨯=''='g M g M RR .所以答案为C .点评 本题先用平抛运动公式求出重力加速度之比,然后用两个“金三角”中的②式相比求解的. 2轨道半径问题例2 (2012·海南)地球同步卫星到地心的距离r 可用地球质量M 、地球自转周期T 与引力常量G 表示为r=_____________.解析 根据万有引力定律及圆周运动知识r T m r Mm G 2224π=,可得r =点评 本题用的是“金三角”中的①式直接求解的.3质量问题例3 (2015年江苏卷)过去几千年来, 人类对行星的认识与研究仅限于太阳系内, “行星“51 peg b”的发现拉开了研究太阳系外行星的序幕. “行星51 peg b ”绕其中心恒星做匀速圆周运动, 周期约为 4 天, 轨道半径约为地球绕太阳运动半径的201. 该中心恒星与太阳的质量比约为( )( A) 1/10 ( B) 1 ( C) 5 ( D) 10解析 “行星51 peg b ” 绕其中心恒星做匀速圆周运动有r T m r m M G ''''''2224π= 地球绕其太阳做匀速圆周运动有r Tm r Mm G 2224π=两式相比得04.14203652322323=⨯=''='T r T r M M 所以答案为B.点评 本题用的是两个“金三角”中的①式相比求解的. 4密度问题例4 (2014年广东卷) 如图所示,飞行器P 绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是( )A .轨道半径越大,周期越长B .轨道半径越大,速度越大C .若测得周期和张角,可得到星球的平均密度D .若测得周期和轨道半径,可得到星球的平均密度解析飞行器P 绕星球做匀速圆周运动,万有引力提供向心力,有r Tm r Mm G 2224π=⑴解得GMr T 32π=可知半径越大则周期越大,所以选项A 正确;再根据r v mrMm G 22=,解得rGMv =可知轨道半径越大则环绕速度越小,所以选项B 错误;有由⑴式还可解得2324GT r M π=,若测得周期T ,则可解出星球的质量M ,如果知道张角θ,则该星球半径为R=r sin θ2,再根据2sin334323θππρGT RM ==,所以可得到星球的平均密度,所以选项C 正确,而选项D 无法计算星球半径,则无法求出星球的平均密度,选项D 错误.答案为AC.点评 本题用的是“金三角”中的①式和几何关系求解的. 5向心加速度问题例5 (2013年天津卷) “嫦娥一号”和“嫦娥二号”卫星相继完成了对月球的环月飞行,标志着我国探月工程的第一阶段己经完成.设“嫦娥二号”卫星环绕月球的运动为匀速圆周运动,它距月球表面的高度为h ,己知月球的质量为M 、半径为R ,引力常量为G ,则卫星绕月球运动的向心加速度a = .解析“嫦娥二号”卫星环绕月球为匀速圆周运动,万有引力提供卫星运动的向心力,有G()2MmR h +=m a ,解得a=()2GMR h +.点评 本题用的是“金三角”中的①式直接求解的. 6 线速度问题例6 (2015年新课标全国I 卷)我国发射的“嫦娥三号”登月探测器靠近月球后,现在月球表面的附近近似圆轨道上绕月运行;然后经过一系列过程,再离月面4m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3x 310Kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速大约为9.8m/s ,则此探测器A 在着陆前的瞬间,速度大小约为8.9m/sB 悬停时受到的反冲作用力约为2x 310NC 从离开近月圆轨道到着陆这段时间内,机械能守恒D 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度解析 设月球表面附近重力加速度为g ',在月球表面有g m R mM G '''=2 在地球表面附近有mg RMmG=2 两式相比代入数据得g g g R M R M g 61817.31222=⨯=''=' 着陆前的瞬间速度s m h g v /6.348.96122=⨯⨯⨯='=,所以选项A 错误;根据平衡条件得反冲力N g m F 3102⨯='=,所以选项B 正确;因为离开近月轨道时有一个悬停过程,相当于“刹车”,推动力做了负功,所以机械能不守恒,选项C 错误;人造卫星在近地圆轨道上运行时有Rm v m g 2=解得gR v =“嫦娥三号”在近月轨道运行时有R v m g m ''='2解得R g R g v 7.3161⨯=''=' 所以v v <',选项D 正确.答案为BD.点评 本题用的是“金三角”中的②式求出月球表面附近的重力加速度,然后又用两个“金三角”中的③式求解的.7角速度问题例7 (2014年上海卷)动能相等的两人造地球卫星A 、B 的轨道半径之比:1:2A B R R =,它们的角速度之比:A B ωω= ,质量之比:A B m m = .解析 根据r m r Mm G2=ω2得出ω=3r GM ,则ωA : ωB =3A R GM :3BR GM=22:1 ;又因动能E K =12mv 2相等 以及v=ωR ,得出m A : m B =2222AAB B RR ωω=1 :2 点评 本题用的是“金三角”中的①式求解的. 8周期问题例8 (2014年新课标全国卷Ⅰ)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( )A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短解析 各行星绕太阳运动时万有引力提供向心力,有r Tm r Mm G 2224π=解得GMr T 32π=,所以3行地行地)(r r T T =因为冲日现象实质上是角速度大的地球转过的弧度恰好比角速度小的其它行星多出2π,所以相邻两次冲时的时间间隔为==-=-行地地行地行地T T T T T t -=12222πππωωπ年)(地311rr -,从表达式可得时间t 大于1,只有当 ∞→r 时时间t 才为1年,所以不会每年都出现冲日现象,A 错误;将木星的半径数据代入上式得年)()(地地地09.12.5111133≈-=-=r r rr t ,上次冲日时间为2014年1月6日,所以2015年内一定会出现木星冲日,B 正确;同理可算出天王星相邻两次冲日的时间间隔为 1.01年.土星两次冲日的时间间隔为1.03年,所以C 错误;由表达式可得时间t 随r 的增大而减小,所以D 正确.答案为BD.点评 本题用的是“金三角”中的①式和圆周运动的追及问题方法来求解的. 9重力加速度问题例9(2012年新课标全国Ⅰ卷)假设地球是一半径为R.质量分布均匀的球体.一矿井深度为 d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为A .1-dRB .1+d RC .2⎪⎭⎫ ⎝⎛-R d RD .2⎪⎭⎫⎝⎛-d R R解析 在地球表面mg R Mm G=2,又343M R ρπ=,所以243M g G G R R πρ==,因为球壳对球内物体的引力为零,所以在深为d 的矿井内g m d R MmG'-=2)(,得()()243Mg GG R d R d πρ'==--,所以1g R d d g R R '-==-,答案为A. 点评 本题用的是“金三角”中的②式在地面和矿井深度为d 处两次列方程求解的. 10 能量问题例10 (2014年山东卷)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图所示,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmhR (R +h ),其中G为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h (h +2R )B.mg 月RR +h (h +2R ) C.mg 月R R +h ⎝ ⎛⎭⎪⎫h +22R D.mg 月R R +h ⎝ ⎛⎭⎪⎫h +12R 解析 本题以月面为零势面,开始发射时,“玉兔”的机械能为零,对接完成时,“玉兔”的动能和重力势能都不为零,该过程对“玉兔”做的功等于“玉兔”机械能的增加.忽略月球的自转,月球表面上,“玉兔”所受重力等于地球对“玉兔”的引力,即月=mg RMmG 2 ⑴,对于在h 高处的“玉兔”,月球对其的万有引力提供向心力,即G Mm (R +h )2=m v 2R +h, “玉兔”的动能E k =12mv 2,以上三式联立解得,)(22h R R mg E K +=月;由⑴式可得月=g R GM 2 ,“玉兔”在h 高度的引力势能可表示为()hR mhRg h R R GMmh E p +=+=月对“玉兔”做的功W =E k +E p =mg 月R R +h ⎝ ⎛⎭⎪⎫h +12R .所以选项D 正确. 点评 本题用的是“金三角”中的①式和②式结合求解出“玉兔”的速度,然后再得出“玉兔”的动能,从而使问题得解.通过以上分析可见,这十种题型表面上看各不相同,但在解法上用的都是“金三角”中的式子,简单的问题用一个就能求解,复杂的问题要用两个或多个式子相组合求解.其中“金三角”中①式用的最广泛,②式③式次之,应用①式和③式解题的关键就在于选择合适的向心加速度表达式,从而使问题得解.所以天体运动问题的解法可以概括为:天体问题有妙招,千篇一律“金三角”; 关键在选加速度,多式组合见奇效。
深度剖析卫星的变轨(答题时间:30分钟)1. 一宇宙飞船沿椭圆轨道Ⅰ绕地球运行,机械能为E,通过远地点P时,速度为v,加速度大小为a,如图所示,当飞船运动到P时实施变轨,转到圆形轨道Ⅱ上运行,则飞船在轨道Ⅱ上运行时,下列说法不正确的是()A. 速度大于vB. 加速度大小为aC. 机械能等于ED. 机械能大于E2. 我国未来将建立月球基地,并在绕月轨道上建造空间站。
如下图所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B处对接。
已知空间站绕月轨道半径为r,周期为T,万有引力常量为G,下列说法中正确的是()A. 图中航天飞机在飞向B处的过程中,月球引力做正功B. 航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速C. 根据题中条件可以算出月球质量D. 根据题中条件可以算出空间站受到月球引力的大小3. 2011年9月29日,“天宫一号”顺利升空,11月1日,“神舟八号”随后飞上太空,11月3日凌晨,“神八”与离地高度343km轨道上的“天宫一号”对接形成组合体,中国载人航天首次空间交会对接试验获得成功,为建立太空实验室——空间站迈出了关键一步。
设对接后的组合体在轨道上做匀速圆周运动,则下列说法中正确的是()A. 对接前,“神舟八号”欲追上“天宫一号”,可以在同一轨道上点火加速B. 对接后,“天宫一号”的速度大于第一宇宙速度C. 对接后,“天宫一号”的运行周期小于地球同步卫星的周期D. 今后在“天宫一号”内工作的宇航员因受力平衡而在其中悬浮或静止4. 2013年6月11日17时38分,我国在酒泉卫星发射中心准时发射了“神舟十号”飞船。
经过几次变轨后进入预定轨道与“天宫一号”对接,如下图所示,飞船由近地圆轨道l 处发动机向后喷气通过椭圆轨道2变轨到远地圆轨道3。
轨道1与轨道2相切于a点,轨道2与轨道3相切于b 点。
完成预定任务后安全返回。
则下面说法正确的是( )A. 在轨道1上运行的角速度小于轨道3上运行的角速度B. 在轨道1上过 a 点时的速度大于轨道2上过 a 点时的速度C. 在轨道3上过 b 点时的加速度大于轨道2上过 b 点时的加速度D. 在轨道2上运动时做无动力飞行,从 a 点到 b 点机械能守恒5. 我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。
(答题时间:30分钟)
1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()
A. m1:m2做圆周运动的角速度之比为2:3
B. m1:m2做圆周运动的线速度之比为3:2
C. m1做圆周运动的半径为
D. m2做圆周运动的半径为L
2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()
A. 1:6400
B. 1:80
C. 80:1
D. 6400:1
3. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是
.....()
A. 两颗星有相同的角速度
B. 两颗星的旋转半径与质量成反比
C. 两颗星的加速度与质量成反比
D. 两颗星的线速度与质量成正比
4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()
A. 双星做圆周运动的角速度不断减小
B. 双星做圆周运动的角速度不断增大
C. 质量较大的星体做圆周运动的轨道半径渐小
D. 质量较大的星体做圆周运动的轨道半径增大
5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
该系统是由一颗白矮星和它的类日伴星组成的双星系统,由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星,并同时放出大量的γ射线,这些γ射线到达地球后会对地球的臭氧层造成毁灭性的破坏。
现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,则下列说法正确的是()
A. 两星间的万有引力不变
B. 两星的运动周期不变
C. 类日伴星的轨道半径增大
D. 白矮星的轨道半径增大
6. 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()
T T T T
1. C 解析:两星的周期相同即两者运行一周的时间相同,故其运动的角速度相同,A 项错误;由于两星的向心力相同,有
,故有,由于,联立前式有、,故C 项正确,D 项错误;m 1、m 2做圆周运动的角速度相同,线速度之比为2:3,故B 项错误。
2. C 解析:万有引力提供向心力,设地球、月球之间的距离为L ,质量分别为m 1、m 2,做圆周运动的半径分别为L 1、L 2,线速度分别为v 1、v 2,二者有相同的角速度,万有引力提供向心力,有
,得,有v=r ω,故
,C 正确。
3. D 解析:双星运动的角速度相同,选项A 正确;由,可得,即两颗星的旋转半径与质量成反比,选项B 正确;,可知两颗星的加速度与质量成反比,选项C 正确;,故可知两颗星的线速度与质量不成正比关系,选项D 错误。
故选D 。
4. AD 解析:根据双星运动的角速度向心力大小相等,有:221122m r m r ωω=,
21211212()m m G m r r r ω=+,
联立可得:ω=212112()m r r r m m +=+,所以A 、D 正确;B 、C 错误。
5. BC
解析:图片下面的中间亮点即为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体),组成的双星系统的周期T 相同,设白矮星与类日伴星的质量分别为M 1和M 2,圆周运动的半径分别为R 1和R 2,由万有引力定律:
,可得,,两式相加
可得G (M 1+M 2)T 2=4π2L 3(①式),M 1R 1=M 2R 2(②式)。
由①式可知白矮星与类日伴星
的总质量不变,则周期T 不变,B 对;由②式可知双星运行半径与质量成反比,类日伴星的质量逐渐减小,故其轨道半径增大,C 对D 错;依题意两星间距离在一段时间内不变,由万有引力定律可知,两星的质量总和不变而两星质量的乘积必定变化,则万有引力必定变化,A 错。
6. B 解析:双星间的万有引力提供向心力。
设原来双星间的距离为L ,质量分别为M 、m ,圆周运动的圆心距质量为m 的恒星距离为r 。
22
1122F m r m r ωω==1122m r m r =1122F m a m a =
=22121212
v v F m m r r ==
对质量为m 的恒星:G
2Mm L =m 2T π⎛⎫ ⎪⎝⎭
2·r ; 对质量为M 的恒星:G 2Mm L =M 2T π⎛⎫ ⎪⎝⎭2(L -r ), 得G 2M m L +=2
24T π·L , 即T 2=234()
L G M m π+。
则当总质量为k (M +m ),间距为L′=nL 时,T′,选项B 正确。