相互独立事件习题课
- 格式:ppt
- 大小:261.50 KB
- 文档页数:9
[学业水平训练]1.(2014·福州八县市高二期末联考)抛掷3枚质地均匀的硬币,A ={既有正面向上又有反面向上},B ={至多有一个反面向上},则A 与B 关系是( )A .互斥事件B .对立事件C .相互独立事件D .不相互独立事件解析:选C.由已知,有P (A )=1-28=34,P (B )=1-48=12,P (AB )=38,满足P (AB )=P (A )P (B ),则事件A 与事件B 相互独立,故选C.2.甲、乙两人独立地解同一问题,甲解出这个问题的概率是14,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是( ) A.34 B.18 C.78 D.58解析:选D.设至少有1人解出这个问题的概率是P ,则由题意知,(1-14)(1-12)=1-P ,∴P =58.3.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13解析:选A.左边转盘指针落在奇数区域的概率为46=23,右边转盘指针落在奇数区域的概率为23,∴两个指针同时落在奇数区域的概率为23×23=49.4.(2014·九江检测)某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( )A.19B.16C.13D.718解析:选D.设汽车分别在甲、乙、丙三处通行为事件A 、B 、C ,则P (A )=13,P (B )=12,P (C )=23,停车一次即为事件A BC +A B C +A B C 的发生,故概率为P =(1-13)×12×23+13×(1-12)×23+13×12×(1-23)=718.5.(2014·东莞调研)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( ) A .2个球不都是红球的概率 B .2个球都是红球的概率 C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确.6.(2014·铜陵质检)在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.解析:从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M 、N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P (MN )=P (M )P (N )=160200×180240=35.答案:357.已知P (A )=0.3,P (B )=0.5,当事件A ,B 相互独立时,P (A ∪B )=________,P (A |B )=________.解析:因为A 、B 相互独立,所以P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65,P (A |B )=P (A )=0.3. 答案:0.65 0.38.如图所示,荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是________.解析:由已知逆时针跳一次的概率为23,顺时针跳一次的概率为13.则逆时针跳三次停在A上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.答案:139.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多两人当选的概率.解:设甲、乙、丙当选的事件分别为A ,B ,C ,则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立,恰有一名同学当选的概率为 P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )·P (C )=45×25×310+15×35×310+15×25×710=47250.(2)至多有两人当选的概率为1-P (ABC )=1-P (A )P (B )P (C )=1-45×35×710=83125.10.(2014·石家庄高二检测)某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.解:记“应聘者对三门考试及格的事件”分别为A ,B ,C . P (A )=0.5,P (B )=0.6,P (C )=0.9. (1)该应聘者用方案一通过的概率是P 1=P (A B C )+P (A BC )+P (A B C )+P (ABC )=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.03+0.27+0.18+0.27=0.75.(2)应聘者用方案二通过的概率P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9) =13×1.29=0.43. [高考水平训练]1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D.由题意,P (A )·P (B )=19,P (A )·P (B )=P (A )·P (B ).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧ (1-x )(1-y )=19,(1-x )y =x (1-y ).即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y ,∴x 2-2x +1=19,∴x -1=-13,或x -1=13(舍去),∴x =23,故选D.2.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.解析:设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 1A -2A 3∪A-1A 2A 3发生,故所求概率为P =P (A 1A 2A 3∪A 1A -2A 3∪A -1A 2A 3) =P (A 1A 2A 3)+P (A 1A -2A 3)+P (A -1A 2A 3) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A -2)·P (A 3)+P (A -1)P (A 2)P (A 3)=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46. 答案:0.463.李浩的棋艺不如张岚,李浩每局赢张岚的概率只有0.45.假设他们下棋时各局的输赢是独立的.(1)计算他们的3局棋中李浩至少赢1局的概率; (2)计算他们的6局棋中李浩至少赢1局的概率.解:(1)用A 1,A 2,A 3分别表示第1,第2,第3局李浩输.则A =A 1∩A 2∩A 3表示李浩连输3局.其对立事件A 表示3局中李浩至少赢1局.因为事件A 1,A 2,A 3相互独立,并且P (A 1)=P (A 2)=P (A 3)=1-0.45=0.55, 所以P (A )=P (A 1)P (A 2)P (A 3)=0.553≈0.166 4. 于是P (A )=1-P (A )=0.833 6.说明3局棋中李浩至少赢1局的概率还是很大的.(2)用A 1,A 2,…,A 6分别表示第1,第2,…,第6局李浩输,则B =A 1∩A 2∩…∩A 6表示李浩连输6局,其对立事件B 表示6局中李浩至少赢1局.因为事件A 1,A 2,…,A 6相互独立,并且P (A 1)=P (A 2)=…=P (A 6)=1-0.45=0.55, 所以P (B )=P (A 1)P (A 2)·…·P (A 6)=0.556≈0.027 7.于是P (B )=1-P (B )=0.972 3. 说明6局棋中李浩至少赢1局的概率大于0.97.4.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译不出密码的概率; (2)至多1个人译出密码的概率; (3)至少1个人译出密码的概率.解:记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)2个人都译不出密码的概率为P (A B )=P (A )·P (B )=[1-P (A )]·[1-P (B )]=⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12. (2)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为1-P (AB )=1-P (A )P (B )=1-13×14=1112.。
条件概率与独立事件习题课1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为()A .B .C .D .2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D .3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率()A .B .C .D .4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A .B .C .D .5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.二.解答题6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布.9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.10.甲、乙两人独立破译一个密码,他们能独立译出密码的概率分别为和.(I)求甲、乙两人均不能译出密码的概率;(II)假设有4个与甲同样能力的人一起独立破译该密码,求这4人中至少有3人同时译出密码的概率.条件概率与独立事件答案1.解:设x为掷白骰子得的点数,y为掷黑骰子得的点数,则所有可能的事件与(x,y)建立一一对应的关系,由题意作图,如图.其中事件A为“黑色骰子的点数为3或6”包括12件,P(A)==事件AB包括5件,P(AB)=,由条件概率公式P(B|A)==,2.解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.3. 解:根据题意,在第一次抽到次品后,有4件次品,5件正品;则第二次抽到正品的概率为P=4.解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,则P(A)=,P ()=1﹣=,P(B)=P,P ()=1﹣P ,依题意得:×(1﹣p)+×p=,解可得,p=,故选C.5.解:设出甲,乙,丙,射击一次击中分别为事件A,B,C,∵甲以10发8中,乙以10发6中,丙以10发7中∴甲,乙,丙,射击一次击中的概率分别为:,,∵“三人各射击一次,则三人中只有一人命中”的事件为:,,∴三人各射击一次,则三人中只有一人命中的概率为:=6.解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;(2)Y的所有可能取值为0,1,2;,,,Y的分布列为Y012P(3)从流水线上任取5件产品,重量超过505克的概率为=,重量不超过505克的概为1﹣=;恰有2件产品合格的重量超过505克的概率为•.7.解:(Ⅰ)根据频率=得各组的频率分别是:0.1;0.2;0.3;0.2;0.1;0.1.由组距为10,可得小矩形的高分别为0.01;0.02;0.03;0.02;0.01;0.01.由此得频率分布直方图如图:(Ⅱ)由题意知ξ的所有可能取值为:0,1,2,3.P(ξ=0)=•=;P(ξ=1)=•+•=;P(ξ=2)=•+•=;P(ξ=3)=•=.∴ξ的分布列是:ξ0123Pξ的数学期望Eξ=0×+1×+2×+3×==.8.解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=9. 解:(Ⅰ)用事件A i表示第i局比赛甲获胜,则A i两两相互独立.…(1分)===.…(4分)(Ⅱ)X的取值分别为2,3,4,5,…(5分)P(x=2)=,P(x=3)=,P(x=4)=,P(x=5)=,…(9分)所以X的分布列为X2345P…(11分)EX==.…(13分)10.解:(I)由题意知本题是一个相互独立事件同时发生的概率,设“甲、乙两人均不能译出密码”为事件A,则P(A)=(1﹣)(1﹣)=即甲、乙两人均不能译出密码的概率是(II)有4个与甲同样能力的人一起独立破译该密码,相当于发生四次独立重复试验,成功的概率是∴这4人中至少有3人同时译出密码的概率为=即这4人中至少有3人同时译出密码的概率为。
2.2.2事件的相互独立性一、选择题1.下列事件A 、B 是独立事件的是( )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2白,2黑的小球,不放回地摸两球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“人能活到20岁”,B =“人能活到50岁”2.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.233.甲乙两人投球命中率分别为12,25,甲乙两人各投一次,恰好命中一次的概率为( ) A.15 B.25 C.12 D.9104.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13 D.718二、填空题5.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,则取得同色球的概率为________.6.明天上午李明要参加世博会志愿者活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是________.7.甲,乙二人单独解一道题, 若甲,乙能解对该题的概率分别是m , n . 则此题被解对的概率是8.有一谜语, 甲,乙,丙猜对的概率分别是1/5, 1/3 , 1/4 .则三人中恰有一人猜对该谜语的概率是三、解答题(每小题10分,共20分)9.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.10.已知A ,B ,C 三个相互独立事件,若事件A 发生的概率为12,事件B 发生的概率为13,事件C 发生的概率为14,求下列事件发生的概率. (1)事件A ,B ,C 都发生的概率. (2)事件A ,B ,C 都不发生的概率.(3)事件A ,B ,C 不都发生的概率. (4)事件A ,B ,C 至少有一个发生的概率.(5)事件A ,B ,C 恰有一个发生的概率. (6)事件A ,B ,C 恰有两个发生的概率.(7)事件A ,B ,C 至多有两个发生的概率.11.某种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次被按下后,出现红球与绿球的概率都是12,从按钮第二次被按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为13,23;若前次出现绿球,则下一次出现红球、绿球的概率分别为35,25.记第n (n ∈N ,n ≥1)次按下按纽后出现红球的概率为p n .(1)求p 2的值;(2)当n ∈N ,n ≥2时,求用p n -1表示p n 的表达式.12.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率.参考答案1. A 2.D 3. C 4. D 5. 12 6. 0.98 7. m +n - mn 8.1330 9.解: 记“第i 局甲获胜”为事件A i (i =3,4,5),“第j 局乙获胜”为事件B j (j =3,4,5).(1)设“再赛2局结束这次比赛”为事件A ,则A =A 3·A 4+B 3·B 4,由于各局比赛结果相互独立,故P (A )=P (A 3·A 4+B 3·B 4)=P (A 3·A 4)+P (B 3·B 4)=P (A 3)P (A 4)+P (B 3)P (B 4)=0.6×0.6+0.4×0.4=0.52.(2)记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B =A 3·A 4+B 3·A 4·A 5+A 3·B 4·A 5, 由于各局比赛结果相互独立,故P (B )=P (A 3·A 4+B 3·A 4·A 5+A 3·B 4·A 5)=P (A 3·A 4)+P (B 3·A 4·A 5)+P (A 3·B 4·A 5)=P (A 3)P (A 4)+P (B 3)P (A 4)P (A 5)+P (A 3)P (B 4)P (A 5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.10.解: (1)记事件A 1为“事件A ,B ,C 都发生”,因为A ,B ,C 是三个相互独立事件,所以P (A 1)=P (A )P (B )P (C )=12×13×14=124. (2)记事件A 2为“事件A ,B ,C 都不发生”,因为A ,B ,C 是三个相互独立事件,故A ,B ,C 也相互独立,所以P (A 2)=P (A )P (B )P (C )=12×23×34=14(3)记事件A 3为“事件A ,B ,C 不都发生”,则A 3=A 1,从而P (A 3)=1-P (A 3)=1-P (A 1)=1-124=2324. (4)记事件A 4为“事件A ,B ,C 至少有一个发生”,则A 4=A 2,从而P (A 4)=1-P (A 4)=1-P (A 2)=1-14=34. (5)记事件A 5为“事件A ,B ,C 恰有一个发生”则有三种情况:第一种,事件A 发生,事件B ,C 不发生,即A ·B ·C ;第二种,事件B 发生,事件A ,C 不发生,即A ·B ·C ;第三种,事件C 发生,事件A ,B 不发生,即A ·B ·C ;而这三种情况不可能同时发生,即A ·B ·C ,A ·B ·C ,A ·B ·C 彼此互斥,所以P (A 5)=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=14+18+112=1124. (6)记事件A 6为“事件A ,B ,C 恰有两个发生”则有三种情况:第一种,事件A ,B 发生,事件C 不发生,即A ·B ·C ;第二种,事件A ,C 发生,事件B 不发生,即A ·B ·C ;第三种,事件B ,C 发生,事件A 不发生,即A ·B ·C ;而这三种情况不可能同时发生,即A ·B ·C ,A ·B ·C ,A ·B ·C 彼此互斥,所以P (A 6)=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=18+112+124=14. (7)方法一:记事件A 7为“事件A ,B ,C 至多有两个发生”,则有三种情况:第一种,事件A ,B ,C 都不发生,即A 2第二种,事件A ,B ,C 恰有一个发生,即A 5第三种,事件A ,B ,C 恰有两个发生,即A 6所以P (A 7)=P (A 2)+P (A 5)+P (A 6)=14+1124+14=2324. 方法二:记事件A 7为“事件A ,B ,C 至多有两个发生”,则A 7=“事件A ,B ,C 都发生”,即A 7=A 1 P (A 7)=1-P (A 7)=1-P (A 1)=1-124=2324. 11.解: (1)p 2=12×13+12×35=715.(2)p n =p n -1×13+(1-p n -1)×35=-415p n -1+35. 12. 解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=.所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==.所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=.解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=.。
§4 事件的独立性A 级必备知识基础练1.某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功.假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( ) A.0.064B.0.144C.0.216D.0.4322.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ) A.0.378B.0.3C.0.58D.0.9583.(多选题)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16 B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为124.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能开门的概率是 ;如果试过的钥匙不扔掉,这个概率是 .5.甲、乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求: (1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率.B 级关键能力提升练6.(多选题)已知事件A ,B ,且P (A )=0.5,P (B )=0.2,则下列结论正确的是( ) A.若B ⊆A ,那么P (A ∪B )=0.2,P (AB )=0.5 B.若A ,B 互斥,那么P (A ∪B )=0.7,P (AB )=0 C.若A ,B 相互独立,那么P (A ∪B )=0.7,P (AB )=0 D.若A ,B 相互独立,那么P (AB )=0.4,P (A B )=0.47.(2021山东潍坊检测)投壶是我国古代的一种娱乐活动,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为13,投中“贯耳”的概率为14,投中“散射”的概率为16,投中“双耳”的概率为19,投中“依竿”的概率为118,未投中(0筹)的概率为112.乙的投掷水平与甲相同,且甲、乙投掷相互独立.比赛第一场两人平局,第二场甲投中“有初”,乙投中“双耳”,则三场比赛结束时,甲获胜的概率为( ) A.124B.5108C.572D.72168.甲、乙、丙三人向同一飞机射击,设击中的概率分别为0.4,0.5,0.8,若只有1人击中,则飞机被击落的概率为0.2,若2人击中,则飞机被击落的概率为0.6,若3人击中,则飞机一定被击落,则飞机被击落的概率为 .9.(2021广东茂名质检)田忌赛马的故事出自司马迁的《史记》,话说齐王、田忌分别有上、中、下等马各一匹,赛马规则是:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局,最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3,每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i ,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A1B1=0.8,P A1B2=0.9,P A1B3=0.95;P A2B1=0.1,P A2B2=0.6,P A2B3=0.9;P A3B1=0.09,P A3B2=0.1,P A3B3=0.6.则一场比赛共有种不同的比赛方案;在上述所有的方案中,有一种方案田忌获胜的概率最大,此概率的值为.10.某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方通过(即通过绿灯)的概率分别是13,12,23,对于该大街上行驶的汽车,求:(1)在三个地方都不停车的概率;(2)在三个地方都停车的概率;(3)只在一个地方停车的概率.11.在一个选拔节目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为56,34,56,13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率.C 级学科素养创新练12.(2021湖北武汉检测)一个系统如图所示,A ,B ,C ,D ,E ,F 为6个部件,其正常工作的概率都是12,且是否正常工作是相互独立的,当A ,B 都正常工作,或C 正常工作,或D 正常工作,或E ,F 都正常工作时,系统就能正常工作,则系统正常工作的概率是( )A.5564B.164C.18D.96413.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响. (1)分别求甲队总得分为0分,2分的概率; (2)求甲队得2分乙队得1分的概率.§4 事件的独立性1.B 选手恰好回答了4个问题就闯关成功,则第1个问题可能正确,也可能不正确,第2个问题不正确,第3,4个问题正确.故P=0.6×0.4×0.6×0.6+0.4×0.4×0.6×0.6=0.144.故选B .2.D 透镜落地3次,恰在第一次落地打破的概率为P 1=0.3,恰在第二次落地打破的概率为P 2=0.7×0.4=0.28,恰在第三次落地打破的概率为P 3=0.7×0.6×0.9=0.378,所以落地3次以内被打破的概率P=P 1+P 2+P 3=0.958.故选D .3.ACD 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2相互独立.A 中,概率为P (A 1A 2)=P (A 1)P (A 2)=13×12=16,正确;B 中,是“两个都是红球”的对立事件,其概率为1-P (A 1A 2)=56,错误; C 中,2个球中至少有1个红球的概率为1-P (A 1)P (A 2)=1-23×12=23,正确; D 中,2个球中恰有1个红球的概率为P (A 1A 2)+P (A 1A 2)=13×12+23×12=12,正确. 故选ACD . 4.1314由题意知,第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14.5.解记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B,A 与B 为相互独立事件,(1)2人都射中的概率为P (AB )=P (A )P (B )=0.8×0.9=0.72,故2人都射中目标的概率是0.72. (2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中乙未击中(即事件A B ),另一种是甲未击中、乙击中(即事件A B ),根据题意,事件A B 与A B 互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26,故2人中恰有1人射中目标的概率是0.26.(3)(方法一)2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为P=P (AB )+[P (A B )+P (A B )]=0.72+0.26=0.98.(方法二)“2人至少有一个击中”与“2人都未击中”为对立事件,2人都未击中目标的概率是P(AB)=P(A)P(B)=(1-0.8)×(1-0.9)=0.02,故“两人至少有1人击中目标”的概率为P=1-P(AB)=1-0.02=0.98.6.BD若B⊆A,则A∪B=A,A∩B=B,则P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A错误; 若A,B互斥,则AB为不可能事件,所以P(A∪B)=P(A)+P(B)=0.7,P(AB)=0,故B正确;若A,B相互独立,则P(AB)=P(A)P(B)=0.5×0.2=0.1,故C错误;若A,B相互独立,则P(AB)=P(A)P(B)=0.5×0.8=0.4,P(A B)=P(A)P(B)=0.5×0.8=0.4,故D正确.故选BD.7.C由题可知:甲要想赢得比赛,在第三场比赛中,比乙至少多得五筹,甲得“五筹”,乙得“零筹”,甲可赢,概率为P1=16×112=172;甲得“六筹”,乙得“零筹”,甲可赢,概率为P2=19×112=1108;甲得“十筹”,乙得“零筹”或“两筹”或“四筹”或“五筹”,甲可赢,概率为P3=118×(1-19-118)=5108.∴三场比赛结束时,甲获胜的概率为P=P1+P2+P3=172+1108+5108=572.8.0.492设甲、乙、丙三人击中飞机为事件A,B,C,依题意,A,B,C相互独立,故所求事件概率为P=[P(A B C)+P(ABC)+P(AB C)]×0.2+[P(AB C)+P(A BC)+P(A B C)]×0.6+P(ABC)=(0.4×0.5×0.2+0.6×0.5×0.2+0.6×0.5×0.8)×0.2+(0.4×0.5×0.2+0.6×0.5×0.8+0.4×0.5×0.8)×0.6+0.4×0.5×0.8=0.492.9.60.819由题意可知,所有的比赛方案为:(A1B1,A2B2,A3B3),(A1B1,A2B3,A3B2),(A1B2,A2B1,A3B3),(A1B2,A2B3,A3B1),(A1B3,A2B2,A3B1),(A1B3,A2B1,A3B2), 故一场比赛共6种不同的比赛方案.其中采用方案(A 1B 3,A 2B 1,A 3B 2),则田忌获胜的概率最大,记田忌三局全胜和恰胜两局的概率分别为P 1,P 2,则P 1=0.05×0.9×0.9=0.0405,P 2=0.05×0.9×0.1×2+0.95×0.9×0.9=0.7785,所以有一种方案田忌获胜的概率最大,此概率的值为0.0405+0.7785=0.819.10.解记汽车在甲地遇到绿灯为事件A ,汽车在乙地遇到绿灯为事件B ,汽车在丙地遇到绿灯为事件C ,则P (A )=13,P (A )=23,P (B )=12,P (B )=12,P (C )=23,P (C )=13.(1)在三个地方都不停车的概率为P (ABC )=P (A )P (B )P (C )=13×12×23=19. (2)在三个地方都停车的概率为P (ABC )=P (A )P (B )P (C )=23×12×13=19. (3)只在一个地方停车的概率为P (A BC+A B C+AB C )=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=23×12×23+13×12×23+13×12×13=718. 11.解设事件A i (i=1,2,3,4)表示“该选手能正确回答第i 轮问题”,则P (A 1)=56,P (A 2)=34,P (A 3)=56,P (A 4)=13.(1)设事件B 表示“该选手进入第三轮才被淘汰”, 则P (B )=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=56×34×1-56=548. (2)设事件C 表示“该选手至多进入第三轮考核”,则P (C )=P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1A 2)+P (A 1A 2A 3)=1-56+56×1-34+56×34×1-56=2348. 12.A 设“C 正常工作”为事件G ,“D 正常工作”为事件H ,“A 与B 中至少有一个不正常工作”为事件T ,“E 与F 中至少有一个不正常工作”为事件R ,则P (G )=P (H )=12,P (T )=P (R )=1-12×12=34,故系统正常工作的概率P=1-P (T )P (R )P (G )P (H )=5564.13.解(1)记“甲队总得分为0分”为事件A ,“甲队总得分为2分”为事件B ,甲队总得分为0分,即甲队三人都回答错误,其概率P (A )=1-233=127;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率P (B )=3×232×1-23=49.(2)记“乙队得1分”为事件C,“甲队得2分乙队得1分”为事件D;事件C即乙队三人中有2人答错,其余1人答对,则P(C)=1-23×23×1-12+23×1-23×1-12+1-23×1-23×12=518,甲队得2分乙队得1分即事件B,C同时发生,则P(D)=P(B)P(C)=49×518=1081.。
10.2 事件的相互独立性——高一数学人教A 版(2019)必修第二册洞悉课后习题【教材课后习题】1.掷两枚质地均匀的骰子,设A =“第一枚出现奇数点”,B =“第二枚出现偶数点”,则A 与B 的关系为( ) A.互斥B.互为对立C.相互独立D.相等2.假设()0.7P A =,()0.8P B =,且A 与B 相互独立,则()P AB = _______,()P A B =_______.3.若()0P A >,()0P B >,证明:事件A ,B 相互独立与A ,B 互斥不能同时成立.4.甲、乙两人独立地破译份密码,已知各人能破译的概率分别是13,14,求:(1)两人都成功破译的概率; (2)密码被成功破译的概率.5.如图,一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,得到样本空间为{1,2,3,4,5,6,7,8}Ω=.构造适当的事件A ,B ,C ,使()()()()P ABC P A P B P C =成立,但不满足A ,B ,C 两两独立.6.分析如下三个随机试验及指定的随机事件,并解答下面的问题.1E :抛掷两枚质地均匀的硬币;事件A =“两枚都正面朝上”.2E :向一个目标射击两次,每次命中目标的概率为0.6;事件B =“命中两次目标”.3E :从包含2个红球、3个黄球的袋子中依次任意摸出两球;事件C “两次都摸到红球”.(1)用适当的符号表示试验的可能结果,分别写出各试验的样本空间; (2)指出这三个试验的共同特征和区别; (3)分别求A ,B ,C 的概率.【定点变式训练】7.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A.25B.1225C.1625D.458.某校组织《最强大脑》PK 赛,最终A ,B 两队进入决赛,两队各由3名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各局胜者均得1分,负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A.827B.49C.1627D.20279.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.C.49D.10.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.1131911.如图所示,已知电路中4个开关闭合的概率都是12,且是相互独立的,则灯亮的概率为( )A.B.316C.D.131612.甲、乙两位同学各拿出6张游戏牌,用作抛骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜,得到所有12张游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12张游戏牌的分配合理的是( )A.甲得9张,乙得3张B.甲得6张,乙得6张C.甲得8张,乙得4张D.甲得10张,乙得2张13.设某批电子手表的正品率为23,次品率为13,现对该批电子手表进行检测,每次抽取一个电子手表,假设每次检测相互独立,则第3次首次检测到次品的概率为___________.14.事件A ,B ,C 是互相独立的事件,若1()6P AB =,1()8P BC =,1()8P ABC =,则()P B =_______________.15.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.16.第五届移动互联网创新大赛,于2019年3月到10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一名种子选手甲,再从全校征集出3位志愿者分别与甲进行一场技术对抗赛,根据以往经验,甲与这三位志愿者进行比赛一场获胜的概率分别为332,,453,且各场输赢互不影响.11614求甲恰好获胜两场的概率.17.小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率.(2)这三列火车至少有一列正点到达的概率.答案以及解析1.答案:C解析:因为A ,B 中有相同的样本点,如(1,2),故选项A 、B 错误;因为A 中含有B 中没有的样本点,如,故选项D 错误; 因为1()2P A =,,91()364P AB ==,所以()()()P AB P A P B =,故选项C.正确.2.答案:0.56;0.94解析:,.. 3.答案:见解析解析:若事件A ,B 相互独立,则()()()0P AB P A P B =>,所以()0P AB ≠,即A ,B 不互斥.若事件A ,B 互斥,则()0P AB =,因为()()0P A P B ⋅>,所以()()()P AB P A P B ≠,即A ,B 不独立.所以事件A ,B 相互独立与A ,B 互斥不能同时成立. 4.答案:(1)112(2)12解析:设A =“甲能破译密码”,B =“能破译密码”,则A ,B 相互独立.由题意知1()3P A =,1()4P B =. (1)111()()()3412P AB P A P B ==⨯=;(2)1111()()()()34122P A B P A P B P AB =+-=+-=.5.答案:A 与B ,A 与C ,B 与C 都不相互独立解析:设{1,2,3,4}A =,{1,2,3,5}B =,{1,6,7,8}C =,则{1}ABC =,{1,2,3}AB =,(1,1)1()2P B =()()()0.70.80.56P AB P A P B ==⨯=()()()()0.70.80.560.94P A B P A P B P AB =+-=+-={1}AC =,{1}BC =,所以1()()()2P A P B P C ===,3()8P AB =,1()()8P AC P BC ==,1()8P ABC =.所以()()()()P ABC P A P B P C =⋅,但()()()P AB P A P B ≠,()()()P AC P A P C ≠,()()()P BC P B P C ≠,即A 与B ,A 与C ,B 与C 都不相互独立.6.答案:(1)1E 的空间可表示为1{(0,0),(0,1),(1,0),(1,1)}Ω=;2E 的样本空间可表示为2{(0,0),(0,1),(1,0),(1,1)}Ω=; 3E 的样本空间可表示为3){(0,0),(0,1,(1,0),(1,1)}Ω=(2)三个试验的共同特征:完成一次试验都要观察两个指标,即样本点中包含两个要素,并且每个要素都只有两种可能结果.所以它们的样本点都可以用有序数对来表示,并且具有相同的表达形式.三个试验的区别:1E 中的样本点具有等可能性,2E ,3E 中的样本点不是等可能的. (3)1()4P A =;()0.36P B =;1()10P C = 解析:(1)1E 中用有序数对(,)m n ,m ,{0,1}n ∈表示样本点,其中0表示“反面朝上”,1表示“正面朝上”.其样本空间可表示为1{(0,0),(0,1),(1,0),(1,1)}Ω=.2E 中用有序数对()12,x x ,1x ,2{0,1}x ∈表示样本点,其中0表示“末命中”,1表示“命中”.其样本空间可表示为2{(0,0),(0,1),(1,0),(1,1)}Ω=.3E 中用有序数对(,)x y ,x ,{0,1}y ∈表示样本点,其中0表示“摸到红球”,1表示“摸到黄球”.其样本空间可表示为3){(0,0),(0,1,(1,0),(1,1)}Ω=. (3)1()4P A =;()0.60.60.36P B =⨯=;1()10P C =. 7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:C解析:比赛结束时A 队的得分高于B 队的得分包含三种情况:①A 全胜;②第一局A 胜,第二局B 胜,第三局A 胜;③第一局B 胜,第二局A 胜,第三局A 胜.所以比赛结束时A 队的得分高于B 队的得分的概率. 故选C. 9.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,.设()P A x =,,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是.故选A. 10.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A.11.答案:D解析:由题意,灯泡不亮包括4个开关都断开;甲、丙、丁都断开,乙闭合;乙、丙、丁都断开,甲闭合,这三种情况是互斥的,每一种情况中的事件都是42()()105P A P B ===3221212216333333327P ⎛⎫=+⨯⨯+⨯⨯= ⎪⎝⎭()()P AB P AB =()P B y =2,323x y ⎧=⎪⎪⎨⎪=⎪⎩230.90.10.09⨯=相互独立的,所以灯泡不亮的概率为,所以灯亮的概率为31311616-=.故选D. 12.答案:A解析:由题意,得骰子朝上的面的点数为奇数的概率为,即甲、乙每局得分的概率相等,所以甲获胜的概率是11132224+⨯=, 乙获胜的概率是.所以甲得到的游戏牌为31294⨯=(张), 乙得到的游戏牌为(张).故选A. 13.答案:427解析:因为第3次首次检测到次品,所以第1次和第2次检测到的都是正品,第3次检测到的是次品,所以第3次首次检测到次品的概率为. 14.答案:12解析:设,()P B b =,, 因为1()6P AB =,1()8P BC =,1()8P ABC =,所以1,61(1),81(1),8ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以1,31,21.4a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以1()2P B =.15.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.111111111111322222222222216⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12111224⨯=11234⨯=221433327⨯⨯=()P A a =()P C c =方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=. 16.答案:概率为920解析:设甲与三位志愿者比赛一场获胜的事件分别为A ,B ,C , 则, 则甲恰好获胜两场的概率为:()()()()()()()()()()()()P P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C =++=⋅⋅+⋅⋅+⋅⋅ .17.答案:(1)概率为0.398. (2)概率为0.994.解析:(1)用A ,B ,C 分别表示这三列火车正点到达的事件,则()0.8,()0.7,()0.9P A P B P C ===,所以. 由题意得A ,B ,C 之间互相独立, 所以恰好有两列火车正点到达的概率为1()()()P P ABC P ABC P ABC =++0.20.70.90.80.30.90.80.70.10.398=⨯⨯+⨯⨯+⨯⨯=.(2)三列火车至少有一列正点到达的概率为.332(),(),()453P A P B P C ===332332332911145345345320⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()0.2,()0.3,()0.1P A P B P C ===()()()()()()()()()P A P B P C P A P B P C P A P B P C =+⋅+21()1()()()10.20.30.10.994P P ABC P A P B P C =-=-⋅=-⨯⨯=。
事件的相互独立性【基础全面练】 (15分钟 30分)1.下列各对事件中,是相互独立事件的有( ) A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标” 【解析】选B.在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件M ,“甲射中目标但乙未射中目标”为事件N ,则MN =N ,因此当P(M)≠1时,P(MN)≠P(M)·P(N),故A 、B 不独立.2.一件产品要经过两道独立的工序,第一道工序的次品率为a ,第二道工序的次品率为b ,则该产品的正品率为________.【解析】由于经过两道工序才能生产出一件产品,当两道工序都合格时才能生产出正品,又由于两道工序相互独立,则该产品的正品率为(1-a)(1-b). 答案:(1-a)(1-b)3.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.【解析】从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M ,N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P(MN)=P(M)P(N)=160200 ×180240 =35 .答案:354.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.【解析】若都取到白球,P 1=812 ×612 =13 ,若都取到红球,P 2=412 ×612 =16 ,则所求概率P =P 1+P 2=13 +16 =12.答案:125.(2020·北京高考)某校为举办甲、乙两项不同活动,分别设计了相应方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率的估计值记为p 0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p 1,试比较p 0与p 1的大小.(结论不要求证明)【命题意图】考查随机抽样、用样本估计总体、用频率估计概率、随机事件的关系等. 【解析】(1)样本中,男生支持方案一的频率为200200+400 =13,女生支持方案一的频率为300300+100 =34,用样本估计总体,用频率估计概率,所以估计该校男生支持方案一的概率为13 ,女生支持方案一的概率为34.(2)记事件A i (i =1,2)为抽取的第i 个男生支持,事件B 为抽取的女生支持,则P(A i )=13 ,P(B)=34 ,所求概率p =P(A 1A 2B +A 1A 2B +A 1A 2B)=P(A 1A 2B )+P(A 1A 2B)+P(A 1A 2B)=13×13 ×(1-34 )+13 ×(1-13 )×34 +(1-13 )×13 ×34 =1336; (3)p 0=350+150350+250+150+250 =12 .估计全校男生支持方案二的概率为350350+250 =712 ,女生支持方案二的概率为150150+250 =38 .除一年级以外男生有100名,女生有100名,估计其中支持方案二的有712 ×100(名),38×100(名),p 1=712×100+38×100100+100 =2348 ,所以p 0>p 1.【综合突破练】 (30分钟 60分) 一、选择题(每小题5分,共25分)1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.7,在目标被击中的情况下,甲、乙同时击中目标的概率为( ) A .2144 B .1522C .2150D .925【解析】选A.根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,则P(C)=1-P(1A )P(1B)=1-(1-0.6)×(1-0.7)=0.88;则在目标被击中的情况下,甲、乙同时击中目标的概率为P =0.6×0.70.88 =2144.2.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 片上,则跳三次之后停在A 片上的概率是( )A .13B .29C .49D .827【解析】选 A.由题意知逆时针方向跳的概率为23 ,顺时针方向跳的概率为13 ,青蛙跳三次要回到A 只有两条途径:第一条:按A→B→C→A,P 1=23 ×23 ×23 =827 ;第二条:按A →C→B→A,P 2=13 ×13 ×13 =127,所以跳三次之后停在A 上的概率为P 1+P 2=827 +127 =13.3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A .34 B .23 C .35 D .12【解析】选A.问题等价为两类:第一类,比赛一局甲赢,其概率P 1=12 ;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12 ×12 =14 .故甲队获得冠军的概率为P 1+P 2=34.4.甲射击命中目标的概率是12 ,乙命中目标的概率是13 ,丙命中目标的概率是14 .现在三人同时射击目标,则目标被击中的概率为( ) A .34 B .23 C .45 D .710【解析】选A.设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P(A B C )=P(A )P(B )P(C )=[1-P(A)]·[1-P(B)]·[1-P(C)]=⎝ ⎛⎭⎪⎫1-12 ×⎝ ⎛⎭⎪⎫1-13 ×⎝ ⎛⎭⎪⎫1-14 =14. 故目标被击中的概率P =1-P(A B C )=34.5.从甲袋中摸出一个红球的概率是13 ,从乙袋中摸出一个红球的概率是12 ,且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23 等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率【解析】选C.分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P(A)=13 ,P(B)=12 ,由于A ,B 相互独立,所以1-P(A )P(B )=1-23 ×12 =23 .根据互斥事件可知C 正确.二、填空题(每小题5分,共15分)6.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一本书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是__________.【解析】设“任取一本书是文科书”的事件为A ,“任取一本书是精装书”的事件为B ,则A ,B 是相互独立的事件,所求概率为P(AB).根据题意可知P(A)=40100 =25 ,P(B)=70100 =710 ,所以P(AB)=P(A)·P(B)=25 ×710 =725 .答案:725【补偿训练】某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.【解析】设事件A 为“周日值班”,事件B 为“周六值班”, 则P(A)=C 16 C 27 ,P(AB)=1C 27 ,故P(B|A)=P (AB )P (A ) =16 .答案:167.(2021·银川高二检测)甲、乙两人独立地解决同一个问题,甲解决这个问题的概率是13 ,乙解决这个问题的概率是25 ,那么恰好有一个人解决这个问题的概率是________.【解析】记“甲解决问题”为事件A ,“乙解决问题”为事件B , “恰有一人解决问题”为事件C ,则P(C)=P(A B )+P(A B) =P(A)P(B )+P(A )P(B) =13 ×⎝ ⎛⎭⎪⎫1-25 +⎝ ⎛⎭⎪⎫1-13 ×25 =715 .答案:7158.事件A ,B ,C 相互独立,如果P(AB)=16 ,P(B C)=18 ,P(AB C )=18 ,则P(B)=________,P(A B)=________.【解析】因为P(AB C )=P(AB)P(C )=16 P(C )=18 ,所以P(C )=34 ,即P(C)=14 .又P(B C)=P(B )·P(C)=18 ,所以P(B )=12 ,P(B)=12 .又P(AB)=16 ,则P(A)=13,所以P(A B)=P(A )·P(B)=⎝ ⎛⎭⎪⎫1-13 ×12 =13.答案:12 13【补偿训练】某班甲、乙、丙三名同学竞选班委,甲当选的概率为45 ,乙当选的概率为35 ,丙当选的概率为710. (1)求恰有一名同学当选的概率.(2)求至多有两人当选的概率.【解析】设甲、乙、丙当选的事件分别为A ,B ,C , 则P(A)=45 ,P(B)=35 ,P(C)=710 .(1)易知事件A ,B ,C 相互独立,所以恰有一名同学当选的概率为P(A B C )+P(A B C )+P(A B C) =P(A)P(B )P(C )+P(A )P(B)P(C )+P(A )P(B )P(C) =45 ×25 ×310 +15 ×35 ×310 +15 ×25 ×710 =47250 . (2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C) =1-45 ×35 ×710 =83125.三、解答题(每小题10分,共20分)9.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率: (1)第3次拨号才接通电话. (2)拨号不超过3次而接通电话.【解析】设A i ={第i 次拨号接通电话},i =1,2,3. (1)第3次拨号才接通电话可表示为A 1 A 2A 3, 于是所求概率为P(A 1 A 2A 3)=910 ×89 ×18 =110.(2)拨号不超过3次而接通电话可表示为A 1+A 1A 2+A 1 A 2A 3, 于是所求概率为P(A 1+A 1A 2+A 1 A 2A 3)=P(A 1)+P(A 1A 2)+P(A 1 A 2A 3) =110 +910 ×19 +910 ×89 ×18 =310. 10.根据资料统计,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6,购买甲、乙保险相互独立,各车主间相互独立. (1)求一位车主同时购买甲、乙两种保险的概率. (2)求一位车主购买乙种保险但不购买甲种保险的概率. (3)求一位车主至少购买甲、乙两种保险中的一种的概率.【解析】记A 表示事件“购买甲种保险”,B 表示事件“购买乙种保险”,则由题意得A 与B ,A 与B ,A 与B ,A 与B 都是相互独立事件,且P(A)=0.5,P(B)=0.6.(1)记C 表示事件“同时购买甲、乙两种保险”. 所以P(C)=P(AB)=P(A)P(B)=0.5×0.6=0.3.(2)记D 表示事件“购买乙种保险但不购买甲种保险”,则D =A B. 所以P(D)=P(A B)=P(A )P(B)=(1-0.5)×0.6=0.3.(3)记E 表示事件“至少购买甲、乙两种保险中的一种”,则事件E 包括A B ,A B ,AB ,且它们彼此为互斥事件.所以P(E)=P(A B ∪A B ∪AB)=P(A B)+P(A B )+P(AB) =0.5×0.6+0.5×0.4+0.5×0.6=0.8.【一题多解】解答第(3)题还可以用如下的方法解决:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件. 所以P(E)=1-P(A B )=1-(1-0.5)×(1-0.6)=0.8. 【创新迁移练】1.(2021·桂林高二检测)近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为910 、89 、34 、13 ,则该选手进入第二轮答题的概率为________;该选手最终获得奖金的概率为________. 【解析】选手进入第二轮答题,则第一轮中答题全部正确,概率为910 ×89 ×34 ×13 =15 ,第二轮通过的概率为15 +110 ×89 ×34 ×13 +910 ×19 ×34 ×13 +910 ×89 ×14 ×13 +910×89 ×34 ×23 =15 +145 +140 +115 +25 =257360 ,该选手最终获得奖金的概率为15 ×257360 =2571800. 答案:15 25718002.在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:作物产量(千克) 300 500概率0.5 0.5作物市场价格(元/千克) 6 10概率0.4 0.6设X表示在这块地上种植一季此作物的利润,求X的分布列.【解析】设A表示事件“作物产量为300千克”,B表示事件“作物市场价格为6元/千克”,由题设知P(A)=0.5,P(B)=0.4.因为利润=产量×市场价格-成本,所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A )P(B )=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A )P(B)+P(A)P(B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为。