准晶体简介
- 格式:ppt
- 大小:2.29 MB
- 文档页数:13
准晶体的概念
准晶体(quasicrystal)亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体结构。
具有与晶体相似的长程有序的原子排列,但是准晶体不具备晶体的平移对称性。
因而可以具有晶体所不允许的宏观对称性。
准晶体的发现,是20世纪80年代晶体学研究中的一次突破。
”然而,1987年,法国和日本科学家成功地在实验室中制造出了准晶体结构;2009年,科学家们在俄罗斯东部哈泰尔卡湖获取的矿物样本中发现了天然准晶体的“芳踪”,这种名为icosahedrite(取自正二十面体)的新矿物质由铝、铜和铁组成;瑞典一家公司也在一种耐用性最强的钢中发现了准晶体,这种钢被用于剃须刀片和眼科手术用的手术针中。
对准晶体的认识************班 *** **号摘要:准晶体是一种介于晶体和非晶体之间的固体。
准晶体有下属一些性质:均一性、各向异性、对称性、自限性、最小性能性、稳定性。
关键词:准晶体对称性准晶体的性能准晶体的应用1 准晶体的基本特征1.1 准晶体的概念准晶体是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。
相对于晶体可以用一种单胞在空间中的无限重复来描述。
准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序。
1.2 准晶体的基本性质1.2.1 准晶体的均一性均一性指晶体、准晶体在其任一部位上都具有相同性质的特性。
晶体结构中的任何质点都是在3维空间作周期性的重复分布。
因此对于从同一晶体中分割出来的各个部分而言它们必定具有完全相同的内部结构,从而它们所表现出的各项性质也必定完全一致亦即都是均一的。
准晶体的结构与晶体结构虽然有所不同,但仍然都是有序结构,准晶体分割出来的不同部分放大或缩小都与整体结构仍然有相同结构特征,因此宏观反映出来的准晶性质仍然具有均一性。
1.2.2 准晶体的各向异性各向异性指晶体、准晶体的性质因观察研究方向的不同而表现出差异的特性。
晶体、准晶体结构中质点排列的方式和间距在不同的方向进行观察研究时其各项性质将表现出一定的差异来,这种差异与它们的结构的对称性直接有关这就是晶体、准晶体都具有各向异性的根源。
1.2.3 准晶体的对称性对称性是指晶体、准晶体中的相同部分如外形上的晶面、晶棱,内部结构中的相同面网、行列或原子、离子等,能够在不同的方向或位置上有规律地重复出现的特性。
在任一晶体结构中的任一行列方向上,总是存在着一系列为数无限且成周期性重复出现的等同点。
准晶体结构中相同轴向上质点排列是相同的,但质点排列具有数学上严格的准周期性或统计意义上的准周期性。
显然这些就是一种变换中的不变性即对称性。
准晶体摘要:准晶体是一种具有有序但不具备传统晶体完全周期性重复结构的材料。
本文将介绍准晶体的基本概念、发现历史、晶体学特征、结构特点以及其在材料科学领域的应用等方面。
通过对准晶体的深入研究,我们可以更好地了解这种材料的特殊性质,从而为今后的材料设计与合成提供更多可能性。
1. 引言准晶体是一种介于晶体和非晶体之间的特殊材料,其结构既具有一定的有序性,又存在非晶体所特有的无规则局部结构。
准晶体的发现给传统晶体学观念带来了很大的冲击,使得人们重新审视晶体结构的多样性和复杂性。
2. 发现历史准晶体的发现可以追溯到20世纪70年代初。
当时,关于准晶体存在的猜测和研究已经逐渐增多,但直到1975年才有科学家首次成功合成出了一种具有五重旋转对称性的准晶体。
这个发现引起了极大的轰动,并引发了整个科学界对准晶体的深入研究。
3. 晶体学特征准晶体的晶体学特征与传统晶体存在一定的差别。
准晶体的晶胞通常具有五重旋转对称性,而不是晶胞中心对称或其他常见的对称性。
此外,准晶体的点阵常数通常不是整数,这也是准晶体与普通晶体的一个显著区别。
4. 结构特点准晶体的结构特点是其与传统晶体最大的不同之处。
准晶体的结构在宏观上呈现出高度有序的态势,但在微观上却存在着一些局部无规则的结构。
这种具有非晶体特点的局部结构是准晶体与普通晶体的本质区别。
5. 应用与前景准晶体具有独特的结构和性质,将为材料科学领域带来许多新的应用与前景。
准晶体在催化剂、材料增强、信息存储、光学器件等方面都有着广泛的应用。
未来,通过对准晶体的深入研究,我们可以更好地利用准晶体的特性,实现更高效、更可靠的新型材料的开发与制备。
6. 结论准晶体作为一种介于晶体与非晶体之间的特殊材料,其结构和性质的研究具有重要的科学意义和应用价值。
通过对准晶体的深入研究,我们可以更深入地了解准晶体的结构特点,为今后的材料设计与合成提供更多的可能性。
相信在不久的将来,准晶体将在材料科学领域发挥着重要的作用。
质疑和嘲笑声包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内的一些化学界权威纷纷质疑谢赫特曼的发现。
即便如此,谢赫特曼也并未动摇自己的信念。
在1984年夏,他们向《应用物理杂志(Journal of AppliedPhysics)》投了一篇稿件,可是,立即遭到了编辑的拒绝,稿件被退了回来。
晶体的定义应当是晶体是内部质点在3维空间呈周期性重复排列的固体或者说晶体是具有周期平移格子构造的固体。
准晶体的定义应当是准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。
相对于晶体可以用一种单胞在空间中的无限重复来描述准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序三维准晶、二维准晶和一维准晶指立体,平面、线条。
准周期性:一些事物运动的规律性不是很强,例如经济的运行,周期就有长有短,像这种不固定的周期就称准周期,以区别于上述意义上的周期.准,本来就是相近相似的意思.所以准周期就是近似意义上的周期。
二十面体准晶因具有磁各向异性而降低了磁导率纳米畴就是具有纳米结构的晶体,它的边界叫畴。
Laves相的晶体结构有三种类型:①MgCu2型属立方晶系,②MgZn2型属六方晶系,③MgNi2属六方晶系晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。
毫米级大块准晶难以制备的原因:生成过程包括成核和长大两个过程。
一般是通过极冷淬火,准晶物质通常是伴随过饱和固溶体和其它金属间化合物一起形成的。
准晶体形成过程虽然还不太楚,但大致可以有以下种基本情况,气体-准晶体,溶体、熔体-准晶体,晶体-准晶体,玻璃-准晶体。
光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性)。
准晶体材料的性质与应用准晶体是一种介于晶体和非晶体之间的材料,其结构具有一定的有序性,但不符合传统晶体的周期性。
准晶体具有许多特殊的性质,因此在材料科学、物理学等领域有着广泛的应用。
1. 准晶体的性质准晶体的最显著特点是其结构对称性具有五重、八重等轴对称性,而非传统的三重对称性。
这种特殊的结构对称性在某些情况下可以表现出类似于激发物质的行为,使准晶体具有独特的物理和化学性质。
例如,准晶体具有很强的非线性光学效应、声学波的负折射、显微结构的“金点”等特殊性质。
准晶体的结构各异,但准晶体晶体的本质是长程有序的,这使得准晶体具有更高的热导率、强度和硬度,相比之下,非晶态材料通常有缺陷、孔隙和较差的热导率、强度和硬度。
因此,准晶体在透声学、膜、电池、催化剂、纳米制造等方面有非常广泛的应用前景。
2. 准晶体在透声学中的应用透声学是一种将短波长声波传输到材料中的方法,从而产生负群速的科技。
准晶体有效地抑制了声子传播,因此可以通过孔隙设计和微结构分析来制造出适用于透声学应用的板材。
准晶体透声学板材有更高的声学透射率和声学反射率,并能够有效地压制噪声和声振幅,广泛地应用于静音室设备、汽车、船舶等领域。
3. 准晶体在膜制造中的应用准晶体是一种理想的膜材料,具有优异的硬度、热导率和生物相容性。
这种材料可以被用作人工心脏和人工血管等医疗器械,用于治疗心血管疾病。
此外,准晶体膜还可以用作高温膜电容器和面层硬盘及其他数据存储设备的新型材料。
4. 准晶体在电池领域中的应用准晶体具有可缩放性,这意味着可以将其用于制造锂离子电池、钠离子电池和锂硫电池等大型储能设备。
这种物性可以让电池内的电解液更加均匀地分布,并减少了表面粘附问题,改善了电池的寿命和储能效率。
5. 准晶体在催化剂中的应用准晶体具有高比表面积、多结构和高度有序等特性,因此被广泛地应用于各种领域的催化剂中。
准晶体的多孔结构提供了大量的反应表面,因此可以有效地防止酸催化剂中的腐蚀和麻烦的沸腾等问题,同时也能提高反应速率。
21世纪的新奇材料:准晶体——综述准晶体的奇异物性和可能用途专业:物理学姓名:张文斌学号:09405130 摘要:2011年10月5日诺贝尔化学奖揭晓,以色列科学家达尼埃尔▪谢赫特曼(Danielshechtman)教授因发现准晶体(quasi-crystal)而独享这份殊荣。
准晶体的发现给科技界带来了极大的震动,颠覆了传统晶体学理论,打破了晶体学固有的格局,成为各领域科学家关注的焦点,其具有的独特性能,也大大激发了人们对其研究的热情。
本文主要从两个方面论述这一新奇材料:即准晶体的奇异物性和可能用途。
关键词:诺贝尔化学奖准晶体奇异物性可能用途正文:2011年10月5日诺贝尔化学奖揭晓,以色列科学家达尼埃尔▪谢赫特曼(Danielshechtman)教授因发现准晶体(quasi-crystal)而独享这份殊荣。
诺贝尔化学奖评选委员会在发表的声明中表明:从原子级别观察准晶体形态,会发现原子排列具有规律,符合数学法则,但不以重复形态出现。
获奖者的发现给科技界带来了极大的震动,颠覆了传统晶体学理论,打破了晶体学固有的格局,改变了科学家对固体物质结构的认识;准晶体的发现,因此而成为各领域科学家关注的焦点,其具有的独特性能以及可能用途,也大大激发了人们对它的研究热情。
一、准晶体及其发现:何谓准晶体呢?所谓准晶体,是一种介于晶体和非晶体之间的固体。
物质的构成由其原子排列特点而定。
原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体。
准晶体具有完全有序的结构:在准晶体的原子排列中,其结构是长程有序的,这一点和晶体相似;但是准晶体不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性,这一点又和晶体不同。
普通晶体具有的是二次、三次、四次或六次旋转对称性,但是准晶的布拉格衍射图具有其他的对称性,例如五次对称性或者更高的六次以上对称性。
关于准晶体的发现,其过程具有很大的传奇性。
关于这种长程有序的结构,其实早有发现,数学家在1960年代就推测出了这种对称模型;但是直到快20年后这种理论上的结构才和准晶体的研究联系起来。
2.4.3 准晶态材料• 准晶体(quasicrystal) • ---准周期晶体(quasiperiodic crystal)的简称准晶体是1984年科学家发现的一种新的物质聚集形态。
一种 介于晶体和非晶体之间的固体。
准晶体具有完全有序的结构, 然而又不具有晶体所应有的平移对称性,因而可以具有晶体 所不允许的宏观对称性。
例如五次对称轴等。
5重旋转轴准晶体的发现,破除了几百年来关于晶体必须 具有周期性,因而不可能存在五重旋转对称的信条, 对于晶体学工作者解放思想,重新审视自己的观察 结果,推动晶体学向更深入、更精确的方向发展, 起了重要作用。
晶体学研究有300多年历史 经典晶体学1912年X射线晶体衍射 现代晶体学 1984年准晶的发现,新对称理论(2)冰的结构 常见结构型式:冰-Ih (冰、雪、霜)常压,0°C,六方晶系,空间群D64h−P63 mmc∠OOO非常接近109.5° O—H…O 和 O…H—O 两种方式的无序情况冰-Ic 真空,133-153KO位于金刚石 中C的位置H无序分布新华社伦敦3月9日(2009年)电 英国《自然·材料》发现冰在纳米尺度上的平面结构为五边形,而非通常的六边形。
来自英国伦敦纳米研究中心和德国弗里茨·哈贝尔研究所等机构的研究人员说,他们在光滑的铜表面对冰用扫描隧道显 微镜进行观测,并进行了大量计算,最终确定冰在纳米尺度上 有五边形的平面结构。
论文第一作者哈维尔·卡拉斯科说,了解冰的纳米结构尤 其冰黏附在固体表面时的纳米结构具有重要意义,因为这可以 帮助研究人员了解冰晶如何形成,而之所以要了解冰晶的结构, 是因为它在人工造云、降雨中发挥重要作用。
研究人员指出,这项发现带来的启发是,人们在寻找用于 人工造云、降雨的新冰核物质时,并非一定要集中在六边形外 观的材料上,五边形等其他结构外观的材料也可能同样适用。
High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifsT. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. ShinChemical Physics Letters Volume 460, Issues 4-6, 30 July 2008, Pages 387-400从美国斯坦福直线加速器中心 (SLAC)、日本SPring—8同步 加速器和广岛大学以及瑞典斯德 哥尔摩大学收集的新实验证据表 明,现有液态水结构理论是错误 的。
准晶体简介准晶体是一类介于晶体和非晶体之间的特殊结构物质。
与晶体具有一定的有序性,但又不完全符合晶体的周期性。
准晶体的发现在材料科学领域引起了广泛的研究兴趣。
本文将介绍准晶体的定义、发现历史、结构特点及应用领域等相关内容。
定义准晶体是指具有长程有序但不具备完全晶体对称性的结构。
相比于晶体的周期性排列,准晶体的周期性具有更高的复杂性。
准晶体的单位结构具有多种不同的对称元素,如旋转对称、镜像对称和滑移对称等,使得准晶体具有多种不同的结构。
发现历史准晶体的发现可以追溯到20世纪50年代末期。
1961年,丹麦科学家贝尔内尔斯(Shechtman)在进行合金研究时,观察到了一种五角对称的晶体衍射图样,该发现与传统晶体的对称图案有所区别。
然而,贝尔内尔斯的发现一度受到了科学界的质疑和争议,被认为是错误观察结果。
经过多年的研究和探索,贝尔内尔斯的发现最终得到了确认,并于2011年获得了诺贝尔化学奖。
结构特点准晶体的结构特点是其最具有特色的特征之一。
准晶体的周期结构中存在不成比例的单位。
这些单位覆盖了空间,通过旋转、滑移和倾斜等运动产生多种对称元素。
准晶体的对称性和周期性都是以高度复杂的方式出现的,使得准晶体呈现出丰富的结构多样性。
准晶体的结构通常可以通过X射线衍射、透射电子显微镜等实验技术进行表征。
通过这些实验,可以建立准晶体的空间群、晶胞参数等参数,揭示准晶体的周期性和有序性。
应用领域准晶体由于其特殊的结构和性质在多个领域具有广泛的应用潜力。
在材料科学领域,准晶体被用于开发新型合金材料。
准晶体合金具有较高的强度、硬度和耐磨性等优异性能,广泛用于制造航空航天、汽车和电子设备等领域的高性能零件和工具。
准晶体还在表面涂层技术中得到应用。
利用准晶体的特殊结构和性质,可以制备出表面硬度高、磨损性能优良的涂层材料,用于提高复合材料和金属零件的表面性能和耐久性。
此外,准晶体还具有光学、电学和磁学等性质,被应用于光学器件、传感器、电子器件以及催化剂等领域。