静力学第04章平面任意力
- 格式:pptx
- 大小:856.34 KB
- 文档页数:31
第4章平面任意力系※平面任意力系的简化※简化结果的分析※平面任意力系的平衡条件※物体系的平衡※平面静定桁架的内力计算※结论与讨论§4-1 平面任意力系向作用面内一点的简化1.力的平移定理AFBd ′F F ′′A F ′BM =F . d=M B (F )可以把作用于刚体上点A 的力F 平行移到任一点B ,但必须同时附加一个力偶,这个附加力偶的矩等于原来的力F 对新作用点B 的矩。
M(b )F为什么钉子有时会折弯?FF (a )(b )图示两圆盘运动形式是否一样?M′F ′F MF 31F 2O2.平面任意力系向作用面内一点的简化·主矢和主矩OOF R ′M OF 1′M 1F 1 =F 1′M 1=M O (F 1)F 2′M 2F 2 =F 2′M 2=M O (F 2)F 3′M 3F 3 =F 3′M 3=M O (F 3)简化中心OF R =F 1+F 2+F 3= F 1+F 2+F 3M O =M 1+M 2+M 3=M O (F 1)+ M O (F 2) + M O (F 3)′′′′∑∑====′n i i OO ni iRMM 11)(F FF 主矢F R′M O主矩OxyM OF R ′★平面任意力系向作用面内任一点O 简化,可得一个力和一个力偶,这个力等于该力系的主矢,作用线通过简化中心。
这个力偶的矩等于力系对于点O 的主矩。
∑∑==−==ni xi i yiini i OO F y Fx MM 11)()(F RyiRRxiR yi xi RF F F F F F ′∑=′′∑=′∑+∑=′),cos(,),cos()()(22j F i F F§4-2 平面任意力系的简化结果分析●F R =0,M O ≠0′●F R ≠0M O =0′●F R ≠0,M O ≠0′●F R =0,M O =0′1. 平面任意力系简化为一个力偶的情形●F R =0,M O ≠0′∑==ni i OO MM 1)(F ★因为力偶对于平面内任意一点的矩都相同,因此当力系合成为一个力偶时,主矩与简化中心的选择无关。
平面任意力系
平面任意力系是探究力学问题中采用的一种数学模型。
该模型被广泛用于研究坐标系内的任意力的作用的原点以及其对物体的影响。
它是一种理论模型,用于理解物体在任意力作用下的受力方向和大小。
平面任意力系以三个坐标轴x, y以及z为基础,以这三个轴上的一组受力大小作为决定物体位置、速度和加速度的参数来描述它。
在静力学中,平面任意力系经常被用来模拟物体受若干外力作用下的质点力学运动。
假设物体受到x轴、y轴和z轴上的n条外力作用,其受力状态可以用平面任意力系来描述。
这些外力在平面任意力系上唯一确定,根据它们的方向以及大小可以计算得到受力物体的转动惯量和转矩。
在运动学中,平面任意力系也被用来描述物体的位置、速度和加速度情况。
根据物体受到的初始加速度以及力学运动的运动方程,可以求得物体在任意时刻的位置、速度和加速度。
这也可以看作是在一组外力的作用下,物体在平面任意力系中运动的过程,通过求解平面任意力系可以计算出物体在任意时刻的位置、速度和加速度。
平面任意力系是一个复杂的理论模型,但它可以简单有效地用于模拟坐标系内多外力作用情况下物体受力情况以及物体的运动状态,在力学和运动学方面都显示出其重要的应用价值。