准晶体解释
- 格式:pdf
- 大小:83.27 KB
- 文档页数:1
准晶体摘要:准晶体是一种具有有序但不具备传统晶体完全周期性重复结构的材料。
本文将介绍准晶体的基本概念、发现历史、晶体学特征、结构特点以及其在材料科学领域的应用等方面。
通过对准晶体的深入研究,我们可以更好地了解这种材料的特殊性质,从而为今后的材料设计与合成提供更多可能性。
1. 引言准晶体是一种介于晶体和非晶体之间的特殊材料,其结构既具有一定的有序性,又存在非晶体所特有的无规则局部结构。
准晶体的发现给传统晶体学观念带来了很大的冲击,使得人们重新审视晶体结构的多样性和复杂性。
2. 发现历史准晶体的发现可以追溯到20世纪70年代初。
当时,关于准晶体存在的猜测和研究已经逐渐增多,但直到1975年才有科学家首次成功合成出了一种具有五重旋转对称性的准晶体。
这个发现引起了极大的轰动,并引发了整个科学界对准晶体的深入研究。
3. 晶体学特征准晶体的晶体学特征与传统晶体存在一定的差别。
准晶体的晶胞通常具有五重旋转对称性,而不是晶胞中心对称或其他常见的对称性。
此外,准晶体的点阵常数通常不是整数,这也是准晶体与普通晶体的一个显著区别。
4. 结构特点准晶体的结构特点是其与传统晶体最大的不同之处。
准晶体的结构在宏观上呈现出高度有序的态势,但在微观上却存在着一些局部无规则的结构。
这种具有非晶体特点的局部结构是准晶体与普通晶体的本质区别。
5. 应用与前景准晶体具有独特的结构和性质,将为材料科学领域带来许多新的应用与前景。
准晶体在催化剂、材料增强、信息存储、光学器件等方面都有着广泛的应用。
未来,通过对准晶体的深入研究,我们可以更好地利用准晶体的特性,实现更高效、更可靠的新型材料的开发与制备。
6. 结论准晶体作为一种介于晶体与非晶体之间的特殊材料,其结构和性质的研究具有重要的科学意义和应用价值。
通过对准晶体的深入研究,我们可以更深入地了解准晶体的结构特点,为今后的材料设计与合成提供更多的可能性。
相信在不久的将来,准晶体将在材料科学领域发挥着重要的作用。
准晶体材料的性质与应用准晶体是一种介于晶体和非晶体之间的材料,其结构具有一定的有序性,但不符合传统晶体的周期性。
准晶体具有许多特殊的性质,因此在材料科学、物理学等领域有着广泛的应用。
1. 准晶体的性质准晶体的最显著特点是其结构对称性具有五重、八重等轴对称性,而非传统的三重对称性。
这种特殊的结构对称性在某些情况下可以表现出类似于激发物质的行为,使准晶体具有独特的物理和化学性质。
例如,准晶体具有很强的非线性光学效应、声学波的负折射、显微结构的“金点”等特殊性质。
准晶体的结构各异,但准晶体晶体的本质是长程有序的,这使得准晶体具有更高的热导率、强度和硬度,相比之下,非晶态材料通常有缺陷、孔隙和较差的热导率、强度和硬度。
因此,准晶体在透声学、膜、电池、催化剂、纳米制造等方面有非常广泛的应用前景。
2. 准晶体在透声学中的应用透声学是一种将短波长声波传输到材料中的方法,从而产生负群速的科技。
准晶体有效地抑制了声子传播,因此可以通过孔隙设计和微结构分析来制造出适用于透声学应用的板材。
准晶体透声学板材有更高的声学透射率和声学反射率,并能够有效地压制噪声和声振幅,广泛地应用于静音室设备、汽车、船舶等领域。
3. 准晶体在膜制造中的应用准晶体是一种理想的膜材料,具有优异的硬度、热导率和生物相容性。
这种材料可以被用作人工心脏和人工血管等医疗器械,用于治疗心血管疾病。
此外,准晶体膜还可以用作高温膜电容器和面层硬盘及其他数据存储设备的新型材料。
4. 准晶体在电池领域中的应用准晶体具有可缩放性,这意味着可以将其用于制造锂离子电池、钠离子电池和锂硫电池等大型储能设备。
这种物性可以让电池内的电解液更加均匀地分布,并减少了表面粘附问题,改善了电池的寿命和储能效率。
5. 准晶体在催化剂中的应用准晶体具有高比表面积、多结构和高度有序等特性,因此被广泛地应用于各种领域的催化剂中。
准晶体的多孔结构提供了大量的反应表面,因此可以有效地防止酸催化剂中的腐蚀和麻烦的沸腾等问题,同时也能提高反应速率。
准晶体的发现及意义准晶体是一种介于晶体和非晶体之间的材料,它具有部分有序的结构。
准晶体的发现对材料科学和材料工程领域有着重要的意义。
本文将从准晶体的发现历史、准晶体的结构和性质、准晶体的应用等方面进行探讨,并阐述准晶体的意义。
一、准晶体的发现历史准晶体的发现可以追溯到20世纪70年代末80年代初,当时石英晶体的研究者通过电子显微镜观察到了一些有着五角或十边形对称的结构,但其结构却不遵循晶格对称性规律。
这些结构在当时被称为“假晶体”或“错误晶体”,直到1984年,丹尼斯·格拉迪赛夫和保罗·施泰因哈特在对一种金银合金的研究中发现了具有五角对称性的结构,他们将其命名为“准晶体”,并详细描述了其结构和性质。
二、准晶体的结构和性质准晶体的结构既不是完全有序的晶体结构,也不是完全无序的非晶体结构,而是介于两者之间的部分有序的结构。
准晶体的结构特点是具有非常复杂和多样性,它包含了晶体和非晶体中常见的一些几何元素,如孔隙、晶胞、聚集体等。
准晶体的结构有时还会出现五角对称、十边形对称或其他非晶体无法呈现的对称性。
这种特殊的结构赋予了准晶体独特的物理和化学性质。
准晶体具有许多独特的性质,例如低摩擦系数、低导热系数、高抗腐蚀性、高硬度等。
这些性质使得准晶体在材料科学和工程领域具有广泛的应用前景。
三、准晶体的应用1.复合材料领域:准晶体可以被用作增强材料的填充剂,提高复合材料的力学性能。
它的高硬度和高抗腐蚀性使其成为一种理想的增强材料。
2.表面涂层技术:准晶体可以通过物理气相沉积、磁控溅射等技术制备成涂层,提高材料的表面硬度和抗磨损性能。
3.催化剂和储氢材料:准晶体也可以作为催化剂的载体,提高催化剂的效率和稳定性。
此外,准晶体内部的孔隙结构可以用来储存氢气,有望应用于氢能源储存领域。
4.电子器件领域:准晶体具有比晶体更低的导热系数,可用于制备热导率较低的电子器件,降低热电偶效应。
此外,准晶体还在纳米技术、强化材料的设计等领域有着广泛的应用前景。
准晶体简介准晶体是一类介于晶体和非晶体之间的特殊结构物质。
与晶体具有一定的有序性,但又不完全符合晶体的周期性。
准晶体的发现在材料科学领域引起了广泛的研究兴趣。
本文将介绍准晶体的定义、发现历史、结构特点及应用领域等相关内容。
定义准晶体是指具有长程有序但不具备完全晶体对称性的结构。
相比于晶体的周期性排列,准晶体的周期性具有更高的复杂性。
准晶体的单位结构具有多种不同的对称元素,如旋转对称、镜像对称和滑移对称等,使得准晶体具有多种不同的结构。
发现历史准晶体的发现可以追溯到20世纪50年代末期。
1961年,丹麦科学家贝尔内尔斯(Shechtman)在进行合金研究时,观察到了一种五角对称的晶体衍射图样,该发现与传统晶体的对称图案有所区别。
然而,贝尔内尔斯的发现一度受到了科学界的质疑和争议,被认为是错误观察结果。
经过多年的研究和探索,贝尔内尔斯的发现最终得到了确认,并于2011年获得了诺贝尔化学奖。
结构特点准晶体的结构特点是其最具有特色的特征之一。
准晶体的周期结构中存在不成比例的单位。
这些单位覆盖了空间,通过旋转、滑移和倾斜等运动产生多种对称元素。
准晶体的对称性和周期性都是以高度复杂的方式出现的,使得准晶体呈现出丰富的结构多样性。
准晶体的结构通常可以通过X射线衍射、透射电子显微镜等实验技术进行表征。
通过这些实验,可以建立准晶体的空间群、晶胞参数等参数,揭示准晶体的周期性和有序性。
应用领域准晶体由于其特殊的结构和性质在多个领域具有广泛的应用潜力。
在材料科学领域,准晶体被用于开发新型合金材料。
准晶体合金具有较高的强度、硬度和耐磨性等优异性能,广泛用于制造航空航天、汽车和电子设备等领域的高性能零件和工具。
准晶体还在表面涂层技术中得到应用。
利用准晶体的特殊结构和性质,可以制备出表面硬度高、磨损性能优良的涂层材料,用于提高复合材料和金属零件的表面性能和耐久性。
此外,准晶体还具有光学、电学和磁学等性质,被应用于光学器件、传感器、电子器件以及催化剂等领域。
准晶什么是准晶?准晶(Quasicrystal)是一种特殊的晶体结构,不同于常见的周期性晶体。
它以自我复制的方式组成,具有类似于晶体的长程有序性,同时又有类似于非晶体的无规则性。
准晶的发现引起了科学界的广泛关注和研究,对固体物理学和材料科学有着重要的意义。
准晶最早由以色列科学家丹·舍帕斯于1982年发现。
他发现了一种由铝、锰和金属硅组成的合金,其X射线衍射图谱显示出非常奇特的衍射斑点图案。
这种图案既不是晶体的经典单一斑点,也不是非晶体的连续衍射环,而是由固定的五角星图案组成。
这一发现颠覆了当时对晶体结构的认识,开启了准晶研究的新篇章。
准晶的结构特点准晶的结构特点可以用“离子包络模型”来描述。
这个模型假设准晶中的原子排列类似于离子包络,由环绕原子球组成。
准晶的结构可以通过一组向量来描述,这组向量被称为“母基矢”。
准晶的母基矢不是简单的周期性晶体的矢量,而是具有非周期性和非整数的关系。
这种非晶体的特性使准晶的结构具有五角星、八角星等非传统形状的对称性。
准晶的结构还具有“五重旋转对称性”,即它的结构在沿着某个固定轴旋转180度时仍保持不变。
准晶的应用准晶的独特结构特点使其具有一些特殊的物理性质和应用价值。
首先,准晶具有低摩擦系数和低热导率的特点,使其在润滑材料和热障涂层等领域有着广泛的应用。
其次,准晶还具有高硬度和高强度的特点,与金属和陶瓷相比具有更好的机械性能。
因此,准晶在材料加工、汽车制造和航空航天等领域的应用也越来越广泛。
此外,准晶还具有优异的电学和光学性能,使其在电子器件和光学器件等领域具有潜在的应用前景。
准晶在导电性能、光学透明度和磁学性能方面都具有特殊的优势,因此对其的研究和应用也成为当前热门的科研领域之一。
准晶的未来对准晶的研究还处于相对初级的阶段,很多问题仍然待解决。
当前的研究重点主要集中在准晶的合成方法、结构与性质之间的关系以及准晶的制备工艺等方面。
随着科学技术的不断进步,相信对准晶的认识会进一步深化,其潜在的应用领域也将继续扩展。
质疑和嘲笑声包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内的一些化学界权威纷纷质疑谢赫特曼的发现。
即便如此,谢赫特曼也并未动摇自己的信念。
在1984年夏,他们向《应用物理杂志(Journal of Applied
Physics)》投了一篇稿件,可是,立即遭到了编辑的拒绝,稿件被退了回来。
晶体的定义应当是晶体是内部质点在3维空间呈周期性重复排列的固体或者说晶体是具有周期平移格子构造的固体。
准晶体的定义应当是准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。
相对于晶体可以用一种单胞在空间中的无限重复来描述
准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序
三维准晶、二维准晶和一维准晶指立体,平面、线条。
准周期性:一些事物运动的规律性不是很强,例如经济的运行,周期就有长有短,像这种不固定的周期就称准周期,以区别于上述意义上的周期.准,本来就是相近相似的意思.所以准周期就是近似意义上的周期。
二十面体准晶因具有磁各向异性而降低了磁导率
纳米畴就是具有纳米结构的晶体,它的边界叫畴。
Laves相的晶体结构有三种类型:①MgCu2型属立方晶系,②MgZn2型属六方晶系,③MgNi2属六方晶系
晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。
毫米级大块准晶难以制备的原因:
生成过程包括成核和长大两个过程。
一般是通过极冷淬火,准晶物质通常是伴随过饱和固溶体和其它金属间化合物一起形成的。
准晶体形成过程虽然还不太楚,但大致可以有以下种基本情况,气体-准晶体,溶体、熔体-准晶体,晶体-准晶体,玻璃-准晶体。
光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性)。