南航自动控制原理考纲
- 格式:pdf
- 大小:89.56 KB
- 文档页数:2
820自动控制原理考试大纲920自动控制原理(专业学位)考试大纲《自动控制原理》考试内容包括: 经典控制理论和现代控制理论。
第一章-自动控制的一般概念:控制系统的一般概念、名词术语、发展史;控制系统的分类;控制系统的组成;典型外作用;对控制系统的基本要求。
第二章-控制系统的数学模型:控制系统动态微分方程的列写;用拉普拉斯变换求解线性微分方程的零初态响应与零输入响应;运动模态的概念;传递函数的定义和性质;典型元部件传递函数的求法;控制系统结构图的绘制;梅逊公式在结构图和信号流图中的应用。
第三章-线性系统的时域分析法:系统稳定性的定义与判断法则;劳斯稳定判据;控制系统时域动态性能指标的定义与计算;一阶系统、二阶系统的阶跃响应,典型欠阻尼二阶系统动态性能指标的计算;输入引起的误差的定义,静态误差系数、系统型别、稳态误差的计算;计算典型输入作用下,不同类型系统的稳态误差;扰动引起的误差的定义与计算方法;减小稳态误差的措施。
第四章-线性系统的根轨法:根轨迹的基本概念;根轨迹的模值条件与相角条件;根轨迹绘制的基本法则;广义根轨迹;主导极点与偶极子的概念及其应用。
第五章-线性系统的频域分析法:频率特性的概念及其图示法;频率特性的计算;开环频率特性的绘制;开环系统幅相曲线绘制;开环对数曲线绘制;由最小相角系统的对数幅频渐近曲线求传递函数;奈奎斯特稳定判据;对数稳定判据;稳定裕度;串联超前校正网络的设计;串联迟后校正网络的设计。
第六章-线性离散系统的分析:离散系统的基本概念;信号的采样与保持;差分方程的概念;差分方程的求取与求解;香农采样定理;Z变换定理;离散系统的数学模型;脉冲传递函数的概念与求法;离散系统输出Z变换的求法;离散系统的稳定性与稳态误差;第七章-非线性控制系统分析知识点:非线性控制系统概述;常见非线性特性及其对系统运动的影响;负倒描述函数曲线的绘制;用描述函数法判断非线性系统稳定性;自激振荡的判断、自振参数的确定。
②南航《820⾃动控制原理》、《920⾃动控制原理(专业学位)》考试⼤纲820⾃动控制原理考试⼤纲920⾃动控制原理(专业学位)考试⼤纲《⾃动控制原理》考试内容包括: 经典控制理论和现代控制理论。
第⼀章-⾃动控制的⼀般概念:控制系统的⼀般概念、名词术语、发展史;控制系统的分类;控制系统的组成;典型外作⽤;对控制系统的基本要求。
第⼆章-控制系统的数学模型:控制系统动态微分⽅程的列写;⽤拉普拉斯变换求解线性微分⽅程的零初态响应与零输⼊响应;运动模态的概念;传递函数的定义和性质;典型元部件传递函数的求法;控制系统结构图的绘制;梅逊公式在结构图和信号流图中的应⽤。
第三章-线性系统的时域分析法:系统稳定性的定义与判断法则;劳斯稳定判据;控制系统时域动态性能指标的定义与计算;⼀阶系统、⼆阶系统的阶跃响应,典型⽋阻尼⼆阶系统动态性能指标的计算;输⼊引起的误差的定义,静态误差系数、系统型别、稳态误差的计算;计算典型输⼊作⽤下,不同类型系统的稳态误差;扰动引起的误差的定义与计算⽅法;减⼩稳态误差的措施。
第四章-线性系统的根轨法:根轨迹的基本概念;根轨迹的模值条件与相⾓条件;根轨迹绘制的基本法则;⼴义根轨迹;主导极点与偶极⼦的概念及其应⽤。
第五章-线性系统的频域分析法:频率特性的概念及其图⽰法;频率特性的计算;开环频率特性的绘制;开环系统幅相曲线绘制;开环对数曲线绘制;由最⼩相⾓系统的对数幅频渐近曲线求传递函数;奈奎斯特稳定判据;对数稳定判据;稳定裕度;串联超前校正⽹络的设计;串联迟后校正⽹络的设计。
第六章-线性离散系统的分析:离散系统的基本概念;信号的采样与保持;差分⽅程的概念;差分⽅程的求取与求解;⾹农采样定理;Z变换定理;离散系统的数学模型;脉冲传递函数的概念与求法;离散系统输出Z变换的求法;离散系统的稳定性与稳态误差;第七章-⾮线性控制系统分析知识点:⾮线性控制系统概述;常见⾮线性特性及其对系统运动的影响;负倒描述函数曲线的绘制;⽤描述函数法判断⾮线性系统稳定性;⾃激振荡的判断、⾃振参数的确定。
题号:821
《自动控制原理》
考试大纲
一、考试内容
正确理解自动控制原理的有关概念。
掌握结构图等效变换方法和梅森公式。
能熟练求取系统传递函数。
掌握代数稳定判据及在判定系统稳定性方面的应用方法;掌握系统稳态误差的分析计算方法;掌握一、二阶系统典型相应的特点以及模型参数与动态性能的关系;了解附加闭环零极点对系统动态性能的影响;能熟练进行有关的分析计算。
能熟练绘制系统根轨迹(包括广义根轨迹)并分析系统性能参数变化趋势,掌握有关的计算方法。
掌握典型环节频率特性,能熟练绘制开环系统频率特性;掌握频域稳定判据;掌握稳定裕度计算及系统性能估算方法;正确理解闭环频率特性及相应指标。
掌握频域串联校正方法;掌握反馈校正和复合校正方法。
能熟练推导离散系统脉冲传递函数。
熟练掌握离散系统稳定性判据和稳态误差计算方法。
了解非线性系统运动的特点,重点掌握运用描述函数法进行非线性系统稳定性及自振分析的方法。
一般掌握相平面法。
注重各章概念的融会贯通以及解题方法的综合运用。
二、参考书目
胡寿松主编,《自动控制原理》(第三版),国防工业出版社。
自动控制原理考研大纲一、自动控制的基本概念与基本原理:掌握自动控制的概念、目标与任务、基本原理和基本方法,包括反馈控制系统的基本结构、基本性能指标、闭环控制系统的稳定性分析与判据、经典控制理论和现代控制理论等内容。
二、线性系统的数学模型与传递函数:理解线性系统的概念和性质、数学建模的基本方法与步骤,了解线性系统的传递函数模型描述方法、时域和频域的表示方法、稳定性和稳定判据、系统的可控性和可观性等内容。
三、经典控制方法:掌握经典控制方法中的比例、积分和微分控制器,包括比例控制器、积分控制器、微分控制器和比例积分微分控制器等内容,理解PID控制器的基本原理、设计方法和应用。
四、根轨迹法:了解根轨迹法的基本思想和基本步骤,掌握根轨迹的性质和基本规律,理解根轨迹对系统稳定性、响应特性和参数设计的影响。
五、频率响应法:理解频率响应法的基本思想和基本步骤,包括频率响应曲线、伯德图、封闭环控制系统的稳定判据和性能指标等内容,掌握频率响应法的应用于系统分析和设计的方法。
六、状态空间法:了解状态空间法的基本思想和基本步骤,包括系统状态方程的建立与求解、系统可观性和可控性的判据、状态反馈控制和输出反馈控制的设计方法等内容。
七、多变量系统与鲁棒控制:理解多变量系统的基本概念和性质,了解多变量系统的模型描述和控制设计的基本方法,包括多变量系统的状态空间描述、联合稳定性分析和设计、鲁棒控制的基本概念和基本技术等内容。
八、现代控制理论与方法:了解现代控制理论和方法的基本概念和基本方法,包括状态观测器、系统鲁棒性分析和设计、自适应控制和最优控制等内容。
以上内容是自动控制原理考研大纲中的主要内容,考生需要全面理解并掌握这些知识点。
在备考过程中,可以参考教材、课堂笔记和相关考研辅导资料,加强理论学习和实践训练,通过大量习题和实例练习,提高解题能力和应试水平。
同时,考生还可以参加模拟考试和真题训练,及时发现问题并进行针对性的复习和强化,为考试做好充分准备。
《自动控制原理》实验大纲课程名称:自动控制原理实验总学时数:18适用专业:电气工程及其自动化承担实验室:通信与控制工程系一、实验教学的目的和要求自动控制原理是高等学校电气工程及自动化、通信工程、电子信息工程、电子信息科学与技术专业的一门重要的技术基础实验课。
本实验教学的目的与任务是:使学生通过本实验课程的学习,获得控制理论方面的必要的实验技能,了解实验仪器的使用方法,掌握不同系统的模拟电路的构成及实验方法;能设计和运用基本实验电路解决实际工程中具体问题;了解MATLAB语言在自动控制原理课中的应用,并为学习后续专业课程及解决一些控制过程中有关技术问题打下一定基础。
二、实验项目名称和学时分配序号实验项目名称学时分配实验属性实验类型实验者类别每组人数必开/选开1 控制系统典型环节的模拟 3 专业设计本科2 必开2 二阶系统的瞬态响应分析3 专业设计本科 2 必开3 三阶系统的瞬态响应及稳定性分析 3 专业设计本科 2 选开4 PID控制器的动态特性 3 专业设计本科 2 必开5 自动控制系统的动态校正 3 专业设计本科 2 必开6 MATLAB语言进行系统仿真 6 专业设计本科 2 必开7 用SIMULINK仿真二阶系统和校正系统 3 专业设计本科 2 必开8 典型非线性系统模拟 3 专业验证本科 2 选开三、单项实验的内容和要求(包括实验分组人数要求)实验一:控制系统典型环节的模拟1.内容:(1)画出比例、惯性、积分、微分和振荡环节的电子模拟电路图;(2)观察并记录下列典型环节的阶跃响应波形。
①G1(S)=1和G2(S)=2;②G1(S)=1/S和G2(S)=1/0.5S;③G 1(S)=1+S 和G 2(S)=1+2S ;④G 1(S)=1/1+S 和G 2(S)=1/(0.5S+1); ⑤G 1(S)=1/(S 2+1.414s+1)。
2.要求:(1)画出五种典型环节的实验电路图,并注明参数;(2)测量并记录各种典型环节的单位阶跃响应,并注明时间坐标轴。
《自动控制原理》考试大纲一、考试对象电气工程及其自动化、测控技术与仪器等专业本科插班生二、考试目的《自动控制原理》课程考试旨在考察学生对自动控制系统的基本概念、基本原理及基本分析方法的掌握和运用,着重考察学生应用适当数学工具和基本原理,用不同方法对系统进行分析的能力.本门课程考核要求由低到高共分为“了解"、“掌握"、“熟练掌握”三个层次。
其含义:了解,指学生能懂得所学知识,能在有关问题中认识或再现它们;掌握,指学生清楚地理解所学知识(例如定理的条件与结论,公式的表述与使用范围等),并且能在基本分析和简单应用中正确地使用它们;熟练掌握,指学生能较为深刻理解所学知识,在此基础上能够准确、熟练地使用它们分析解决较为简单的实际问题。
三、考试方法和考试时间1、考试方法:(闭卷笔试)2、记分方式:百分制,满分为100分3、考试时间:120分钟4、试题总数:五大题(部分大题中含有若干个小题)5、命题的指导思想和原则命题的总的指导思想是:全面考查学生对本课程的基本原理、基本概念和主要知识点学习、理解和掌握的情况。
命题的原则是:最基本的知识一般要占60%左右,稍微灵活一点的题目要占20%左右,较难的题目要占20%左右,其中大多数是大题目。
客观性的题目占的分量较少。
6、题目类型(1)填空题(每题3分,约15分)(2)选择题(每题3分,约15分)(3)简答题(每题10分,约10分)(4)分析计算题(约40分)(5)作图题(每题10分,约20分)7、答题要求(1)简答题:只要求答出要点,如果本身所表示的意思不明确,则需要对要点稍作说明.若要点本身所表示的意思已经很明确,就无需再作说明。
(2)分析计算题:分析思路清晰,公式表述清楚;解题时思路清楚,步骤完整,格式规范化。
这类题一般按演算步骤记分,如果计算结果不对,但演算步骤对了,仍可得一定分数。
(3)作图题:要求作图步骤清楚,若图未做完,可按作图步骤得一定分数。
《自动控制原理》考研复习大纲自动控制原理是一门涉及系统建模和控制设计的学科,学习本门课程主要是为了掌握系统控制的基本理论和方法。
下面是《自动控制原理》考研复习大纲。
一、基本概念1.自动控制的基本概念和分类2.自动控制系统的组成和结构3.控制系统的特性参数与性能指标4.闭环控制和开环控制的优缺点二、系统数学模型1.力学系统的数学建模2.电气系统的数学建模3.热力系统的数学建模4.液压系统的数学建模三、信号与系统1.信号的基本概念与分类2.系统的时间域和频域分析方法3.信号的线性时不变系统表示与处理4.采样与保持四、系统时域分析1.系统的传递函数与状态方程2.系统的零极点分析和阶跃响应3.系统的稳定性与稳态误差4.系统的动态特性与频域指标五、系统频域分析1.线性系统频域描述的基本概念2.系统的频率响应与波特图3.传递函数的极点和零点分析六、控制器设计与稳定性1.控制器设计的基本思想和方法2.PID控制器的性能指标与调整方法3.根轨迹法与极坐标法4.控制系统的稳定性判据和稳定性分析方法七、校正和校准2.定义和识别开环和闭环误差3.适应性校正和自适应控制方法八、多变量系统与现代控制理论1.多变量系统的性态和控制方法2.现代控制理论与方法概述3.线性二次调整与最优控制4.自适应控制与模糊控制九、主动振动控制1.振动控制的基本概念和方法2.主动振动控制的建模和控制方法3.智能材料在主动振动控制中的应用以上是《自动控制原理》考研复习大纲的主要内容,整体上包括了基本概念、系统数学模型、信号与系统、系统时域分析、系统频域分析、控制器设计与稳定性、校正和校准、多变量系统与现代控制理论、主动振动控制等方面的内容。
希望能对你的考研复习提供一定的帮助。
《自动控制原理》考试大纲一、基本要求掌握控制系统分析和综合基本方法,主要内容有传递函数和信号流图等数学模型的建立;系统稳定性、动态性能、稳态性能的时域分析;频域法和根轨迹法;系统串联校正的设计方法;线性离散系统的分析;系统状态空间建模及其求解;系统可控性和可观测性;线性定常系统状态反馈及观测器设计;李雅普诺夫稳定性理论。
二、考试范围.自动控制的一般概念()自动控制系统的定义、构成;()自动控制系统的基本控制方式;自动控制系统的分类;()对控制系统的基本要求;.控制系统的数学模型()传递函数的定义、性质及典型环节的传递函数;()信号流图的组成、建立及梅森增益公式;()闭环系统的传递函数:输入量及扰动量作用下的传递函数、误差传递函数。
.线性系统的时域分析法()一阶系统动态性能;()二阶系统的动态性能:典型二阶系统的数学模型、欠阻尼阶跃响应、二阶系统的动态性能指标、二阶系统性能的改善;()控制系统的稳定性分析及代数稳定判据;()控制系统的稳态性能分析:稳态误差的定义、系统类型、稳态误差分析与静态误差系数。
.线性系统的根轨迹法()根轨迹方程:幅值条件和相角条件;()度根轨迹作图的一般规则、典型的零、极点分布及其相应的根轨迹;()系统性能分析:稳定性分析、增加零、极点对根轨迹的影响、利用主导极点估计系统的性能指标;.线性系统的频域分析法()频率特性;()典型环节与开环系统的频率特性;()奈奎斯特稳定判据及应用;()稳定裕度;.线性系统的校正法()校正装置:超前、滞后网络的特性;()系统校正的频率响应法:超前、滞后校正设计;()控制器:控制法则及对系统性能的影响。
. 线性离散系统的分析() 信号采样和保持;() 离散系统数学模型:差分方程和脉冲传递函数;() 离散系统稳定性及稳定性判据;() 离散系统稳态误差及动态性能分析;. 线性系统的状态空间分析与综合() 线性系统的状态空间描述:建立、转换、标准型;线性系统的运动分析状态方程的解;() 线性系统的可控性和可观测性;() 线性定常系统的线性变换;() 线性定常系统的状态反馈极点配置和全维状态观测器设计;() 李雅普诺夫稳定性分析。
2017版南京航空航天大学《820自动控制原理》全套考研资料我们是布丁考研网南航考研团队,是在读学长。
我们亲身经历过南航考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南航。
此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。
有任何考南航相关的疑问,也可以咨询我们,学长会提供免费的解答。
更多信息,请关注布丁考研网。
以下为本科目的资料清单(有实物图及预览,货真价实):南京航空航天大学《820自动控制原理》全套考研资一、南京航空航天大学《820自动控制原理》历年考研真题及答案解析2016年南京航空航天大学《820自动控制原理》考研真题(11月份统一更新)2015年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2014年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2013年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2012年南京航空航天大学《820自动控制原理》考研真题2011年南京航空航天大学《820自动控制原理》考研真题2010年南京航空航天大学《820自动控制原理》考研真题2009年南京航空航天大学《820自动控制原理》考研真题2008年南京航空航天大学《820自动控制原理》考研真题2007年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2006年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2005年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2004年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2003年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2002年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2001年南京航空航天大学《820自动控制原理》考研真题(含答案解析)2000年南京航空航天大学《820自动控制原理》考研真题(含答案解析)1999年南京航空航天大学《820自动控制原理》考研真题(含答案解析)二、南京航空航天大学《820自动控制原理》考研复习笔记内部笔记1、自动控制原理本科笔记最新本科(手写)课堂笔记2、自动控制原理优秀研究生笔记3、自动控制原理课后习题答案4、《自动控制原理》考试内容三、赠送南京航空航天大学《820自动控制原理》授课PPT(电子版,邮箱发送)以下为截图及预览:2015年考研真题2014年考研真题考研笔记。
521自动控制原理
第一章 自动控制一般概念
1. 自动控制基本概念
2. 区分线性/非线性、定常/时变系统。
第二章 控制系统数学模型
1. 画出实际系统结构图,写出传递函数。
2. 线性系统时域响应。
3. 传递函数、增益、根轨迹增益、零极点和系统模态的概念
4. 已知结构图,求闭环传递函数。
第三章 线性系统时域分析法
1. 性能指标
2. 线性控制系统稳定性的概念,判断稳定性
3. 系统类型、误差系数以及在典型输入作用下的稳定误差。
4. 求系统在有用输入和扰动作用下的稳态误差。
第四章 线性系统根轨迹法
1. 根轨迹概念。
2. 绘制180度根轨迹,判断闭环系统阻尼与稳定性。
3. 区分180度/0度根轨迹。
4. 主导极点、偶极子。
第五章 线性系统频域分析法
1. 频率特性概念。
2. 系统在正弦输入下的稳态输出或误差。
3. 绘制开环幅相曲线,用奈氏判据判断稳定性。
4. 绘制对数幅频渐近特性曲线,或根据该曲线求开环传递函数;
5. 相角裕度、幅值裕度和系统带宽。
参考书目
胡寿松《自动控制原理》第四版,科学出版社
您所下载的资料来源于考研资料下载中心
获取更多考研资料,请访问。
《自动控制原理》考试大纲第一部分课程性质与目标一、课程性质与特点课程以经典控制理论为主,重点论述了用时域法、根轨迹法和频域法分析线性系统的性能,介绍了系统的初步设计及校正的一般性原则。
通过课程的学习,学生应对自控理论有较系统的认识,达到理解并熟练掌握自控的基本理论和基本方法,具有初步解决工程相关问题的能力。
二、课程目标与基本要求通过课程的学习,学生应正确理解反馈控制系统的基本概念,掌握控制系统数学模型建立的一般方法,掌握线性系统的分析方法(时域法、根轨迹法和频域法)。
基本要求如下:1、正确理解反馈控制系统的基本概念。
2、掌握控制系统的数学模型建立的方法。
3、掌握线性系统的时域法、根轨迹法和频域分析法。
4、理解自控系统校正的一般概念。
第二部分考核内容与考核目标第1章反馈控制原理一、学习目的与要求了解自动控制的发展、自动控制系统的分类,理解自动控制系统的组成、基本控制方式(开环控制和闭环控制)和评价自动控制系统的性能指标。
通过闭环控制系统的举例,理解反馈控制的原理。
二、考核知识点与考核目标(一)反馈控制原理(一般)识记:自控控制的两种基本方式(开环控制和闭环控制)。
理解:闭环控制的特点(二)自动控制系统的组成及常用术语(一般)识记:自动控制系统的组成及常用术语。
(三)自动控制系统的分类及性能指标(一般)识记:自动控制系统的分类,评价自动控制系统的性能指标。
第2章控制系统的数学模型一、学习目的与要求掌握自动控制系统的三种数学模型(微分方程、传递函数、结构图)的建立方法。
熟练掌握自动控制系统传递函数的求取方法。
二、考核知识点与考核目标(一)自控元件运动方程的建立(次重点)理解:RL,RC或RLC网络及简单电机拖动系统、机械系统的微分方程列写方法。
(二)小偏差线性化(一般)识记:线性化条件及方法。
(三)拉氏变换及线性常微分方程的求解(重点)识记:典型输入信号的拉氏变换,理解:拉氏变换及反变换的定义、性质,应用:会用拉氏变换及反变换法求解微分方程。
一、概述南航820自动控制原理是南航自动控制专业的核心课程之一,旨在帮助学生深入了解自动控制的基本原理和方法,从而为他们的未来职业发展奠定坚实的理论基础。
2024年的课程大纲对南航820自动控制原理进行了全面的更新和调整,以适应当下的技术发展和行业需求。
二、课程目标1. 确立学术视野2024年的南航820自动控制原理课程旨在帮助学生建立宽广的学术视野,了解自动控制领域的最新进展和应用情况,培养学生对自动控制理论和技术的深刻理解。
2. 掌握基本原理通过本课程的学习,学生将能够掌握自动控制的基本原理,包括控制系统的模型建立、频域分析、时域分析等重要内容,为日后的专业实践和研究打下坚实基础。
3. 培养实践能力除了理论学习,课程还将注重培养学生的实践能力,通过实验教学和实际案例分析,让学生掌握自动控制技术在实际工程中的应用方法和技巧,为将来的工程实践做好准备。
三、课程内容1. 自动控制基础概念本部分将介绍自动控制的基本概念和定义,包括控制系统的基本组成、控制对象的分类、控制系统的稳定性、可控性和可观测性等内容,帮助学生建立对自动控制领域的整体认识。
2. 控制系统的数学模型对于控制系统的数学模型建立是自动控制原理课程的重点和难点,2024年的课程大纲将特别加强这一部分的教学,让学生掌握从实际工程问题到数学模型的转化方法,培养他们的建模能力。
3. 频域分析频域分析是自动控制领域的重要内容之一,学生将学习使用傅里叶变换等方法对控制系统进行频域分析,了解控制系统的频率特性和稳定性,为后续的控制器设计和优化提供理论支持。
4. 时域分析时域分析是掌握自动控制原理的关键,学生将学习如何通过传递函数、状态空间模型等方法对控制系统进行时域分析,了解系统的动态特性和响应规律,为控制策略的选择和调优提供依据。
5. 控制器设计与优化本部分将介绍常见的控制器设计方法,包括比例积分微分(PID)控制器、模糊控制、神经网络控制等,学生将学习不同控制器的设计原理和优化方法,掌握控制系统的设计和调试技巧。
(一)试卷满分为150分。
(二)内容比例控制系统的数学模型约30分反馈控制系统的性能指标约30分反馈控制系统的稳定性约25分根轨迹分析和设计系统的方法约20分频率响应约30分校正网络的设计约15分(三)题型比例计算题约占40%分析题约占60%第二部分考查的知识范围一、控制系统理论的基本概念控制系统是由各部件互联而形成的一个系统结构,并能够提供所期望的响应。
开环控制系统是利用调节装置直接控制过程;闭环控制系统是将系统的输出测量反馈并将该反馈信号与期望的输出进行比较的系统。
二、动态系统的数学模型(一)物理系统的数学模型、线性化、Laplace变换数学模型是分析和设计控制系统的基础。
由于所考察的系统在性质上是动态的,所以描述方程通常是微分方程。
如果能够线性化这些方程,那么就可以使用Laplace变换简化求解方法。
(二)线性系统的传递函数线性系统的传递函数定义为所有初始条件假定为零时的输出变量Laplace 变换与输入变量Laplace变换之比。
系统(或元件)的传递函数描述了所考虑系统的动态关系。
(三)方块图模型和信号流图模型方框图描述了系统变量之间的关系。
方框图由单向功能块组成,它表示变量间的传递函数。
信号流图是由节点和连接它们的若干有向支路组成的,它是一组线性关系的图解表示法。
可以采用MASON增益公式对获得系统的传递函数。
(四)状态变量、状态微分方程和状态流图模型系统状态是指表示系统的一组变量,若已知这组变量、输入信号和描述系统动态特性的方程,就可以完全确定系统未来的状态和输出响应。
状态微分方程将系统状态的变化率与系统状态和输入信号联系起来,线性系统的输出则通过输出方程把状态变量和输入信号联系起来。
状态流图可以采用相变量型状态流图和输入前馈形式型状态流图模型。
(五)状态转移矩阵和系统响应矩阵指数Φ(t) 称为为状态转移矩阵。
通过求得控制系统状态变量的时间响应可以检验系统的性能。
求解状态向量微分方程可得到系统的瞬态响应。
《自动控制原理》考试大纲
一、考试的总体要求
主要内容包括控制系统的数学模型、时域分析法、根轨迹分析法、频率特性法、离散系统分析、非线性系统分析和自动控制理论综合等内容,强调的是物理概念和实际应用,并具有综合运用所学知识分析问题和解决问题的能力。
二、考试的内容
1.自动控制的基本概念
1)自动控制的基本原理与方式
2)自动控制原理的分类、基本要求、分析与设计工具
2.控制系统的数学模型
1)控制系统的时域数学模型
2)控制系统的复数域数学模型
3)控制系统的结构图与信号流图
3. 线性系统的时域分析法
1)一阶系统的时域分析
2)二阶系统的时域分析
3)高阶系统的时域分析
4)线性系统的稳定性分析
5)线性系统的稳态误差计算
4.线性系统的根轨迹法
1)根轨迹法的基本概念
2)系统的性能分析
3)控制系统复域设计
5.线性系统的频域分析法
1)典型环节与开环系统的频率特性2)频率域稳定判据
3)稳定裕度
4)频域性能指标分析
5)控制系统频域设计
6.线性系统的校正方法
1)串联校正
2)前馈校正
3)复合校正
4)控制系统校正设计。
自动控制原理考研大纲排版:栏杆拍遍监制:风之子伊人归鸣谢:修水表的狠狠《自动控制原理》考试内容包括: 经典控制理论和现代控制理论两大部分。
第一章自动控制的一般概念知识点;控制系统的一般概念;名词术语、发展史、控制系统的分类、控制系统的组成、典型外作用、对控制系统的基本要求基本要求:掌握反馈控制的基本原理、根据系统工作原理图绘制原理方块图第二章控制的数学模型知识点:控制系统动态微分方程的列写用拉普拉斯变换求解线性微分方程的零初态响应与零输入响应运动模态的概念传递函数的定义和性质、典型元部件传递函数的求法控制系统结构图的绘制、等效变换、梅逊公式在结构图和信号流图中的应用基本要求:1.利用复阻抗建立电路结构图2.熟悉控制系统常用元部件的传递函数3.掌握控制系统结构图的绘制方法及基本等效变换4.用等效变换或梅逊公式求结构图或信号流图的各种传递函数第三章线性系统的时域分析法知识点:控制系统时域动态性能指标的定义与计算、误差的定义与稳态误差的计算系统稳定性的定义与判断法则、系统动态性能分析不作要求的内容:过阻尼二阶系统性能指标的估算公式非零初始条件下二阶系统的响应过程高阶系统的动态性能估算、赫尔维茨稳定判据动态误差系数、采用串级控制抑制内回路扰动基本要求:1.学会求出一阶系统的阶跃响应、会推导一阶系统动态性能指标的计算公式2.典型欠阻尼二阶系统动态性能指标的计算、性能指标与特征根的关系3.改善二阶系统动态性能指标的方法4.主导极点与偶极子的概念及其应用5.劳斯判据的应用6.静态误差系数、系统型别、稳态误差的计算。
7.扰动引起的误差的定义与计算方法8.减小和消除稳态误差的方法第四章线性系统的根轨法知识点:根轨迹的基本概念、根轨迹的模值条件与相角条件、根轨迹绘制的基本法则广义根轨迹、系统性能的分析不作要求的内容:根轨迹簇基本要求:1.学会由系统的特征方程求开环增益从零到无穷变化时的根轨迹方程(或开环零点、或开环极点从零到无穷变化)2.理解根轨迹的模值方程与相角方程的几何意义3.掌握零度根轨迹与1800度根轨迹的绘制法则4.学会由根轨迹分析系统稳定性、分析参数的选择对系统运动模态的影响第五章线性系统的频域分析法知识点:频率特性的概念及其图示法、开环频率特性的绘制奈奎斯特稳定判据、稳定裕度不作要求的内容:对数幅相曲线随机信号的频谱、确定闭环频率特性的图解方法基本要求:1.切记稳定系统的正弦响应的稳态输出是与输入同频率的正弦信号,幅值相角均随频率改变;其稳态误差也是与输入同频率的正弦信号,且幅值相角均改变。
《自动控制原理》考试内容包括: 经典控制理论和现代控制理论。
第一章-自动控制的一般概念:控制系统的一般概念、名词术语、发展史;控制系统的分类;控制系统的组成;典型外作用;对控制系统的基本要求。
第二章-控制系统的数学模型:控制系统动态微分方程的列写;用拉普拉斯变换求解线性微分方程的零初态响应与零输入响应;运动模态的概念;传递函数的定义和性质;典型元部件传递函数的求法;控制系统结构图的绘制;梅逊公式在结构图和信号流图中的应用。
第三章-线性系统的时域分析法:系统稳定性的定义与判断法则;劳斯稳定判据;控制系统时域动态性能指标的定义与计算;一阶系统、二阶系统的阶跃响应,典型欠阻尼二阶系统动态性能指标的计算;输入引起的误差的定义,静态误差系数、系统型别、稳态误差的计算;计算典型输入作用下,不同类型系统的稳态误差;扰动引起的误差的定义与计算方法;减小稳态误差的措施。
第四章-线性系统的根轨法:根轨迹的基本概念;根轨迹的模值条件与相角条件;根轨迹绘制的基本法则;广义根轨迹;主导极点与偶极子的概念及其应用。
第五章-线性系统的频域分析法:频率特性的概念及其图示法;频率特性的计算;开环频率特性的绘制;开环系统幅相曲线绘制;开环对数曲线绘制;由最小相角系统的对数幅频渐近曲线求传递函数;奈奎斯特稳定判据;对数稳定判据;稳定裕度;串联超前校正网络的设计;串联迟后校正网络的设计。
第六章-线性离散系统的分析:离散系统的基本概念;信号的采样与保持;差分方程的概念;差分方程的求取与求解;香农采样定理;Z变换定理;离散系统的数学模型;脉冲传递函数的概念与求法;离散系统输出Z变换的求法;离散系统的稳定性与稳态误差;
第七章-非线性控制系统分析知识点:非线性控制系统概述;常见非线性特性及其对系统运动的影响;负倒描述函数曲线的绘制;用描述函数法判断非线性系统稳定性;自激振荡的判断、自振参数的确定。
第八章-线性系统的状态空间分析与综合:线性系统的状态空间描述;状态空间的基本概念;状态空间表达式的建立;状态空间表达式求解方法;状态转移矩阵及其性质;传递函数阵;线性系统的可控性与可观性;线性系统可控性与可观性的基本概念;线性系统可控性与可观性判据;可控标准型与可观标准型;线性定常系统的线性变换;状态空间线性变换定义和性质;对偶原理和规范分解;线性定常系统的反馈结构及设计状态观测器;传递函数的实现问题;状态反馈与输出反馈;极点配置;状态观测器设计;李雅普洛夫稳定性分析;李雅普洛夫意义稳定
性的基本概念;李亚普诺夫第一法和第二法;线性定常系统稳定性分析。