毕业设计基于单片机的超声测距仪设计外文翻译(标准格式)参考word
- 格式:doc
- 大小:637.50 KB
- 文档页数:19
基于单片机的超声测距系统设计摘要超声波测距法迅速,方便,计算简单,易于做到实时控制,提过基于单片机的超声测距系统的设计能更加深入地了解单片机的实际应用。
本课题完成整个超声波测距系统设计,包括单片机控制电路,发射电路,接收电路,LCD显示电路和温度补偿电路。
本课题硬件部分设计采用最小系统板和所需的超声波收发电路。
程序由计算机仿真并烧入单片机实际调试,最终实物是一个能在5至200cm范围内准确测量距离的便携式系统,经实际测量误差控制在5%以内。
该系统的设计过程加深了对单片机的理解。
本设计的产品也能在实际生活中有很广泛的应用。
关键词:超声波,测距,补偿,模块DESIGN OF ULTRASONIC RANGINGBASED ON SINGLECHIPABSTRACTUltrasonic ranging is so quick and useful,it can be easy to translationed and be controled on time.We can learn much about singlechip during the design of Ultrasonic ranging base on singlechip.The system is made up by singlechip part,send and receive part,LCD part and temperature detective part.With the helping of smallest system and computer,the product which can detective the distance from 5cm to 200cm comes out.The error is only 0.5%. The system can help you take a good learning about singlechip.On the other hand,the system can be used in many environment by its practicality.Key Words: Ultrasonic,Ranging, temperature detective目录摘要 (I)ABSTRACT (II)目录 .................................................................................................................................................. I II 第1章绪论 (1)1.1课题的背景和意义 (1)1.1.1 课题的背景 (1)1.1.2 课题的意义 (1)1.2超声波测距的发展现状趋势 (2)1.3本课题任务 (2)第2章单片机 (3)2.1单片机原理及应用 (3)2.1.1 单片机原理 (3)2.1.2 单片机的应用 (3)2.2单片机发展前景 (4)2.3单片机程序编译环境 (5)2.3.1 KEIL C51 (5)2.3.2 uVision2集成开发环境 (5)2.3.3 编辑器和调试器 (6)2.3.4 C51编译器 (6)2.3.5 部分代码优化 (7)2.3.6 RTX51实时核模块 (8)2.3.7 测试程序 (8)2.3.8 C51 V7版增强功能介绍 (9)第3章超声波测距原理 (10)3.1超声波原理及应用 (10)3.1.1 超声波原理 (10)3.1.2 超声波应用 (10)3.2超声波测距原理 (11)第4章测距系统构成与误差分析 (13)4.1单片机控制器 (13)4.2传感器 (13)4.2.1 超声波传感器原理与选型 (13)4.2.2 温度传感器选型 (14)4.3LCD显示屏 (15)4.4系统误差 (15)4.4.1 系统误差分析 (15)4.4.2 系统误差补偿 (16)第5章系统设计 (17)5.1系统框图 (17)5.2硬件 (17)5.2.1 发射电路 (17)5.2.2 接收电路 (18)5.3程序流程图 (20)5.4系统实物图 (21)5.5测试及数据分析 (21)第6章总结 (25)参考文献 (26)附录1部分程序 (28)致谢 (39)第1章绪论1.1课题的背景和意义1.1.1课题的背景随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。
基于单片机的超声波测距系统设计前言随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。
本设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。
由于超声波指向性强,因而常于距离的测量。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为v,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离s,即:s=vt/2 。
这就是所谓的时间差测距法。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 随着科学技术的快速发展,超声波将的应用将越来越广。
但就目前技术水平来说,人们可以具体利用的超声波技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
超声波测距技术在社会生活中已有广泛的应用如汽车倒车雷达等,它们测距精度一般较低。
目前对超声波高精度测距系统的需求越来越大。
展望未来,超声波作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
未来的超声波测距技术将朝着更高精度,更大应用范围,更稳定方向发展,死角问题也能得以解决。
1 超声波测距的基本概述[1]、[2]、[3]人耳能听到的声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。
超声波是在一种弹性介质中的机械振荡,它有两种形式:横向振荡(横波)及纵向振荡(纵波)。
在工业中应用主要采用纵向振荡。
超声波可以在气体、液体及固体中传播,其传播速度受很多因素的影响。
在空气中传播超声波,其频率较低、衰减较快。
超声波波长短,绕射现象小,其方向性好,而且穿透能力很强,且碰到杂质或分界面就会有显著的反射现象。
附录A 英文原文ULTASONIC RANGING IN AIRG. E. Rudashevski and A. A. GorbatovOne of the most important problems in instrumentation technology is the remote,contactless measurement of distances in the order of 0.2 to 10 m in air.Such a problem occurs,for instance,when measuring the relativethre edimensional position of separate machine members or structural units.Interesting possibilities for its solution are opened up by utilizing ultrasonic vibrations as an information carrier.The physical properties of air,in which the measurements are made,permit vibrations to be employed at frequencies up to 500 kHz for distances up to 0.5 m between a member and the transducer,or up to 60 kHz when ranging on obstacles located at distances up to 10 m.The problem of measuring distances in air is somewhat different from other problems in the a -pplication of ultrasound.Although the possibility of using acoustic ranging for this purpose has been known for a long time,and at first glance appears very simple,nevertheless at the present time there are only a small number of developments using this method that are suitable for practical purposes.The main difficulty here is in providing a reliable acoustic three-dimensional contact with the test object during severe changes in the air's characteristic.Practically all acoustic arrangements presently known for checking distances use a method of measuring the propagation time for certain information samples from the radiator to the reflecting member and back.The unmodulated acoustic(ultrasonic)vibrations radiated by a transducer are not in themselves a source of information.In order to transmit some informational communication that can then be selected at the receiving end after reflection from the test member,the radiated vibrations must be modulated.In this case the ultrasonic vibrations are the carrier of the information which lies in the modulation signal,i.e.,they are the means for establishing the spatial contact between the measuring instrument and the object being measured.This conclusion,however,does not mean that the analysis and selection of parameters for the carrier vibrations is of minor importance.On the contrary,the frequency of the carrier vibrations is linked in a very close manner with the coding method for the informational communication,with the passband of the receiving and radiating elements in the apparatus,with the spatial characteristics of the ultrasonic communication channel,and with the measuring accuracy.Let us dwell on the questions of general importance for ultrasonic ranging in air,namely:on the choice ofa carrier frequency and the amount of acoustic power received.An analysis shows that with conical directivity diagrams for the radiator and receiver,and assuming thatthe distance between radiator and receiver is substantially smaller than the distance to the obstacle,theamount of acoustic power arriving at the receiving area Pr for the case of reflection from an ideal planesurface located at right angles to the acoustic axis of the transducer comes towhere Prad is the amount of acoustic power radiated,B is the absorption coefficient for a plane wave inthe medium,L is the distance between the electroacoustic transducer and the test me -mber,d is the diameterof the radiator(receiver),assuming they are equal,and c~is the angle of the directivity diagram for theelectroacoustic transducer in the radiator.Both in Eq.(1)and below,the absorption coefficient is dependent on the amplitude and not on theintensity as in some works[1],and therefore we think it necessary to stress this difference.In the various problems of sound ranging on the test members of machines and structures,therelationship between the signal attenuations due to the absorption of a planewave and due to thegeometrical properties of the sound beam are,as a rule,quite different.It must be pointed out that the choiceof the geometrical parameters for the beam in specific practical cases is dictated by the shape of thereflecting surface and its spatial distortion relative to some average position.Let us consider in more detail the relationship betweenthe geometric and the power parameters ofacoustic beams for the most common cases of ranging on plane and cylindrical structural members.It is well known that the directional characteristic W of a circular piston vibrating in an infinite baffle is afunction of the ratio of the piston's diameter to the wavelength d/λ as found from the following expression:(2)where Jl is a Bessel function of the first order and α is the angle between a normal to the piston and aline projected from the center of the piston to the point of observation(radiation).From Eq.(2)it is readily found that a t w o-t o-o n e reduction in the sensitivity of a radiator with respectto sound pressure will occur at the angle(3)For angles α≤20.Eq.(3)can be simplified to(4) where c is the velocity of sound in the medimaa and f is the frequency of the radiated vibrations.It follows from Eq.(4)that when radiating into air where c=330 m/s e c,the necessary diameter of the radiator for a spedfied angle of the directivity diagram at the 0.5 level of pressure taken with respect to the fdc 76.05.0≈αaxis can befound to be(5)where disincm,f is in kHz,and α is in degrees of angle.Curves are shown in Fig.1 plotted from Eq.(5)for six angles of a radiator's directivity diagram.The directivity diagrm needed for a radiator is dictated by the maximum distance to be measured and bythe spatial disposition of the test member relative to the other structural members.In order to avoid theincidence of signals reflected from adjacent members onto the acoustic receiver,it is necessary to provide asmall angle of divergence for the sound beam and,as far as possible,a small-diameter radiator.These tworequirements are mutually inconsistent since for a given radiation frequency a reduction of the beam'sdivergence angle requires an increased radiator diameter.In fact,the diameter of the"sonicated"spot is controlled by two variables,namely:the diameter of theradiator and the divergence angle of the sound beam.In the general case the minimum diameter ofthe"sonicated"spot Dmin on a plane surface normally disposed to the radiator's axis is given by(6)where L is the least distance to the test surface. The specified value of Dmin corresponds to a radiator with a diameter(7)As seen from Eqs.(,6)and(7),the minimum diameter of the"sonieated"spot at the maximum requireddistancecannot be less than two radiator diameters.Naturally,with shorter distances to the obstacle the sizeof the"sonicated" surface is less.Let us consider the case of sound ranging on a cylindrically shaped object of radius R.The problem is to measure the distance from the electroacoustic transducer to the side surface of the cylinderwith its various possible displacements along the X and Y axes.The necessary angleαof the radiator'sdirectivity diagram is given in this case by the expression(8) whereα is the value of the angle for the directivity diagram,Ymax is the maximum displacement of the cylinder's center from the acoustic axis,and Lmin is the minimum distance from the center of theelectroacoustic transducer to the reflecting surface measured along the straight line connecting the center ofthe m e m b e r with the center of the transducer.It is clear that when measuring distance,the"running"time of the information signal is controlled by thefd α1400≈fcL d 5.1=fcLD 6min =min maxarcsinL R y +≥αlength of the path in a direction normal to the cylinder's surface,or in other words,the measure distance isalways the shortest one.This statement is correct for all cases of specular reflection of the vibrations from thetest surface.The simultaneous solution of Eqs.(2)and(8)when W=0.5 leads to the following expression:(9) In the particular case where the sound ranging takes place in air having c=330 m/sec,and on theasstunption that L min <<R,the necessary d i a m e t e r of a unidirectional piston radiator d can be found fromthe fomula (10) where d is in cm and f is in kHz. Curves are shown in Fig.2 for determining the necessary diameter of the radiator as a function of theratio of the cylinder's radius to the maximum displacement from the axis for four radiation frequencies.Alsoshown in this figure is the directivity diagram angle as a function of R and Y rnax for four ratios of m i n i m u mdistance to radius.The ultrasonic absorption in air is the second factor in determining the resolution of ultrasonic rangingdevices and their range of action.The results of physical investigations concerning the measurement ofultrasonic vibrations air are given in[1-3].Up until now there has been no unambiguous explanation of thediscrepancy between the theoretical and expe -rimental absorption results for ultrasonic vibrations inair.Thus,for frequencies in the order of 50 to 60 kHz at a temperature of+25oC and a relative humidity of37%the energy absorption coefficient for a plane wave is about 2.5dB/m while the theoretical value is 0.3 dB/m.The absorption coefficient B as a function of frequency for a temperature of+25o Cand a humidity of37%according to the data in[2]can be described by Table 1.The absorption coefficient depends on the relative humidity.Thus,for frequencies in the order of 10 to20kHz the highest value of the absorption coefficient occurs at 20%humidity[3],and at 40%humidity theabsorption is reduced by about two to one.For frequencies in the order of 60 kHz the maximum absorptionoccurs at 30.7o humidity,dropping when it is increased to 98% or lowered to 10%by a factor of approximatelyfour to one.The air temperature also has an appreciable effect on the ultrasonic absorption[1].When thetemperature of the medium is increased from+10 to+30,the absorption for frequencies between 30 and 50kHz increases by about three to one.Taking all the factors noted above into account we arrive at the following approximate values for theabsorption coefficient:at a frequency of 60 kHz /3min =0.15 m -1 and~max=0.5-1;at a frequency of 200 ()maxmin 76.0y L R d +=λmax25fy R d ≈kHz/~min=0.6 m -1 and B max =2 m -1.(11)The values for the minimum~min and rnaxil-num~max"transmittance"coefficients were obtained in thea bsence of aerosols and rain.Their difference is the result of the possible variations in temperature over therange from -3 0 to+50~and in relative hmnidity over the range from 10 to 98%.The overall value ofthe"transmittance"is obtained by multiplying the values of g and 0 for given values of L,f,and d.L I T E R A T U R E C I T E DMoscow(1957).Moscow(1960).附录B 中文翻译在空气中超声测距G. E. Rudashevski and A. A. Gorbatov在仪器技术中远程是最重要的一个问题。
目录摘要 (1)Abstract (2)第1章绪论 (3)1.1 课题研究的目的与意义 (3)1.2 国内外研究动态 (3)1.3 论文主要内容 (4)第2章系统的总体设计 (5)2.1 设计方案 (5)2.2 系统的硬件选型 (5)2.2.1 单片机选型 (5)2.2.2 超声波传感器选型 (6)2.2.3 超声波接收芯片选型 (6)2.2.4 显示器选型 (7)第3章系统的硬件设计 (8)3.1 基本系统构成 (8)3.1.1 系统电源电路 (9)3.1.2 超声波发射电路 (9)3.1.3 超声波接收电路 (10)3.1.4 晶振电路 (11)3.1.5 复位电路 (11)3.1.6 显示电路 (12)3.1.7 报警电路 (13)3.2 电路原理图 (13)3.3 PCB图 (14)第4章系统的软件设计 (15)4.1 软件keil的简介 (15)4.2 主程序流程 (16)4.3 超声波收发模块程序设计 (16)4.3.1 超声波收发中断子程序 (17)4.3.2 距离测算子程序 (19)4.4 显示模块程序设计 (20)4.4.1 初始化程序 (22)4.4.2 显示程序 (22)4.4.3 延时程序 (23)4.5 现场实测距离显示 (25)第5章结论 (26)5.1 总结 (26)5.2 系统实物图形 (27)5.3 展望 (27)致谢 (28)参考文献 (29)附录 (30)摘要本文阐述了基于51单片机的超声波测距仪的设计过程和运行结果。
AT89C51单片机控制定时器产生方波脉冲,同时计时器T1开始计时。
发出的超声波在空气中传播,而后遇到障碍物体的表面时超声波折返,超声波接收模块接收返回的超声波信号并且把超声波信号转化为电信号。
计时器记录超声波往返所用的时间,从而由51单片机计算得到实测距离。
再使用四位数码管显示距离。
硬件电路由超声波发射电路、超声波接收电路、电源电路、四位数码管显示电路、电铃报警电路、12MHz晶振电路等组成。
基于单片机的超声波测距仪的设计与实现中文摘要本设计基于单片机AT89C52,利用超声波传感器HC-SR04、LCD显示屏及蜂鸣器等元件共同实现了带温度补偿功能可报警的超声波测距仪。
我们以AT89C52作为主控芯片,通过计算超声波往返时间从而测量与前方障碍物的距离,并在LCD显示。
单片机控制超声波的发射。
然后单片机进行处理运算,把测量距离与设定的报警距离值进行比较判断,当测量距离小于设定值时,AT89C52发出指令控制蜂鸣器报警,并且AT89C52控制各部件刷新各测量值。
在不同温度下,超声波的传播速度是有差别的,所以我们通过DS18B20测温单元进行温度补偿,减小因温度变化引起的测量误差,提高测量精度。
超声波测距仪可以实现4m以内的精确测距,经验证误差小于3mm。
关键词:超声波;测距仪;AT89C52;DS18B20;报警Design and Realization of ultrasonic range finder basedABSTRACTThe design objective is to design and implement microcontroller based ultrasonic range finder. The main use of AT89C52, HC-SR04 ultrasonic sensor alarm system complete ranging production. WeAT89C52 as the main chip, by calculating the round-trip time ultrasound to measure the distance to obstacles in front of, and displayed in the LCD. SCM ultrasonic transmitter. Then the microcontroller for processing operation to measure the distance and set alarm values are compared to judge distance, when measured distance is less than the set value,AT89C52 issue commands to control the buzzer alarm, and control each member refresh AT89C52 measured values. Because at different temperatures, ultrasonic wave propagation velocity is a difference, so we DS18B20 temperature measurement by the temperature compensation unit, reducing errors due to temperature changes, and improve measurement accuracy. Good design can achieve precise range ultrasonic distance within 4m, proven error is less than 3mm.Keywords:Ultrasonic;Location;AT89C52;DS18B20;Alarm目录第一章前言..............................................................................................................................................1.1 课题背景及意义.......................................................................................................................1.1.1超声波特性.......................................................................................................................1.1.2超声波测距.......................................................................................................................1.2 超声波模块基本介绍.................................................................................................................1.2.1 超声波的电器特性........................................................................................................1.2.2 超声波的工作原理........................................................................................................1.3主要研究内容和关键问题.......................................................................................................第二章方案总体设计..............................................................................................................................2.1 超声波测距仪功能.....................................................................................................................2.2设计要求......................................................................................................................................2.3系统基本方案..............................................................................................................................2.3.1方案比较...........................................................................................................................2.3.2方案汇总...........................................................................................................................第三章系统硬件设计..............................................................................................................................3.1 单片机最小系统.........................................................................................................................3.2 超声波测距模块........................................................................................................................3.3 显示模块.................................................................3.4温度补偿电路 .............................................................3.5 蜂鸣报警电路............................................................................................................................第四章系统软件设计..............................................................................................................................4.1 AT89C52程序流程图 .................................................................................................................4.2 计算距离程序流程图.................................................................................................................4.3 报警电路程序流程图.................................................................................................................4.4 超声波回波接收程序流程图.....................................................................................................第五章系统的调试与测试....................................................................................................................5.1 安装.............................................................................................................................................5.2 系统的调试.................................................................................................................................第六章总结..............................................................................................................................................参考文献....................................................................................................................................................致谢........................................................................................................................... 错误!未定义书附录............................................................................................................................................................附录1 整机电路原理图...................................................................................................................附录2 超声波温度和速度的关系...................................................................................................附录3 部分源程序...........................................................................................................................第一章前言1.1 课题背景及意义1.1.1超声波特性众所周知,振动产生声波。
本科毕业设计(论文) 题目基于单片机的超声波测距仪设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
毕业设计论文外文文献翻译超声波测距中英文对照The Circuit Design of UltrasonicRanging System超声波测距系统的电路设计Ultrasonic Distance Meter超声波测距仪姓名:专业: 测控技术与仪器学号: 2007071071指导教师姓名,职称,:The Circuit Design of Ultrasonic Ranging SystemThis article described the three directions (before, left, right) ultrasonic ranging system is to understand the front of the robot, left and right environment to provide a movement away from the information. (Similar to GPS Positioning System)A principle of ultrasonic distance measurement1, the principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectriccrystal resonators to work. Ultrasonic generator, the internal structure as shown in Figure 1, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibrationresonance, ultrasound is generated. Conversely, if the two are notinter-electrode voltage, when the board received ultrasonic resonance,it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.2, the principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 2 Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2. Draw only the front range of the circuit wiring diagram, left and right in front of Ranging circuits and the same circuit, it is omitted.1,40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, whichby the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.2, reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlledoscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the outputfrom the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, whilesingle-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interruptpriority level for the first left right after. Part of the source codeis as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt serviceroutineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp Return4, the calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chipcircuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receivercircuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0?CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFourth, the ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three ofthe rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.V. CONCLUSIONSRequired measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistoramplifier circuit, because the magnification well, CX20106 integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency.超声波测距系统的电路设计本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。
超声波测距毕业论文中英文对照资料外文翻译文献超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
因此,深入研究超声的测距理论和方法具有重要的实践意义。
为了进一步提高测距的精确度,满足工程人员对测量精度、测距量程和测距仪使用的要求,本文研制了一套基于单片机的便携式超声测距系统。
1随着技术的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大展,其状况不断改善。
但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。
因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。
城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。
而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。
控制系统核心部分就是超声波测距仪的研制。
因此,设计好的超声波测距仪就显得非常重要了。
2 波测距原理2.1压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
超声波发生器内部结构,它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
测量脉冲到达时间的传统方法是以拥有固定参数的接收信号开端为基础的。
这个界限恰恰选于噪音水平之上,然而脉冲到达时间被定义为脉冲信号刚好超过界限的第一时刻。
一个物体的脉冲强度很大程度上取决于这个物体的自然属性尺寸还有它与传感器的距离。
进一步说,从脉冲起始点到刚好超过界限之间的时间段随着脉冲的强度而改变。
基于单片机的超声波测距仪系统设计一、本文概述随着科技的不断发展,超声波测距技术因其非接触性、高精度和快速响应等优点,在机器人导航、工业自动化、智能家居等领域得到了广泛应用。
本文旨在设计一种基于单片机的超声波测距仪系统,通过深入研究超声波测距原理,结合单片机控制技术,实现一种低成本、高性能的超声波测距解决方案。
文章首先介绍了超声波测距的基本原理和常用方法,然后详细阐述了基于单片机的超声波测距仪的硬件设计,包括超声波发射电路、接收电路、信号处理电路等关键部分的设计思路和实施方法。
接着,文章对测距软件算法进行了深入探讨,包括超声波传播时间的测量、距离计算等关键步骤的实现。
文章对设计的系统进行了测试,验证了系统的可靠性和稳定性。
通过本文的研究,希望能为相关领域提供有益的参考,推动超声波测距技术的发展。
二、超声波测距原理超声波测距是一种非接触式的距离测量方式,其基本原理是利用超声波在空气中的传播速度以及回声的时间差来计算距离。
超声波测距仪主要由超声波发射器、接收器和控制电路组成。
在超声波测距仪中,单片机发出控制信号给超声波发射器,使其发射出一定频率的超声波。
当超声波在空气中传播遇到障碍物时,会发生反射,反射波被接收器接收。
由于超声波在空气中的传播速度已知(约为340m/s),单片机可以通过测量发射信号和接收反射信号之间的时间差,即回声时间,来计算出超声波从发射到接收所经过的距离。
具体计算公式为:距离 = (超声波速度×回声时间) / 2。
需要注意的是,由于超声波在传播过程中会受到空气温度、湿度、风速等因素的影响,因此实际测量中需要对这些因素进行补偿,以提高测距的精度。
为了避免测量误差,还需要在硬件设计中考虑超声波发射和接收的角度、距离以及环境噪声等因素。
在单片机系统中,通过编程实现超声波发射、接收以及回声时间的测量。
单片机可以根据实际需要选择合适的计时器或定时器,对发射和接收信号进行精确的时间记录,并通过算法计算出距离值。
前言随着我国科学技术的迅速发展,许多场合都需要测距仪器的应用,如汽车倒车,建筑工地的施工以及一些工业现场的位置监控,还有矿井深度、水位位置、管道长度等场合都需要用到测距仪器。
要求仪器简单,方便,易操作控制,而超声波测距仪,就能实现以上的要求。
它测量范围在0.10-1.20m,测量精度1cm,测量时仪器与被测物体不会直接接触,而且能够清晰稳定的在液晶显示屏上显示出测量结果。
但就目前整体的技术水平来说,人们可以具体利用的测距技术还十分有限。
因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
展望未来数十年,超声波测距仪作为一种新型的非常重要且有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
本设计采用以AT89C51单片机为控制器核心的高精度、低成本、微型化数字显示超声波测距仪的硬件电路和软件设计方法。
整个电路采用模块化设计,由主程序、中断程序、发射子程序、接收子程序、显示子程序等模块组成。
各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。
在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。
1总体方案设计介绍所谓的超声波就是指频率高于20MHZ的机械波。
既然是以超声波为检测工具,那么肯定要产生超声波和接受超声波的工具,这就需要用到我们的传感器,俗称探头。
它有发射器和接收器之分,主要原理就是利用电效应把电能和超声波相互转换,利用声波介质对被检测物进行非接触式无磨损的检测。
超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。
本文所研究的超声波测距仪利用超声波指向性强、能量消耗缓慢、传播距离较远、中长距的高精度测距等优点,即用超声波发射器向某一方向发送超声波,将电能转换,发射超声波,同时在发射的时候单片机就开始计时,在超声波遇到障碍物的时候反射回来,超声波接收器在接收到反射回来的超声波回波时,将超生振动转换成电信号,同时单片机停止计时。
毕业设计说明书基于单片机的超声测距仪设计学 院:专指导教师:2012年 6月信息与通信工程学院 通信工程基于单片机的超声测距仪设计摘要随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
超声测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
查阅大量资料了解了超声测距仪研究的目的和意义及国内外的发展状况,通过对超声传感器的工作原理及特性的研究,以空气中超声波的传播速度为确定条件,利用发射超声波与反射回波时间差来测量待测距离,完成了超声测距仪的硬件和软件的设计,硬件电路主要包括发射电路、接收电路、前置放大电路、比较检测电路,实现了短距离的超声波测距。
关键词:超声波,单片机,超声传感器Microcontroller-based design of the ultrasonic range finderAbstractWith the rapid development of science and technology, ultrasound will be more widely applied in the range finder. Ultrasonic range finder as a new, very important and useful tool in every respect, there will be much room for development, it will be the direction of more high positioning precision to meet the growing needs of the community.Lot of information to understand the purpose and significance of the ultrasonic range finder research and development at home and abroad, the working principle and characteristics of the ultrasonic sensor, ultrasonic propagation velocity of the air to determine the conditions for use of transmission ultrasound and is reflected backwave time to measure the test distance to complete the ultrasonic range finder hardware and software design, hardware circuit includes a transmitter circuit and receiver circuit, the preamplifier circuit, comparison detection circuit, a short distance of the ultrasonic ranging.Keywords:Ultrasound,MCU,Ultrasonic sensors目录1 绪论 (1)1.1 课题研究目的意义 (1)1.2 国内外发展现状 (1)1.3 课题内容及预期目标 (5)1.4 论文结构安排 (5)2 超声波测距简介 (6)2.1 超声波和超声波传感器 (6)2.1.1 超声波 (6)2.1.2 超声波传感器结构 (8)2.1.3 超声波传感器的主要参数介绍及选择 (10)2.2 超声测距仪原理及测量方法 (11)2.3 超声波测距系统主要参数论述 (12)2.3.1 工作频率 (12)2.3.2 指向角介绍 (13)2.3.3 温度介绍 (13)2.3.4 发射脉冲宽度介绍 (13)3 超声测距仪硬件设计 (14)3.1 总体设计 (14)3.2 发射电路设计 (14)3.2.1 发射电路的方案论述 (14)3.2.2 发射电路 (15)3.2.3 分析计算 (16)3.3 接收电路设计 (17)3.3.1 前置放大电路 (17)3.3.3 比较检测电路 (21)3.4 显示电路 (21)3.5 超声波距离探测器总体电路 (21)3.5.1 超声测距仪设计具体细节 (22)3.5.2 总体电路设计 (23)4 超声测距仪软件设计 (24)4.1 软件设计原理及总体设计 (24)4.1.1 软件设计原理 (24)4.1.2 软件总体设计 (25)4.2 测距仪单片机主程序 (25)4.3 测距仪子程序 (27)4.3.1 超声波发射子程序 (27)4.3.2 距离计算 (28)4.3.3 比较程序 (30)4.3.4 乘法计算程序 (30)4.3.5 外部中断子程序 (31)4.3.6 定时器中断子程序 (32)附录超声测距仪设计电路图 (33)总结 (34)参考文献 (35)致谢 (37)1 绪论1.1 课题研究目的意义随着科学技术的快速发展,超声波将在传感器中的应用越来越广。
以下文档格式全部为word格式,下载后您可以任意修改编辑。
摘要在空气介质中,超声测距传感器因其性能好,价格低廉、使用方便,在现场机器人定位系统、车辆自动导航、车辆安全行驶辅助系统、城市交通管理和高速公路管理监测系统,以及河道、油井和仓库及料位的探测中都有应用。
由于超声波传播不易受干扰,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
为此,深入研究超声波的产生与传播规律、开发高性能超声波换能器及其收发电路,对于超声波检测技术的发展具有十分重要的现实意义。
本设计介绍了基于单片机控制的超声测距仪的原理:由AT89C51控制定时器产生超声波脉冲并计时,计算超声波自发射至接收的往返时间,从而得到实测距离。
并且在数据处理中采用了温度补偿的调整,用四位LED数码管切换显示距离和温度。
整个硬件电路由超声波发射电路、超声波接收电路、电源电路、显示电路等模块组成。
各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。
在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。
相关部分附有硬件电路图、程序流程图,给出了系统构成、电路原理及程序设计。
此系统具有易控制、工作可靠、测距准确度高、可读性强和流程清晰等优点。
实现后的作品可用于需要测量距离参数的各种应用场合。
关键词:AT89C51;超声波;测距;电路AbstractThe features of the good performance,low cost,easy use are inearnated in the ultrasonic distance measurement sensor.The ultrasonic distance measurement sensor is usually used at thescene robot positioning system,automatic vehicle navigation,the safety of vehicles traveling support system,the uran traffic management and the rivers,oil wells,storages and materials.The ultrasonic wave transmssion is not easy todisturb,its energy consumption is slowly and it can be transmitted distantly in the medium,so it isfrequently used in ultrasonic distance measurement.For example,the range finder and the materiallevel finder can be aehieved by ultrasonic wave.Therefore,the in-depth study of the generationand transmission law of ultrasonic and the development of the development of ultrasonicdetection technology.The design introduces the principle of the ultrasonic distance measurement instrument based on SCMC-controlled: AT89C51 controls timers to produce the ultrasonic wave pulse and time,count the time of ultrasonic wave spontaneous emission to receive round-trip,thus obtains the measured distance.And the temperature compensation adjustment is used in the data processing, with four LED nixie tubes display distance or temperature by switching.The entire this of the system constitution, the circuitry and the programming. The instrument system , and distinctness of programme process ,etc. After the realization of the works can be used for needs of the various parameters measured distance applications.Keywords:AT89C51; Ultrasonic wave; Measure distance; circuit目录摘要...................................................... Abstract......................................................1 绪论........................................................1.1 课题研究的背景.........................................1.2 课题的提出及研究意义 ...................................1.2.1 课题的提出........................................1.2.2 课题的研究意义 ....................................2 超声波的介绍及超声波测距的原理 ..............................2.1 超声波的介绍...........................................2.1.1 什么是超声波......................................2.1.2超声波的特性及特点.................................2.1.3超声波的应用.......................................2.2 超声波测距的原理及误差分析 .............................2.2.1 超声波测距的原理 ..................................2.2.2 超声波测距误差分析 ................................2.3 单片机实现测距的原理 ...................................3 系统硬件设计................................................3.1 系统结构设计...........................................3.2 AT89C51单片机简介......................................3.2.1 AT89C51单片机的功能...............................3.2.2 AT89C51单片机主要特性.............................3.2.3 AT89C51管脚说明...................................3.3 DS18B20温度传感器简介..................................3.4 T40、R40超声波传感器简介...............................3.4.1 超声波传感器的基本介绍 ............................3.4.2 超声波传感器的主要应用 ............................3.4.3 超声波传感器的工作原理 ............................3.5 LM7805端稳压集成电路...................................3.5.1 LM7805介绍........................................3.5.2 LM7805的特点......................................3.5.3 LM7805的实际应用..................................3.6 LM567锁相环............................................3.6.1 LM567的概述.......................................3.6.2 LM567的功能叙述...................................3.6.3 LM567主要参数.....................................3.7 超声波发射器电路.......................................3.8 超声波检测接受电路.....................................3.9 显示电路...............................................3.10 LM7805电平转换电路....................................3.11 AT89C51复位电路.......................................4 系统软件设计................................................4.1 主程序流程.............................................4.2 子程序设计.............................................4.2.1超声波发送子程序及超声波接收中断子程序 .............4.2.2测温子程序.........................................4.2.3距离计算子程序.....................................5 总结........................................................致谢......................................................参考文献......................................................附录A 国外相关文章............................................附录B中文翻译................................................附录C超声波测距电路原理图 ....................................附录D程序清单................................................1 绪论1.1 课题研究的背景利用超声波测量已知标准位置与目标物体表面之间距离的方法叫做超声波测距法。
中英文翻译课题:基于单片机的超声波测距系统的设计专业电气工程及其自动化学生姓名孙旺班级M电气112学号1151402228指导教师吴冬春专业系主任顾春雷撰写日期2015年3月13日电气工程学院外文原文Ultrasonic ranging system designPublication title: Sensor Review. Bradford: 1993. Vol. 13 ABSTRACT:Ultrasonic ranging technology has wide using worth in many fields,such as the industrial locale,vehicle navigation and sonar engineering.Now it has been used in level measurement,self-guided autonomous vehicles, fieldwork robots automotive navigation,air and underwater target detection,identification,location and so on.So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic ranging system in hand,satisfy the request of the engineering personnel for the ranging precision,the bound and the usage,a portable ultrasonic ranging system based on the single chip processor was developed.Keywords:Ultrasound r,Ranging System,Single Chip Processor1.IntroductiveWith the development of science and technology, the improvement of people's standard of living, speeding up the development and construction of the city. urban drainage system have greatly developed their situation is constantly improving. However, due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. comfort is very important to people's lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robot, the robot is designed to clear the culvert sewage to the core. Control System is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder.2. A principle of ultrasonic distance measurement2.1 The principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two are not inter-electrode voltage, when the board received ultrasonic resonance, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.The traditional way to determine the moment of the echo's arrival is based on thresholding the received signal with a fixed reference. The threshold is chosen well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the object's nature, size and distance from the sensor. Further, the time interval from the echo's starting point to the moment when it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error may occur Even two echoes with different intensities arriving exactly at the same time will surpass the threshold at different moments. The stronger one will surpass the threshold earlier than the weaker, so it will be considered as belonging to a nearer object.2.2The principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer recordsthe time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 23.Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2.Figure 1 circuit principle diagram3.1 40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.3.2 Reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the output from the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuitwith output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt service routineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp Return3.3 The calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFor a flat target, a distance measurement consists of two phases: a coarse measurement and. a fine measurement:Step 1: Transmission of one pulse train to produce a simple ultrasonic wave. Step 2: Changing the gain of both echo amplifiers according to equation , until the echo is detected.Step 3: Detection of the amplitudes and zero-crossing times of both echoes. Step 4: Setting the gains of both echo amplifiers to normalize the output at, say 3 volts. Setting the period of the next pulses according to the : period of echoes. Setting the time window according to the data of step 2.Step 5: Sending two pulse trains to produce an interfered wave. Testing the zero-crossing times and amplitudes of the echoes. If phase inversion occurs in the echo, determine to otherwise calculate to by interpolation using the amplitudes near the trough. Derive t sub m1 and t sub m2 .Step 6: Calculation of the distance y using equation .4. The ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.5. ConclusionsRequired measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequencyREFERENCES1. Fox, J.D., Khuri-Yakub, B.T. and Kino, G.S., "High Frequency Acoustic Wave Measurement in Air", in Proceedings of IEEE 1983 Ultrasonic Symposium, October 31-2 November, 1983, Atlanta, GA, pp. 581-4.2. Martin Abreu, J.M., Ceres, R. and Freire, T., "Ultrasonic Ranging: Envelope Analysis Gives Improved Accuracy", Sensor Review, Vol. 12 No. 1, 1992, pp. 17-21.3. Parrilla, M., Anaya, J.J. and Fritsch, C., "Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements", IEEE Transactions: Instrumentation and Measurement, Vol. 40 No. 4, August 1991, pp. 759-63.4. Canali, C., Cicco, G.D., Mortem, B., Prudenziati, M., and Taron, A., "A Temperature Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurement", IEEE Transaction on Industry Electronics, Vol. IE-29 No. 4, 1982, pp. 336-41.5. Martin, J.M., Ceres, R., Calderon, L and Freire, T., "Ultrasonic Ranging Gets Thermal Correction", Sensor Review, Vol. 9 No. 3, 1989, pp. 153-5.外文译文超声波测距仪系统设计摘要:超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。