第十四章__电子背散射衍射分析技术
- 格式:ppt
- 大小:9.25 MB
- 文档页数:53
14.6 背散射电子衍射分析Electron Back‐scatter diffraction(EBSD)历史回顾• 1928 –Kikuchi –最早报告了电子背散射衍射花样EBSDP• 1972 –Venables et. al. –在SEM中得到了EBSDP • 1982 –Dingley–计算机辅助指标化• 1991 –Wright et. al. –全自动EBSD系统• 1993 –Michael et. al. –相鉴定Phase ID• 2000s –TSL –化学辅助相鉴定Chemically assisted phase differentiation理论依据菊池花样形成几何学T’’TS=T’M对TEM而言:菊池线位置和分布根据方程可知,衍射面(迹线)与电子束之间的夹角φ决定了菊池线的位置。
(1)当φ=0时,菊池线对称分布在(000)的四周(如右图),且分别位于(000)到(hkl)或(‐h‐k‐l)斑点距离的1/2处。
两线之间的衬度均匀且其强度比两线外的大。
(2)当φ=θ时,B亮线通过(hkl)斑点,暗线通过(000)。
(2)当φ≠0且φ≠θB 时,菊池线对不对称地分别在(000)两侧或者出现在(000)同侧。
计算法绘制菊池花样单晶Si 实验法制作标准菊池图的方法:一般按单位极图三角形的范围单个摄取的。
Ag2Al、Ti HCP晶体c/a=1.588一、EBSD分析的理论依据及工作原理◆理论依据利用从样品表面反弹回来的Array高能电子衍射,得到一系列的菊池花样。
根据菊池花样的特点得出晶面间距d和晶面之间的夹角θ,从数据库中查出可能的晶体结构和晶胞参数。
再利用化学成分等信息采用排除法确定该晶粒的晶体结构。
并得出晶粒与膜面法向的取向关系。
◆工作原理◆EBSD的装置总结EBSD分析的理论依据:利用从样品表面反弹回来的高能电子衍射,得到一系列的菊池花样。
根据菊池花样的特点得出晶面间距d和晶面之间的夹角θ,从数据库中查出可能的晶体结构和晶胞参数。
1.电子背散射衍射分析技术(EBSD/EBSP)简介20世纪90年代以来,装配在SEM上的电子背散射花样(Electron Back-scatt ering Patterns,简称EBSP)晶体微区取向和晶体结构的分析技术取得了较大的发展,并已在材料微观组织结构及微织构表征中广泛应用。
该技术也被称为电子背散射衍射(Electron Backscattered Diffraction,简称EBSD)或取向成像显微技术(O rientation Imaging Microscopy,简称OIM) 等。
EBSD的主要特点是在保留扫描电子显微镜的常规特点的同时进行空间分辨率亚微米级的衍射(给出结晶学的数据)。
EBSD改变了以往织构分析的方法,并形成了全新的科学领域,称为“显微织构”—将显微组织和晶体学分析相结合。
与“显微织构”密切联系的是应用EBS D进行相分析、获得界面(晶界)参数和检测塑性应变。
目前,EBSD技术已经能够实现全自动采集微区取向信息,样品制备较简单,数据采集速度快(能达到约36万点/小时甚至更快),分辨率高(空间分辨率和角分辨率能分别达到0.1m和0.5m),为快速高效的定量统计研究材料的微观组织结构和织构奠定了基础,因此已成为材料研究中一种有效的分析手段。
目前EBSD技术的应用领域集中于多种多晶体材料—工业生产的金属和合金、陶瓷、半导体、超导体、矿石—以研究各种现象,如热机械处理过程、塑性变形过程、与取向关系有关的性能(成型性、磁性等)、界面性能(腐蚀、裂纹、热裂等)、相鉴定等。
2.EBSD系统的组成与工作原理图1 EBSD系统的构成及工作原理系统设备的基本要求是一台扫描电子显微镜和一套EBSD系统。
EBSD采集的硬件部分通常包括一台灵敏的CCD摄像仪和一套用来花样平均化和扣除背底的图象处理系统。
图1是EBSD系统的构成及工作原理。
在扫描电子显微镜中得到一张电子背散射衍射花样的基本操作是简单的。
1.电子背散射衍射分析技术(EBSD/EBSP)简介20世纪90年代以来,装配在SEM上的电子背散射花样(Electron Back-scattering Patterns,简称EBSP)晶体微区取向和晶体结构的分析技术取得了较大的发展,并已在材料微观组织结构及微织构表征中广泛应用。
该技术也被称为电子背散射衍射(Electron Backscattered Diffraction,简称EBSD)或取向成像显微技术(Orientation Imaging ),为快速高效的定量统计研究材料的微观组织结构和织构奠定了基础,因此已成为材料研究中一种有效的分析手段。
︒m和0.5μMicroscopy,简称OIM)等。
EBSD的主要特点是在保留扫描电子显微镜的常规特点的同时进行空间分辨率亚微米级的衍射(给出结晶学的数据)。
EBSD改变了以往织构分析的方法,并形成了全新的科学领域,称为“显微织构”——将显微组织和晶体学分析相结合。
与“显微织构”密切联系的是应用EBSD进行相分析、获得界面(晶界)参数和检测塑性应变。
目前,EBSD技术已经能够实现全自动采集微区取向信息,样品制备较简单,数据采集速度快(能达到约36万点/小时甚至更快),分辨率高(空间分辨率和角分辨率能分别达到0.1目前EBSD技术的应用领域集中于多种多晶体材料——工业生产的金属和合金、陶瓷、半导体、超导体、矿石——以研究各种现象,如热机械处理过程、塑性变形过程、与取向关系有关的性能(成型性、磁性等)、界面性能(腐蚀、裂纹、热裂等)、相鉴定等。
2. 电子背散射衍射的工作原理2.1 电子背散射衍射花样(EBSP)在扫描电子显微镜(SEM)中,入射于样品上的电子束与样品作用产生几种不同效应,其中之一就是在每一个晶体或晶粒内规则排列的晶格面上产生衍射。
从所有原子面上产生的衍射组成“衍射花样”,这可被看成是一张晶体中原子面间的角度关系图。
图1是在单晶硅上获得的花样。
电子背散射衍射1电子背散射衍射的简介电子背散射衍射(Electron Back-Scatter Diffraction,EBSD)是晶体结构分析的一种传统方法,它是以电子束来替代X射线用于形变观察,广泛应用于金属材料组织及多孔性材料研究。
EBSD在研究中用于主动探测分子结构,其系统可以仅由单个晶体单元测定,从而可以以极低的效率读取电子微结构信息。
相比于X射线衍射,EBSD在晶体结构观察方面有较强的应用效果,特别是在研究深处球形低密度晶体和无晶格结构的材料的表征。
2基本原理EBSD是将电子束抛射到被观察的样品上,电子的射线的反射波会振动各个位置的原子,产生一个和电子光的特性提供的计算机图形表示的尖峰信号,收集这些尖峰信号可以计算出该样品晶体结构的方位。
EBSD是一种非破坏测试方法,可以准确获取样品的晶体结构信息,非常适合大面积测量。
在确定晶体结构时可以使用点状法,也可以使用条状法,其中点状法对非晶质样品、复杂结构样品和小尺寸样品更有效。
3主要用途1、EBSD用于研究晶体和低晶体的空间组织和多孔性,在于探测和辨识复杂的晶体结构和力学行为;2、EBSD用于研究金属材料和非晶质样品的晶界行为,例如调控材料厚度,研究其形变和特殊缺陷后的晶界演变状态;3、EBSD用来识别材料表面质量,分析迁移缺陷和外加压力的影响;4、EBSD也用于研究产品的性能,测量非晶态材料的非晶核尺寸和分布;5、EBSD也可以用来研究工程材料的拉伸性能,模型推导的工艺优化设计;6、EBSD对于研究织物纤维表面构造和孔洞分布,有很高的效率;7、EBSD也常用于研究表面磨损和磨耗性能,了解材料抗冲量等性能指标。
4问题和发展虽然EBSD技术具有很多优点,但存在一些问题,比如它的测量速度较慢,并且需要做许多设置,这可能会对科学家应用EBSD技术造成一定影响。
另外,由于EBSD需要较多的信号来绘制空间晶体结构图形,仅使用一个检测器可能无法获得足够的信号,因此EBSD的数据量会比一般电子显微镜大。
电子背散射衍射电子背散射衍射(ElectronBackscatterDiffraction,简称EBSD)是一种能够测量晶体中晶界的结构信息的技术,它可以用于研究材料的结构,以及晶体内部晶体缺陷的角色。
它是由电子束在晶体表面上发射产生的散射结果得出的,能够揭示细小晶体结构的构造特征,可以用于研究金属、块状结构以及半导体等材料。
电子背散射衍射由早期的修正非几何衍射衍射(MFD)和电子衍射衍射(EDD)开发而来,它在1973年被第一次用于探测晶体周期晶体的晶界,并由此释放出更多的晶体结构信息。
电子背散射衍射是一个重要的衍射技术,它通过测量电子在晶体表面的散射行为,能够测量出晶界的比例常数(lattice constants)以及晶体内部的衍射矢量。
因此,它可以用来分析晶体中重要结构特征,比如晶体布局、原子缺陷、晶体结构偏向以及结构异常等。
电子背散射衍射过程基本是由电子束发射得到的,这一过程是可逆的,因此它能够准确测量晶体内部晶界的结构信息,得到更多有用的结构信息。
除此之外,电子背散射衍射技术还拥有高精度,可以测量出晶体的衍射场的分辨率和精度,以及晶体内部结构的特征尺寸,这非常有利于结构特性的测量和分析。
电子背散射衍射技术有多种用途,比如高分辨率图像重构、快速结构成像、材料微结构分析、金属工艺反馈、非晶合金结构分析等,可以用来辅助设计和建模的结构分析。
它还可以用来研究材料的组成,晶体缺陷的角色,以及晶体结构的偏好性等。
总之,电子背散射衍射是一种重要的科学和工程技术,其中的技术可用于研究金属、材料、半导体等材料的晶体结构特征。
它不仅能够测量出晶体的衍射场的分辨率和精度,而且能够准确揭示晶体内部晶界的特征,这些特征对材料的性能及耐久性有着重要的影响。
另外,它还拥有多种应用,比如图像重构、快速结构成像、材料微结构分析等,可以用来辅助设计和建模的结构分析。
因此,电子背散射衍射是一种值得推崇的衍射技术。
1000 0569/2021/037(04) 1000 14ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2021 04 04电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题张青1 李馨2ZHANGQing1andLIXin21 中国地质科学院地质力学研究所,北京 1000812 中国科学院青藏高原研究所,大陆碰撞与高原隆升实验室,北京 1001011 InstituteofGeomechanics,ChineseAcademyofGeologicalSciences,Beijing10081,China2 KeyLaboratoryofContinentalCollisionandPlateauUplift,InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing100101,China2020 08 25收稿,2021 03 22改回ZhangQandLiX 2021 TheapplicationandassociatedproblemsofEBSDtechniqueinfabricanalysis ActaPetrologicaSinica,37(4):1000-1014,doi:10 18654/1000 0569/2021 04 04Abstract Inthelasttwodecades,EBSD(ElectronBackscatteredDiffraction)hasbeenwidelyusedasaroutineapproachinductilefabricanalyses,focusingonflowkinematicsandrheologyofductiledeformation Itispredominantlyappliedtodeterminingtheshear senseofthebulkflow,evaluatingstrainstrength,andassessingdeformationtemperatureviaanalyzingCrystallographicPreferredOrientation(CPO)anddeformationmechanismsofrecrystallizedminerals Theoretically,EBDSretainsthepotentialtorecoverthecrystal axisorientationofallminerals However,dynamicallyrecrystallizedquartzgrains,particularly,quartzribbonsarerecommendedforEBDSanalysisduetothecomplexitiesofnaturaldeformation Conventionally,quartzc axisobliquityisusedasareliableandindependentshear senseindicator,whilethec axisopeningangleandrecrystallizationmechanismsofquartz(i e ,bulging,subgrainrotation,andgrainboundarymigration)havebeentreatedasdeformationthermometers However,recentstudiesonnaturallydeformedrocksandgeneral shearexperimentsindicatethatcautionsmustbeexercisedwhenusingEBSDresultstoextractflowkinematicsandmulti criteriaaresuggestedforaproperinterpretationofflowkinematicsinductileshearzones Similarly,limitedtoourunderstandingoftheprocessofnaturaldeformation,particularlythecouplingbetweenmetamorphismandductiledeformation,crystalfabric baseddeformationthermometershavetheirowncaveatsandlimitationsthatEBSD derivedthermaldata,thequartzc axisopening angles,mayalsobesubjecttomultipleinterpretationsalthoughitwasoriginallyproposedasanindependentdeformationthermometer(Kruhl,1998).Keywords EBSD;Quartzribbons;Crystallographicpreferredorientation;Opening angleofquartzc axis;Ductiledeformation摘 要 在过去的二十年里,EBSD(ElectronBackscatteredDiffraction),即电子背散射衍射测试技术,已广泛应用于韧性组构分析,成为变形运动学、流变学分析的常规手段。