余弦函数图像与性质
- 格式:ppt
- 大小:507.50 KB
- 文档页数:12
正弦函数、余弦函数的图像一、 知识梳理1、 正弦曲线:正弦函数R x x y ∈=,sin 的图像余弦曲线:余弦函数R x x y ∈=,cos 的图像 2、 正弦曲线的画法:(1) 利用单位圆和正弦线作图;(2) 五点作图法(简图),五个点为:)0,2(),1,23(),0,(),1,2(),0,0(ππππ-3、 余弦曲线的画法:(1) 通过正弦曲线平移,讲R x x y ∈=,sin 向左平移2π个单位(诱导公式六:sin()cos 2παα+=); (2) 五点作图法,五个点为:)1,2(),0,23(),1,(),0,2(),1,0(ππππ-.4、正弦函数、余弦函数的性质二、 例题讲解(一)、正弦函数、余弦函数的图像【例1】作出下列函数的图像(1)1sin ,[0,2];(2)23cos ,[0,2].y x x y x x ππ=+∈=+∈变式训练1: 作出下列函数的图像5(1)(2)sin(),[2,2].2y y x x πππ==+∈-(二)、正弦函数、余弦函数的图像的简单应用【例2】1sin [,]222y x y x x ππ==∈-函数与在内有多少个交点?变式训练2:1、求下列函数的定义域(1)12cos y x =-(2)y=lg()2、sin y x y x x R ==∈函数与在内有多少个交点?(三)、正弦函数、余弦函数的性质【例3】若函数17()()1()236f x f f πππ=-是以为周期的奇函数,且,求的值。
【例4】判断下列函数的奇偶性 2(1)3sin ;1sin cos (2);1sin (3)lg(1sin )lg(1sin ).y x x xy xy x x =+-=+=+--【例5】求下列函数的单调区间(1)()sin();(2)()cos(2).46f x x f x x ππ=-=+变式训练3:1、 判断下列函数的周期2(1)2sin 1;(2)3sin(2);(3)cos().436y x y x y x ππ=+=-=+2、 函数()R (2)()[0,1](),f x f x f x x f x x +=∈=是定义在上的奇函数,且,当时,则(47.5)___.f =3、函数()____________.f x =定义域为4、 函数()sin(2)____________.3f x x π=-+的单调递增区间是(四)、正弦函数、余弦函数的性质的应用【例6】求下列函数的值域2(1)2sin(2)1;(2)22sin sin .4y x y x x π=-+=-+变式训练4:1、 比较下列各组数的大小33(1)sinsin;(2)sin 2cos1;(3)sin(sin ),sin(co s ).101888ππππ,,2、函数y =-x ·cos x 的部分图象是()3、2cos sin 1,[,].44y x x x ππ=-+∈-求函数的值域三、归纳总结1、“五点法”画正弦、余弦函数的简图,五个特殊点通常都是取三个平衡点,一个最高、一个最低点;2、求三角函数的定义域实质就是解三角不等式(组).一般可用三角函数的图象或三角函数线确定三角不等式的解.列三角不等式,既要考虑分式的分母不能为零;偶次方根被开方数大于等于零;对数的真数大于零及底数大于零且不等于1,又要考虑三角函数本身的定义域;3、求三角函数的值域的常用方法:①化为求代数函数的值域;②化为求sin()y A x B ωϕ=++的值域;③化为关于sin x (或cos x )的二次函数式;4、三角函数的周期问题一般利用sin()cos()y A x y A x ωϕωϕ=+=+或的周期为2||T πω=即可。