《物质结构与性质》讲义【课题5】元素性质的递变规律(2)
- 格式:doc
- 大小:171.50 KB
- 文档页数:3
解密05 物质结构元素周期律【考纲导向】1.掌握元素周期律的实质。
了解元素周期表(长式)的结构(周期、族)及其应用。
2.以第3周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。
3.以ⅠA族和ⅠA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。
4.了解金属、非金属在元素周期表中的位置及其性质的递变规律。
5.了解元素周期表在科学研究、地质探矿等领域的广泛应用,从多角度、多层面了解元素及其化合物性质的分类与整合。
【命题分析】从近几高考试题看,元素周期律与元素周期表是中学化学的重要理论基础,是无机化学的核心知识,在近几年高考中出现频率达100%。
题型相对稳定,多为选择题。
高考中该类型题主要是通过重大科技成果(化学科学的新发展、新发明等)尤其是放射性元素、放射性同位素、农业、医疗、考古等方面的应用为题材,来考查粒子的个微粒的相互关系;元素“位”“构”“性”三者关系的题型会继续以元素及其化合物知识为载体,用物质结构理论,解释现象、定性推断、归纳总结相结合。
可集判断、实验、计算于一体,题型稳定。
要想在高考中化学取得高分,就必须掌握元素同期表命题特点和解题方法。
通过编排元素周期表考查的抽象思维能力和逻辑思维能力;通过对元素原子结构、位置间的关系的推导,培养学生的分析和推理能力。
核心考点一原子结构与核外电子排布1.原子结构(1)原子的构成A ZX ⎩⎪⎪⎨⎪⎪⎧原子核⎩⎨⎧质子:Z 个⎩⎪⎨⎪⎧ 每个质子带一个单位正电荷相对质量约为1中子:A -Z 个⎩⎪⎨⎪⎧ 中子不带电相对质量约为1核外电子:Z 个⎩⎪⎨⎪⎧围绕原子核做高速运动每个电子带一个单位负电荷相对质量为一个质子中子的11 836(2)核素(原子)的表示及其数量关系 ①表示:表示质子数为Z 、质量数为A 、中子数为A-Z的核素原子。
(3)阴、阳离子中的数量关系 ①质量数=质子数+中子数。
②阴离子::核外电子数=Z +n 。
阳离子::核外电子数=Z -n 。
专题05 物质结构元素周期律考点热度★★★★★【化学素养要求】【考纲导向】1.了解元素、核素和同位素的含义。
2.依据原子构成了解原子序数、核电核数、质子数、核外电子数的彼此关系和质子数、中子数、质量数之间的相互关系。
3.了解原子核外电子排布。
4.了解元素周期表的结构。
5.通过同周期、同主族元素性质的递变规律与原子结构的关系,理解元素周期律的实质。
6.通过金属、非金属在元素周期表中的位置及其性质递变规律,理解位、构、性三者之间的关系。
7.通过离子键、共价键的形成过程认识化学键。
【命题分析】对原子结构、化学键的考查主要集中在各微粒数量间的关系,微粒的结构示意图、电子式的表示方法及化学键、化合物类型的判断等方面上,试题难度不大,一般属于了解层次。
元素周期表和元素周期律这一部分内容主要以元素周期表为工具考查“位、构、性”三者的关系,该部分内容既能对原子结构、元素周期表和元素周期律进行单独考查,同时也能将元素及其化合物联系起来进行综合考查,试题的综合度较高,命题的空间大。
题型以选择题为主,难度适中。
该部分内容是过去命题的热点,未来将是一个必考点。
题型依然会以选择题为主,难度变化不大。
核心考点一微粒结构与化学键1.抓住描述对象判断“四同”(1)同位素——原子,如11H、21H、31H。
(2)同素异形体——单质,如O2、O3。
(3)同系物——有机化合物,如CH3CH3、CH3CH2CH3。
(4)同分异构体——有机化合物,如正戊烷、新戊烷。
2.原子结构中易混淆的4个问题(1)同种元素,可以有若干种不同的核素,即核素种类远大于元素种类。
(2)元素有多少种核素,就有多少种原子。
(3)同位素是同一元素不同原子的互相称谓,不指具体原子。
(4)同一元素的不同同位素原子其质量数不同,核外电子层结构相同,其原子、单质及其构成的化合物的化学性质几乎完全相同,只是某些物理性质略有差异。
3.理清化学键与物质类别的关系(1)从图中可以看出,离子化合物一定含有离子键,离子键只能存在于离子化合物中。
物质结构与性质知识点总结专题一了解测定物质组成和结构的常用仪器(常识性了解)。
专题二第一单元1.认识卢瑟福和玻尔的原子结构模型。
2.了解原子核外电子的运动状态,了解电子云的概念。
3.了解电子层、原子轨道的概念。
4.知道原子核外电子排布的轨道能级顺序。
知道原子核外电子在一定条件下会发生跃迁。
5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。
第二单元1.理解元素周期律,了解元素周期律的应用。
2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。
3.了解元素第一电离能、电负性的概念及其周期性变化规律。
(不要求用电负性差值判断共价键还是离子键)4.了解第一电离能和电负性的简单应用。
专题三第一单元1.了解金属晶体模型和金属键的本质。
2.能用金属键理论解释金属的有关物理性质。
了解金属原子化热的概念。
3.知道影响金属键强弱的主要因素。
认识金属物理性质的共性。
4.认识合金的性质及应用。
注:金属晶体晶胞及三种堆积方式不作要求。
第二单元1.认识氯化钠、氯化铯晶体。
2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。
3.知道影响晶格能大小的主要因素。
4.离子晶体中离子的配位数不作要求。
第三单元1.认识共价键的本质,了解共价键的方向性和饱和性。
2.能用电子式表示共价分子及其形成过程。
认识共价键形成时,原子轨道重叠程度与共价键键能的关系。
3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。
注:大π键不作要求4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。
5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。
第四单元1.知道范德华力和氢键是两种最常见的分子间作用力。
2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。
第3课时元素周期律(二)一、电负性1.有关概念与意义(1)键合电子:元素相互化合时,原子中用于形成化学键的电子称为键合电子。
(2)电负性:用来描述不同元素的原子对键合电子吸引力的大小。
电负性越大,对键合电子的吸引力越大。
(3)电负性大小的标准,以氟的电负性为4.0作为相对标准。
2.递变规律(1)同周期,自左到右,元素的电负性逐渐增大,元素的非金属性逐渐增强、金属性逐渐减弱。
(2)同主族,自上到下,元素的电负性逐渐减小,元素的金属性逐渐增强、非金属性逐渐减弱。
3.应用(1)判断元素的金属性和非金属性及其强弱①金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。
②金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。
(2)判断元素的化合价①电负性数值小的元素在化合物中吸引电子的能力弱,元素的化合价为正值。
②电负性数值大的元素在化合物中吸引电子的能力强,元素的化合价为负值。
(3)判断化合物的类型如H的电负性为2.1,Cl的电负性为3.0,Cl的电负性与H的电负性之差为3.0-2.1=0.9<1.7,故HCl为共价化合物;如Al的电负性为1.5,Cl的电负性与Al的电负性之差为3.0-1.5=1.5<1.7,因此AlCl3为共价化合物;同理,BeCl2也是共价键形成的共价化合物。
特别提醒电负性之差大于1.7的元素不一定都形成离子化合物,如F的电负性与H的电负性之差为1.9,但HF为共价化合物。
例1(2018·北京朝阳区期中)下列说法不正确的是()A.ⅠA族元素的电负性从上到下逐渐减小,而ⅦA族元素的电负性从上到下逐渐增大B.电负性的大小可以作为衡量元素的金属性和非金属性强弱的尺度C.元素的电负性越大,表示其原子在化合物中吸引电子的能力越强D.NaH的存在能支持可将氢元素放在ⅦA族的观点【考点】元素的电负性【题点】电负性的含义及变化规律答案A解析同主族自上而下元素的金属性逐渐增强,非金属性逐渐减弱,电负性逐渐减小,A项不正确;电负性的大小可以作为衡量元素的金属性和非金属性强弱的尺度,B项正确;电负性越大,原子对键合电子的吸引力越大,C项正确;NaH中H为-1价,与卤素相似,能支持可将氢元素放在ⅦA族的观点,D项正确。
第一章物质结构元素周期表第一节 元素周期表一、周期表原子序数 = 核电荷数 = 质子数 = 核外电子数1、依据横行:电子层数相同元素按原子序数递增从左到右排列纵行:最外层电子数相同的元素按电子层数递增从上向下排列2、结构周期序数=核外电子层数主族序数=最外层电子数短周期(第 1、2、3 周期)周期:7 个(共七个横行)周期表长周期(第 4、5、6、7 周期)主族 7 个:ⅠA -ⅦA族:16 个(共 18 个纵行)副族 7 个:IB-ⅦB第Ⅷ族 1 个(3 个纵行)过渡元素零族(1 个)稀有气体元素二.元素的性质和原子结构(一)碱金属元素:1、原子结构 相似性:最外层电子数相同,都为 1 个递变性:从上到下,随着核电核数的增大,电子层数增多,原子半径增大2、物理性质的相似性和递变性:(1)相似性:银白色固体、硬度小、密度小(轻金属) 熔点低、易导热、导电、有展性。
(2)递变性(从锂到铯):①密度逐渐增大(K 反常)②熔点、沸点逐渐降低结论:碱金属原子结构的相似性和递变性,导致物理性质同样存在相似性和递变性。
3、化学性质(1)相似性:(金属锂只有一种氧化物)4Li + O 2 点燃 Li 2O2Na + O 2 点燃 Na 2O 22 Na + 2H 2O = 2NaOH + H 2↑2K + 2H 2O = 2KOH + H 2↑2R + 2 H 2O = 2 ROH + H 2 ↑产物中,碱金属元素的化合价都为+1价。
结论:碱金属元素原子的最外层上都只有 1 个电子,因此,它们的化学性质相似。
(2)递变性:①与氧气反应越来越容易②与水反应越来越剧烈结论:①金属性逐渐增强②原子结构的递变性导致化学性质的递变性。
总结:递变性:从上到下(从Li到Cs),随着核电核数的增加,碱金属原子的电子层数逐渐增多,原子核对最外层电子的引力逐渐减弱,原子失去电子的能力增强,即金属性逐渐增强。
所以从Li到Cs的金属性逐渐增强。
第二单元元素性质的递变规律【学海导航】元素的性质随着核电荷数的递增而呈现周期性的变化,这个规律叫做元素周期律。
一、原子核外电子排布的周期性元素按原子序数递增的顺序依次排列时,原子的最外层上的电子数,由1(s1)到8(s2p6),呈现出周期性变化。
相应于这种周期性变化,每周期以碱金属开始,以稀有气体结束。
元素的化学性质,主要取决于元素原子的电子结构,特别是最外层电子结构。
所以元素性质的周期性,来源于原子电子层结构的周期性。
根据元素原子的外围电子排布的特征,可将元素周期表分成五个区域:s区、p区、d 区、ds区、f区。
二、元素第一电离能的周期性变化1、定义:从气态的基态原子中移去一个电子变成+1价气态阳离子所需的最低能量,称为第Ⅰ电离能。
常用符号I1表示。
M(g)→ M+(g)+ e-,+1价气态阳离子移去一个电子变成+2价气态阳离子所需的最低能量,称为第Ⅱ电离能。
依次类推。
元素的第一电离能越小,表示它越容易失去电子,即该元素的金属性越强。
2、影响电离能的因素电离能的大小主要取决于原子的核电荷、原子半径及原子的电子构型。
一般说来,核电荷数越大,原子半径越小,电离能越大。
另外,电子构型越稳定,电离能也越大。
3. 电离能的周期性变化同周期中, 从左向右,核电荷数增大,原子半径减小, 核对电子的吸引增强, 愈来愈不易失去电子, 所以 I 总的趋势是逐渐增大。
但有些元素(如Be、Mg、N、P等)的电离能比相邻元素的电离能高些,这主要是这些元素的最外层电子构型达到了全充满或半充满的稳定构型。
同主族元素自上而下电离能依次减小。
但在同一副族中,自上而下电离能变化幅度不大,且不甚规则。
4.电离能与价态之间的关系失去电子后, 半径减小, 核对电子引力大, 更不易失去电子, 所以有: I1 < I2 < I3 < I4…., 即电离能逐级加大.三、元素电负性的周期性变化1、定义:电负性: 表示一个元素的原子在分子中吸引电子的能力. 元素的电负性越大,表示原子吸引成键电子的能力越强,该元素的非金属性也就越强;电负性越小,该元素的金属性越强。
课题5 元素性质的递变规律(2)
学习目标:1、了解电负性的概念及其周期性变化规律;
2、了解电负性的简单应用。
3、了解对角线规则。
学习过程:
三、元素电负性的周期性变化
(一)元素电负性(χ)的概念:元素的原子在化合物中吸引电子的能力
元素电负性最早是由美国科学家鲍林(L.Pauling)提出,发展到现在元素电负性有多种标准,但我们习惯上还是用鲍林的电负性数值鲍林规定氟元素的电负性最大,χ=4.0,再通过一定的计算方法,得出其他元素的电负性数值(见下表)
(二)元素电负性的周期性变化规律
1.同周期:从左到右,元素电负性由小到大(稀有气体除外)
2.同主族:从上到下,元素电负性由大到小
有以上规律得出:元素周期表中,右上角氟元素的电负性最大,左下角铯元素的电负性最小(放射性元素除外)
(三)元素电负性的应用
1.元素的电负性可以用来判断元素
为金属元素还是非金属性元素
电负性(χ)>1.8 为非金属元素,电负性(χ)<1.8为金属元素2.元素的电负性可以用来比较元素非金属性的强弱以及原子得电子能力的强弱
元素A和B,若χA>χB,则非金属性A>B,得电子能力也是A >B
3.元素电负性的差值可以用来判断化学键的类型
χA-χB>1.7,所形成的化学键为离子键;χA-χB<1.7,所形成的化学键为共价键;
4.元素的电负性还可以判断化合物中元素化合价的正负若元素A和B形成的化合物中,χA>χB,则A呈负价,B呈正价
注意:电负性的大小与电离能的大小有一定的一致性,但没有绝对的一致,如镁的电负性比铝小,但镁的电离能比铝大
[科学探究]
对角线规则
元素周期表中某一元素及其化合物的性质和它左上方或右下方的另一元素的性质相似,这种现象称为“对角线规则”。
在2、3周期中,具有典型“对角线”规则的元素有3读对:锂与镁、铍与铝、硼和硅。
有人认为是因为这些元素的电负性相近的原因造成的。