二倍角公式公开课
- 格式:ppt
- 大小:493.00 KB
- 文档页数:12
第四章 三角恒等变换4.3.1二倍角公式1.理解二倍角公式与两角和公式之间的联系,能利用两角和公式探索二倍角公式及相关变形式,并能进行简单的应用.2.让学生经历二倍角公式的推导及变形过程,获得解决与倍角相关的化简、求值、证明等问题的技能.3.在公式生成与应用过程中,体会由一般到特殊、由特殊到一般的数学思想,理解二倍角中“倍”的含义,了解研究问题的过程与方法.重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式. 难点:二倍角的理解及其灵活运用.一、新课导入相关著名历史人物:比鲁尼(973~1048)是波斯著名科学家、史学家、哲学家.青年时曾到朱尔占师从艾布·纳斯尔·曼苏尔等著名学者.他博览群书,广交学者,学识渊博,富有创造性,对史学、地理、天文、数学和医学均有很深的造诣.比鲁尼的著作《马苏德规律》在三角学方面有创造性的贡献,他给出一种测量地球半径的方法.比鲁尼还证明了正弦公式、和差化积公式、倍角公式和半角公式.二、新知探究问题1:将两角和(βα+)的正弦、余弦和正切公式中的β换成α,会得到什么结果? 答案: 因为两角和的正弦公式为:sin (βα+)=sin αcos β+cos αsin β,将公式中的β换成α可得sin (αα+)=sin αcos α+cos αsin α,化简得sin 2α=2sin αcos α (S 2α).同理可得:cos 2α=cos 2α-sin 2α (C 2α);tan 2α=2tan α1-tan 2α(T 2α)(α、2α 均不等于π2+k π,k ∈Z .) 追问1:根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案:cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;◆教学目标◆教学重难点◆教学过程或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α. 追问2:tan 2α公式还可以怎么推导?追问3:倍角公式中的“倍角”仅是指α与2α吗?答案:倍角公式不仅可运用于2α是α的二倍的情况,还可运用于4α作为2α的二倍,α作为α2的二倍,3α作为3α2的二倍,α+β作为α+β2的二倍等情况.追问4:sin 3α用二倍角公式展开是什么?答案:sin 3α=2sin 3α2cos 3α2.问题2:余弦的二倍角公式还可以做哪些变形?答案:升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.总结:以上这些问题,通过回顾所学两角和的正弦、余弦、正切公式,令β=α,经过三角恒等变换推导出二倍角公式及相关的变形公式.设计意图:让学生经历二倍角公式的推导及变形过程,了解两角和的三角函数公式和二倍角公式的内在联系,还可以交流tan 2α的不同推导过程.让学生深刻领会从一般到特殊的数学思想.【公式巩固】1.sin π8cos π8的值为________.【解析】sin π8cos π8=12sin π4=24.【答案】24. 2.计算cos 215°-sin 215°结果等于( ) A .12B .22 C .33 D .32【解析】cos 215°-sin 215°=cos 30°=32. 【答案】D3.已知α为第三象限角,cos α=-35,则tan 2α=________.【解析】因为α为第三象限角,cos α=-35,所以sin α=-45,所以tan α=43,tan 2α=2tan α1-tan 2α=-247.【答案】-247.三、应用举例(一)二倍角公式的直接运用例1 已知角α是第二象限角,cos α=-53,sin 2α,cos 2α和tan 2α的值. 解: 因为角α是第二象限角,所以sin α>0,可得sin α=54cos 12=-α.由二倍角公式,有sin 2α=2sin αcos α=2524-,cos 2α=2cos 2α-1=2×253⎪⎭⎫⎝⎛--1=257-,tan 2α=2tan α1-tan 2α=2572524--=724.设计意图:通过例题,对二倍角公式进行练习,掌握二倍角公式的运用,逐步灵活应用.方法总结:结合同角三角函数的基本关系式对已知条件进行转化,直接运用二倍角公式直接求值.(二)二倍角公式的间接运用例2 已知sin ⎝⎛⎭⎫α+π4=13,则sin 2α的值为( ) A .-89 B .89 C .-79 D .79解: ∵2α=2⎝⎛⎭⎫α+π4-π2,∴sin 2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π4-π2=-sin ⎣⎡⎦⎤π2-2⎝⎛⎭⎫α+π4=-cos 2⎝⎛⎭⎫α+π4 =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫α+π4=-⎝⎛⎭⎫1-2×19=-79.故答案选:C .设计意图:通过此例,观察寻找角之间关系,通过恒等变形,使其适合二倍角公式,达到解题目的.方法总结:(1)解决此类问题,注意寻找已知式与未知式之间的联系,有两个观察方向:①有方向地将已知式或未知式化简,使关系明朗化;②寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.(2)注意几种公式的灵活应用,如:①sin 2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2⎝⎛⎭⎫π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x .②cos 2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x .(三)二倍角公式在实际问题中的应用例3 在ABC 中,已知AB =AC = 2BC ,求角A 的正弦值.解:如图,过点A 作BC 的垂线,垂足为D .设∠BAD =θ,则∠BAC =2θ. 因为BD =12BC =14AB ,所以sin θ=BDAB =14.因为0<2θ<π,所以 0<θ<π2,于是cos θ=√1−(14)2=√154.故sin∠BAC =sin2θ=2sin θcos θ=2×14×√154=√158.例4 如图,要把以点O 为圆心,半径为R 的半圆形木料截成矩形ABCD ,应怎么样截取,才能使矩形ABCD 的面积最大?解:连接OB ,如图所示,设∠AOB =θ,则AB =R sin θ,OA =R cos θ,且θ∈⎝⎛⎭⎫0,π2.因为A ,D 关于点O 对称, 所以AD =2OA =2R cos θ.设矩形ABCD 的面积为S ,则 S =AD ·AB =2R cos θ·R sin θ=2R sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以2θ∈(0,π), 所以当sin 2θ=1,即θ=π4时,矩形ABCD 的面积最大,其最大面积是2R .设计意图:三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角恒等变换来解决,此题反应三角公式的解决实际问题的应用.方法总结:此类实际问题的意义常反映在三角形的边、角关系上,故常用三角函数模型结合公式解决实际的优化问题.四、课堂练习1.下列各式中,值为32的是( ). A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°D .sin 215°+cos 215°2.若sin α2=33,则cos α等于( ).A .-23B .-13C .13D .233.若sin 2α=-13,则cos 2⎝⎛⎭⎫α-π4的值为( ). A .-23 B .-13 C .23 D .134.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 5.1+cos 100°sin 20°cos 20°=________.参考答案: 1.答案 B解析 2sin 15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32;2sin 215°=1-cos 30°=1-32;sin 215°+cos 215°=1,故选 B .2.答案 C解析 因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×⎝⎛⎭⎫332=13.3.答案 D解析 cos 2⎝⎛⎭⎫α-π4=1+cos 2⎝⎛⎭⎫α-π42=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2=1-132=13.4.答案3解析 ∵sin 2α=-sin α,∴2sin αcos α=-sin α.由α∈⎝⎛⎭⎫π2,π知sin α≠0,∴cos α=-12,∴α=2π3,∴tan 2α=tan 4π3=tan π3=3.5.答案 22 解析 原式=1+2cos 250°-112sin 40°=2cos 50°12sin 40°=22.五、课堂小结1.牢记3组公式:(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α,其中(1)、(2)中α为任意角;(3)中α、2α均不等于π2+k π,k ∈Z .2.注意公式的变形和转化思想的应用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛,二倍角的常用形式: ①1+cos 2α=2cos 2α,②cos 2α=1+cos 2α2,③1-cos 2α=2sin 2α,④sin 2α=1-cos 2α2.六、布置作业教材第155页练习题.。
高中 数学导学案 必修四 第三章 三角恒等变换 主编:李玲 审核:数学组 编号:使用时间:2015 年 4月 23 日 班级:106, 107 小组: 姓名: 组内评价: 教师评价:高一 数学 再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。
- 1 -3.1.3 二倍角的正弦,余弦和正切公式【学习目标】1.会利用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式 2.能记住二倍角公式及相关变形 3.能用二倍角公式进行化简,求值【复习回顾】两角和的正弦、余弦、正切公式)(βα+S :()=+βαsin ____________________________; )(βα+C :()=+βαcos ____________________________;)(βα+T :()=+βαtan ____________________________。
【探究新课】探究1:在公式)(βα+S ,)(βα+C ,)(βα+T 中,当βα=时,能否由此得到sin 2,cos 2,tan 2ααα的公式?=α2sin ____________________________; =α2cos ____________________________; =α2tan ____________________________。
探究2:利用平方关系能否把上述关于cos 2α的式子变成只含有sin α或cos α的式子呢?=α2cos ____________________________=____________________________。
【基础训练】 化简求值(1)015cos 15sin (2) cos 8sin 822ππ-(3)0205.22tan 15.22tan - (4) 15.22cos 202-【例题分析】例 :已知1352sin =α ,,42ππα<<求sin 4,cos 4,tan 4ααα的值.【课堂练习】课本P 135 2, 3【归纳小结】本节我们学习了二倍角的正弦,余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用。