二倍角教案(公开课)
- 格式:doc
- 大小:119.00 KB
- 文档页数:5
二倍角的正弦、余弦、正切公式一、教学目标:1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。
2.记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。
二、教学重难点:二倍角的公式的推导及灵活应用,倍角的相对性三、教学过程1、复习引入前面我们学习了和(差)角公式,现在请同学们回忆一下和角公式的内容: sin (α+β)=cos (α+β)=tan (α+β)=2、新科探究探究一、在上面的和角公式中,若令β=α,会得到怎样的结果呢?sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos αcos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2αtan2α= tan (α+α)=tan α+ tan α1-tan αtan α =2tan α1-tan 2α 整理得:sin2α=2sin αcos αcos2α= cos 2α-sin 2αtan2α=2tan α1-tan 2α 注意:要使tan2α= 2tan α1-tan 2α 有意义,α须满足α∈﹛α∣α≠ k π+ π2,且α≠ k 2π+ π4﹜ 学以致用提问:对于cos2α的求解还有没有其它的办法探究二、cos2α的变形式利用公式sin 2α + cos 2α=1变形可得:cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α因此:cos2α = cos 2α-sin 2α1例.2tan ,2cos ,2sin ),20(,54cos 的值求若αααπαα<<=1cos 2,0290.9ααα︒︒=<<已知,求cos =2cos 2α-1=1-2sin 2α3、公式深化1、这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去。
课 题: 4 7二倍角的正弦、余弦、正切(2)教学目的:要求学生能较熟练地运用公式进行化简、求值、证明, 增强学生灵活运用数学知识和逻辑推理能力教学重点: 二倍角公式的应用教学难点: 灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式 授课类型: 新授课课时安排: 1课时教 具: 多媒体、实物投影仪教学过程:一、复习引入:二倍角公式:αααcos sin 22sin =;)(2αSααα22sin cos2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT 1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数, 它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于 是 的二倍的形式, 尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中, 取两角相等时推导出, 记忆时可联想相应角的公式.(4) 公式 , , , 成立的条件是: 公式 成立的条件是 . 其他(5)熟悉“倍角”与“二次”的关系(升角—降次, 降角—升次)(6)特别注意公式的三角表达形式, 且要善于变形: 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用 二、讲解范例:例1化简下列各式:1.2.=- 40tan 140tan 2 80tan 21 3. 2sin2157 5( ( 1 =4.=ππ125sin 12sin 416sin 2112cos 12sin =π=ππ 5. cos20(cos40(cos80( =20sin 80cos 40cos 40sin 21=8120sin 160sin 8120sin 80cos 80sin 41===例2求证: [sin((1+sin()+cos((1+cos()]×[sin((1(sin()+cos((1(cos()] = sin2(证: 左边 = (sin(+sin2(+cos(+cos2()×(sin((sin2(+cos((cos2()= (sin θ+ cos θ+1)×(sin θ+cos θ -1)= (sin θ+ cos θ)2 -1 = 2sin θcos θ = sin2θ = 右边∴原式得证关于“升幂”“降次”的应用:在二倍角公式中, “升次”“降次”与角的变化是相对的 在解题中应视题目的具体情况灵活掌握应用例3求函数x x x y sin cos cos 2+=的值域 解: ——降次 ∵1)42sin(1≤π+≤-x ∴]221,221[+-∈y 例4 求证: 的值是与(无关的定值 证: —降次)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=)sin cos 23cos 21)2cos 2sin 3sin 2cos 3(cos 212αα-α+α-απ+απ= 41)2sin 43)2cos 1(412cos 212sin 232cos 41=α-α++α-α+α=∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关例5 化简: ——升幂解:2cos 2sin 22cos 22cos 2sin 22sin 22cos 2sin 22sin 22cos 2sin 22cos 22222θθ-θθθ-θ+θθ-θθθ-θ=原式 )2sin 2(cos 2cos 2)2cos 2(sin 2sin 2)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2θθθθθθθθθθθθ--+--= θ-=θ-=θθ-+θθ+-=θ+θ-=csc 2sin 2)sin cos 1sin cos 1()2tan 2(cot 例6 求证: ——升幂证: 原式等价于: 左边θ+θθθ+θθ=θ++θθ-+θ=2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22 θθθθθθθ2tan )2cos 2(sin 2cos 2)2sin 2(cos 2sin 2=++=右边=θθθ2tan tan 1tan 22=- ∴左边=右边 ∴原式得证例7利用三角公式化简:分析:化正切为正弦、余弦, 便于探索解题思路.解:)10cos 10sin 31(50sin )1031(50sin+=+tg 10cos )10sin 2310cos 21(250sin +⋅=10cos 10sin 30cos 10cos 30sin 50sin 2+⋅=10cos 40sin 40cos 2⋅= 110cos 80sin == 指出: 例4的解法用到了很多公式, 其解法的关键是“化切为弦”与逆用公式.三、课堂练习:1 求值: cos280°+sin250°-sin190°·cos320°解: 原式= +sin10°cos40°=1+21×2×(-sin30°sin50°)+sin10°cos40° =1-21sin50°+21(sin50°-sin30°) =1-41=43 2求︒-︒10cos 310sin 1的值解: 原式= 420sin 20sin 420sin )1030sin(410cos 10sin 2)10sin 30cos 10cos 30(sin 4=︒︒=︒︒-︒=︒︒︒︒-︒︒= 四、小结 本节课学习了以下内容: 数列及有关定义, 会根据通项公式求其任意一项, 并会根据数列的前n 项求一些简单数列的通项公式五、课后作业:1 若 ≤α≤ , 则 等于( )2D.2sin 2sin 2C. 2B.2cos 2cos 2.A αααα-- 24cos 2sin 22+-的值等于( )Asin2 B-cos2 C3 cos2 D-3cos2 3sin6°cos24°sin78°cos48°的值为( )81D. 321C. 161B. 161A.- 494cos 93cos 92cos 9ππππ的值等于 5 已知sin x= , 则sin2(x- )的值等于6 若sin αsin β+cos αcos β=0, 则sin αcos α+sin βcos β的值为7已知.)4cos(2cos ),40(135)4sin(απαπααπ+<<=-求8求值tan70°cos10°(3tan20°-1)参考答案: 1 C 2 3 A 4 5 2- 6 0 7 8 -1六、板书设计(略)七、课后记:活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。