准晶体解释
- 格式:pdf
- 大小:83.27 KB
- 文档页数:1
准晶体摘要:准晶体是一种具有有序但不具备传统晶体完全周期性重复结构的材料。
本文将介绍准晶体的基本概念、发现历史、晶体学特征、结构特点以及其在材料科学领域的应用等方面。
通过对准晶体的深入研究,我们可以更好地了解这种材料的特殊性质,从而为今后的材料设计与合成提供更多可能性。
1. 引言准晶体是一种介于晶体和非晶体之间的特殊材料,其结构既具有一定的有序性,又存在非晶体所特有的无规则局部结构。
准晶体的发现给传统晶体学观念带来了很大的冲击,使得人们重新审视晶体结构的多样性和复杂性。
2. 发现历史准晶体的发现可以追溯到20世纪70年代初。
当时,关于准晶体存在的猜测和研究已经逐渐增多,但直到1975年才有科学家首次成功合成出了一种具有五重旋转对称性的准晶体。
这个发现引起了极大的轰动,并引发了整个科学界对准晶体的深入研究。
3. 晶体学特征准晶体的晶体学特征与传统晶体存在一定的差别。
准晶体的晶胞通常具有五重旋转对称性,而不是晶胞中心对称或其他常见的对称性。
此外,准晶体的点阵常数通常不是整数,这也是准晶体与普通晶体的一个显著区别。
4. 结构特点准晶体的结构特点是其与传统晶体最大的不同之处。
准晶体的结构在宏观上呈现出高度有序的态势,但在微观上却存在着一些局部无规则的结构。
这种具有非晶体特点的局部结构是准晶体与普通晶体的本质区别。
5. 应用与前景准晶体具有独特的结构和性质,将为材料科学领域带来许多新的应用与前景。
准晶体在催化剂、材料增强、信息存储、光学器件等方面都有着广泛的应用。
未来,通过对准晶体的深入研究,我们可以更好地利用准晶体的特性,实现更高效、更可靠的新型材料的开发与制备。
6. 结论准晶体作为一种介于晶体与非晶体之间的特殊材料,其结构和性质的研究具有重要的科学意义和应用价值。
通过对准晶体的深入研究,我们可以更深入地了解准晶体的结构特点,为今后的材料设计与合成提供更多的可能性。
相信在不久的将来,准晶体将在材料科学领域发挥着重要的作用。
准晶体材料的性质与应用准晶体是一种介于晶体和非晶体之间的材料,其结构具有一定的有序性,但不符合传统晶体的周期性。
准晶体具有许多特殊的性质,因此在材料科学、物理学等领域有着广泛的应用。
1. 准晶体的性质准晶体的最显著特点是其结构对称性具有五重、八重等轴对称性,而非传统的三重对称性。
这种特殊的结构对称性在某些情况下可以表现出类似于激发物质的行为,使准晶体具有独特的物理和化学性质。
例如,准晶体具有很强的非线性光学效应、声学波的负折射、显微结构的“金点”等特殊性质。
准晶体的结构各异,但准晶体晶体的本质是长程有序的,这使得准晶体具有更高的热导率、强度和硬度,相比之下,非晶态材料通常有缺陷、孔隙和较差的热导率、强度和硬度。
因此,准晶体在透声学、膜、电池、催化剂、纳米制造等方面有非常广泛的应用前景。
2. 准晶体在透声学中的应用透声学是一种将短波长声波传输到材料中的方法,从而产生负群速的科技。
准晶体有效地抑制了声子传播,因此可以通过孔隙设计和微结构分析来制造出适用于透声学应用的板材。
准晶体透声学板材有更高的声学透射率和声学反射率,并能够有效地压制噪声和声振幅,广泛地应用于静音室设备、汽车、船舶等领域。
3. 准晶体在膜制造中的应用准晶体是一种理想的膜材料,具有优异的硬度、热导率和生物相容性。
这种材料可以被用作人工心脏和人工血管等医疗器械,用于治疗心血管疾病。
此外,准晶体膜还可以用作高温膜电容器和面层硬盘及其他数据存储设备的新型材料。
4. 准晶体在电池领域中的应用准晶体具有可缩放性,这意味着可以将其用于制造锂离子电池、钠离子电池和锂硫电池等大型储能设备。
这种物性可以让电池内的电解液更加均匀地分布,并减少了表面粘附问题,改善了电池的寿命和储能效率。
5. 准晶体在催化剂中的应用准晶体具有高比表面积、多结构和高度有序等特性,因此被广泛地应用于各种领域的催化剂中。
准晶体的多孔结构提供了大量的反应表面,因此可以有效地防止酸催化剂中的腐蚀和麻烦的沸腾等问题,同时也能提高反应速率。
准晶体的发现及意义准晶体是一种介于晶体和非晶体之间的材料,它具有部分有序的结构。
准晶体的发现对材料科学和材料工程领域有着重要的意义。
本文将从准晶体的发现历史、准晶体的结构和性质、准晶体的应用等方面进行探讨,并阐述准晶体的意义。
一、准晶体的发现历史准晶体的发现可以追溯到20世纪70年代末80年代初,当时石英晶体的研究者通过电子显微镜观察到了一些有着五角或十边形对称的结构,但其结构却不遵循晶格对称性规律。
这些结构在当时被称为“假晶体”或“错误晶体”,直到1984年,丹尼斯·格拉迪赛夫和保罗·施泰因哈特在对一种金银合金的研究中发现了具有五角对称性的结构,他们将其命名为“准晶体”,并详细描述了其结构和性质。
二、准晶体的结构和性质准晶体的结构既不是完全有序的晶体结构,也不是完全无序的非晶体结构,而是介于两者之间的部分有序的结构。
准晶体的结构特点是具有非常复杂和多样性,它包含了晶体和非晶体中常见的一些几何元素,如孔隙、晶胞、聚集体等。
准晶体的结构有时还会出现五角对称、十边形对称或其他非晶体无法呈现的对称性。
这种特殊的结构赋予了准晶体独特的物理和化学性质。
准晶体具有许多独特的性质,例如低摩擦系数、低导热系数、高抗腐蚀性、高硬度等。
这些性质使得准晶体在材料科学和工程领域具有广泛的应用前景。
三、准晶体的应用1.复合材料领域:准晶体可以被用作增强材料的填充剂,提高复合材料的力学性能。
它的高硬度和高抗腐蚀性使其成为一种理想的增强材料。
2.表面涂层技术:准晶体可以通过物理气相沉积、磁控溅射等技术制备成涂层,提高材料的表面硬度和抗磨损性能。
3.催化剂和储氢材料:准晶体也可以作为催化剂的载体,提高催化剂的效率和稳定性。
此外,准晶体内部的孔隙结构可以用来储存氢气,有望应用于氢能源储存领域。
4.电子器件领域:准晶体具有比晶体更低的导热系数,可用于制备热导率较低的电子器件,降低热电偶效应。
此外,准晶体还在纳米技术、强化材料的设计等领域有着广泛的应用前景。
准晶体简介准晶体是一类介于晶体和非晶体之间的特殊结构物质。
与晶体具有一定的有序性,但又不完全符合晶体的周期性。
准晶体的发现在材料科学领域引起了广泛的研究兴趣。
本文将介绍准晶体的定义、发现历史、结构特点及应用领域等相关内容。
定义准晶体是指具有长程有序但不具备完全晶体对称性的结构。
相比于晶体的周期性排列,准晶体的周期性具有更高的复杂性。
准晶体的单位结构具有多种不同的对称元素,如旋转对称、镜像对称和滑移对称等,使得准晶体具有多种不同的结构。
发现历史准晶体的发现可以追溯到20世纪50年代末期。
1961年,丹麦科学家贝尔内尔斯(Shechtman)在进行合金研究时,观察到了一种五角对称的晶体衍射图样,该发现与传统晶体的对称图案有所区别。
然而,贝尔内尔斯的发现一度受到了科学界的质疑和争议,被认为是错误观察结果。
经过多年的研究和探索,贝尔内尔斯的发现最终得到了确认,并于2011年获得了诺贝尔化学奖。
结构特点准晶体的结构特点是其最具有特色的特征之一。
准晶体的周期结构中存在不成比例的单位。
这些单位覆盖了空间,通过旋转、滑移和倾斜等运动产生多种对称元素。
准晶体的对称性和周期性都是以高度复杂的方式出现的,使得准晶体呈现出丰富的结构多样性。
准晶体的结构通常可以通过X射线衍射、透射电子显微镜等实验技术进行表征。
通过这些实验,可以建立准晶体的空间群、晶胞参数等参数,揭示准晶体的周期性和有序性。
应用领域准晶体由于其特殊的结构和性质在多个领域具有广泛的应用潜力。
在材料科学领域,准晶体被用于开发新型合金材料。
准晶体合金具有较高的强度、硬度和耐磨性等优异性能,广泛用于制造航空航天、汽车和电子设备等领域的高性能零件和工具。
准晶体还在表面涂层技术中得到应用。
利用准晶体的特殊结构和性质,可以制备出表面硬度高、磨损性能优良的涂层材料,用于提高复合材料和金属零件的表面性能和耐久性。
此外,准晶体还具有光学、电学和磁学等性质,被应用于光学器件、传感器、电子器件以及催化剂等领域。
准晶什么是准晶?准晶(Quasicrystal)是一种特殊的晶体结构,不同于常见的周期性晶体。
它以自我复制的方式组成,具有类似于晶体的长程有序性,同时又有类似于非晶体的无规则性。
准晶的发现引起了科学界的广泛关注和研究,对固体物理学和材料科学有着重要的意义。
准晶最早由以色列科学家丹·舍帕斯于1982年发现。
他发现了一种由铝、锰和金属硅组成的合金,其X射线衍射图谱显示出非常奇特的衍射斑点图案。
这种图案既不是晶体的经典单一斑点,也不是非晶体的连续衍射环,而是由固定的五角星图案组成。
这一发现颠覆了当时对晶体结构的认识,开启了准晶研究的新篇章。
准晶的结构特点准晶的结构特点可以用“离子包络模型”来描述。
这个模型假设准晶中的原子排列类似于离子包络,由环绕原子球组成。
准晶的结构可以通过一组向量来描述,这组向量被称为“母基矢”。
准晶的母基矢不是简单的周期性晶体的矢量,而是具有非周期性和非整数的关系。
这种非晶体的特性使准晶的结构具有五角星、八角星等非传统形状的对称性。
准晶的结构还具有“五重旋转对称性”,即它的结构在沿着某个固定轴旋转180度时仍保持不变。
准晶的应用准晶的独特结构特点使其具有一些特殊的物理性质和应用价值。
首先,准晶具有低摩擦系数和低热导率的特点,使其在润滑材料和热障涂层等领域有着广泛的应用。
其次,准晶还具有高硬度和高强度的特点,与金属和陶瓷相比具有更好的机械性能。
因此,准晶在材料加工、汽车制造和航空航天等领域的应用也越来越广泛。
此外,准晶还具有优异的电学和光学性能,使其在电子器件和光学器件等领域具有潜在的应用前景。
准晶在导电性能、光学透明度和磁学性能方面都具有特殊的优势,因此对其的研究和应用也成为当前热门的科研领域之一。
准晶的未来对准晶的研究还处于相对初级的阶段,很多问题仍然待解决。
当前的研究重点主要集中在准晶的合成方法、结构与性质之间的关系以及准晶的制备工艺等方面。
随着科学技术的不断进步,相信对准晶的认识会进一步深化,其潜在的应用领域也将继续扩展。
准晶体的发现及应用一.准晶体的定义准晶体是一种介于晶体和非晶体之间的固体。
物质的构成由其原子排列特点而定。
原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,介于这两者之间的叫做准晶体。
20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着以色列人达尼埃尔·谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。
从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。
二.准晶体的结构银铝准晶体的原子模型物质的构成由其原子排列特点而定。
晶体是指原子呈周期性排列的固体物质,单晶体都具有有规则的几何形状,像食盐晶体是立方体、冰雪晶体为六角形。
而原子呈无序排列的则叫做非晶体,非晶体没有一定的外形,介于这两者之间的叫做准晶体。
也就是说,准晶体具有完全有序的结构,然而又不具有晶体所应有的空间周期性。
人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。
尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffraction diagram)来代替原先的微观空间呈现周期性结构的定义。
三.准晶体的发展历程准晶体的发现,是20世纪80年代晶体学研究中的一次突破。
1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金像,在晶体学及相关的学术界引起了很大的震动。
不久,这种无平移同期性但有位置序的晶体就被称为准晶体。
准晶体是1982年发现的,具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。
晶体:内部质点在三维空间周期性重复排列构成的固体物质。
非晶体:不具格子构造的物质。
准晶体:内部质点排列具有远程规律,但没有平移周期,不具格子构造。
自限性:是晶体在适当条件下可以自发形成几何多面体的性质。
均一性:同一晶体不同部分质点分布一致,各部分的性质相同。
异向性:晶体的性质随着方向的不同有所差异。
对称性:相同性质在不同方向或位置上有规律的重复。
最小内能性:晶体与同种物质的其他状态相比具有最小内能。
稳定性:在相同的热力学条件下,晶体比具有相同化学成分的非晶体稳定。
面角守恒定律:同种矿物的晶体,其对应晶面的角度守恒。
晶体对称定律:晶体中可能出现的对称轴只能是1 2 3 4 6,不可能存在5次轴或高于6次轴的对称轴。
整数定律:晶体上任意两晶面,在相交于一点且不再同一平面内的晶棱上的截距的比值之比为简单整数比。
晶带:交棱相互平行的一组晶面组合。
晶带定律:任意两晶棱相交必有一可能晶面,任意两晶面相交比可以决定一可能晶带。
单形:由对称要素联系起来的一组晶面组合。
结晶单形:根据32种对称型中单形晶面与对称要素之间的相对位置推到出来的单形类型。
几何单形:在结晶单形中按单形的形状总结出来的几何单形。
聚形:两个以上的单形聚合在一起,在这些单形共同圈闭的空间外形形成聚形。
平行六面体:空间格子中的最小重复单位。
晶胞:同上。
布拉维格子:晶体结构中只能出现14种不同形式的空间格子。
布拉维法则:晶体上的实际晶面平行与面网密度大的面网。
双晶:两个以上的同种晶体,彼此间按一定的对称关系相互取向组成的规则连生体。
平行连晶:若干个同种单晶体,彼此之间所有的结晶方向都一一对应相互平行组成的连生体。
双晶面:假想的平面,可使构成双晶的两个单体中的一个通过它的反映变换后与另一个单体重合或平行。
双晶轴:假想直线,双晶中一单体围绕它旋转一定角度后,可与另一个单体重合或平行。
双晶接合面:双晶中相邻单体间彼此结合的实际界面。
双晶律:单体构成双晶的具体规律。
晶体非晶准晶在结构上的异同
晶体、非晶体和准晶体是固体材料中常见的三种结构形态。
它们在
结构上有着明显的异同,下面将分别进行介绍。
一、晶体
晶体是由原子、离子或分子按照一定的规律排列而成的固体材料。
晶
体的结构具有高度的有序性和周期性,其内部原子排列呈现出一定的
对称性。
晶体的结构可以用晶格和基元来描述,晶格是指晶体中原子、离子或分子排列的空间周期性结构,基元是指晶格中最小的重复单元。
晶体的结构可以通过X射线衍射等方法进行表征。
二、非晶体
非晶体是由原子、离子或分子无规则排列而成的固体材料。
非晶体的
结构缺乏周期性,其内部原子排列呈现出无序性。
非晶体的结构可以
用连续分布函数来描述,连续分布函数是指非晶体中原子、离子或分
子的位置分布函数。
非晶体的结构可以通过透射电镜等方法进行表征。
三、准晶体
准晶体是介于晶体和非晶体之间的一种结构形态。
准晶体的结构具有
一定的周期性,但是其周期性不如晶体那么完美,同时也存在着一定
的无序性。
准晶体的结构可以用准晶体晶格和准晶体基元来描述,准
晶体晶格是指准晶体中原子、离子或分子排列的空间周期性结构,准
晶体基元是指准晶体中最小的重复单元。
准晶体的结构可以通过透射
电镜等方法进行表征。
总的来说,晶体、非晶体和准晶体在结构上有着明显的异同。
晶体具
有高度的有序性和周期性,非晶体缺乏周期性,准晶体介于两者之间。
三者的结构可以用不同的方法进行表征,这些方法也反映了它们的结
构特点。
准晶名词解释嘿,朋友们!今天咱来聊聊一个挺有意思的东西——准晶。
准晶啊,你可以把它想象成是物质世界里的一个特别存在,就好像一群人里面那个特别有个性的家伙。
它不是我们常见的晶体,也不是毫无规律的非晶体,而是处在这两者之间的一种奇妙状态。
晶体呢,大家都知道,那结构是整整齐齐、规规矩矩的,就像阅兵式上的方阵一样,特别有序。
非晶体呢,就比较杂乱无章了,没有什么固定的排列。
而准晶呢,它就像是一个调皮的孩子,有着自己独特的“玩法”。
你说这准晶怎么就这么特别呢?它的原子排列既有一定的规律,又不完全按照晶体那样死板。
这就好比是一场舞蹈,晶体是那种严格按照舞步来跳的,每一步都不能错;非晶体呢,那就是乱跳一气;准晶则是有自己的节奏和风格,既不完全循规蹈矩,又不是毫无头绪地瞎蹦跶。
你想想看,如果世界上只有晶体和非晶体,那该多无聊啊!准晶的出现,就像是给物质世界带来了一抹别样的色彩。
它让我们知道,原来还有这样一种独特的存在。
准晶在很多领域都有它的身影呢!比如说在材料科学里,它能让一些材料具有特别的性能。
这就好像是给材料穿上了一件特别的“衣服”,让它们变得与众不同。
而且啊,研究准晶就像是在探索一个神秘的宝藏。
科学家们不断地挖掘它的秘密,每次发现一点新东西,都让人兴奋不已。
这不就跟我们小时候找宝藏一样刺激吗?准晶啊准晶,你可真是个神奇的东西!你既不是完全的这个,也不是完全的那个,却有着自己独特的魅力。
难道不是吗?它让我们看到了物质世界的多样性和复杂性,也让我们对这个世界有了更深的认识。
总之,准晶就是这么一个特别的存在,它就像是物质世界里的一颗闪亮的星星,吸引着我们去探索,去发现。
所以啊,大家可千万别小瞧了它哟!原创不易,请尊重原创,谢谢!。
质疑和嘲笑声包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内的一些化学界权威纷纷质疑谢赫特曼的发现。
即便如此,谢赫特曼也并未动摇自己的信念。
在1984年夏,他们向《应用物理杂志(Journal of Applied
Physics)》投了一篇稿件,可是,立即遭到了编辑的拒绝,稿件被退了回来。
晶体的定义应当是晶体是内部质点在3维空间呈周期性重复排列的固体或者说晶体是具有周期平移格子构造的固体。
准晶体的定义应当是准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。
相对于晶体可以用一种单胞在空间中的无限重复来描述
准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序
三维准晶、二维准晶和一维准晶指立体,平面、线条。
准周期性:一些事物运动的规律性不是很强,例如经济的运行,周期就有长有短,像这种不固定的周期就称准周期,以区别于上述意义上的周期.准,本来就是相近相似的意思.所以准周期就是近似意义上的周期。
二十面体准晶因具有磁各向异性而降低了磁导率
纳米畴就是具有纳米结构的晶体,它的边界叫畴。
Laves相的晶体结构有三种类型:①MgCu2型属立方晶系,②MgZn2型属六方晶系,③MgNi2属六方晶系
晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。
毫米级大块准晶难以制备的原因:
生成过程包括成核和长大两个过程。
一般是通过极冷淬火,准晶物质通常是伴随过饱和固溶体和其它金属间化合物一起形成的。
准晶体形成过程虽然还不太楚,但大致可以有以下种基本情况,气体-准晶体,溶体、熔体-准晶体,晶体-准晶体,玻璃-准晶体。
光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性)。