1.1、探索勾股定理(二)学案
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
第一章勾股定理探索勾股定理(第2课时)深圳市光明新区实验学校孔晓康一、学情分析学生的知识技能基础:学生在上节课的学习中已经用数格子的办法发现了勾股定理,会用勾股定理解决较为简单的计算题。
但是数格子的办法只是验证了直角边为整数的直角三角形的情况,并没有对一般的直角三角形进行验证。
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在活动中学会合作,愿意合作,能够在合作中体验到成功的喜悦。
二、教学目标知识与技能目标:1.掌握勾股定理以及利用拼图验证勾股定理的方法。
2.能应用勾股定理解决一些简单的实际问题.过程与方法目标:1.在拼图的过程中,学习切割拼补的方法,在寻找等量关系的过程中体会同一面积法。
2.经历勾股定理的验证过程,体会数形结合思想,体会从特殊到一般,再从一般到特殊的思想。
情感、态度与价值观目标:1.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:1.利用拼图验证勾股定理的思路和方法2.理解并掌握勾股定理,会用勾股定理解决简单的实际问题。
教学难点: 勾股定理的验证四、教学过程本节课设计了五个教学环节:(一)问题情境;(二)合作探究;(三)拓展练习(四) 课堂小结(五)布置作业第一环节: 问题情境内容:教师提出问题:上节课,我们利用方格纸探究了几个简单的直角三角形,发现这几个直角三角形的三边都存在一种相同的数量关系,大家还记得吗?(请一名学生回答)直角三角形两直角边的平方和等于斜边的平方,如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+课件展示:(勾股定理:222c b a =+)前面,我们利用方格纸只是解决了几个直角边是整数的特殊情况,如果给你一个任意的直角三角形,比如直角边分别等于a 和b ,(这里不妨假设a <b )斜边为c ,我们还能利用上节课中的这个图说明勾股定理的正确性吗?第二环节:合作探究活动1:现在没有方格纸可用,但是上节课中探究勾股 定理的方法也许仍然有效,同学们可以先试一试。
第一章勾股定理1. 1 探索勾股定理第 2 课时教学设计1.学会应用勾股定理,并领会“数与行”相结合的应用思想.2.经历勾股定理应用的过程,掌握勾股定理的使用方法.3.培养良好的合作、交流意识,发展数学观念,体会勾股定理的实际应用.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.四个全等的直角三角形纸片.一、创设情境,引入新知如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知勾股定理的初步认识问题1:观察下面地板砖示意图:你发现图中三个正方形的面积之间存在什么关系吗?问题2:观察右边两幅图:完成下表(每个小正方形的面积为单位1).方法一:割分割为四个直角三角形和一个小正方形.方法二:补补成大正方形,用大正方形的面积减去四个直角三角形的面积.方法三:拼将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.想一想(1)你能用直角三角形的两直角边的长a,b 和斜边长 c 来表示图中正方形的面积吗?根据前面的结论,它们之间又有什么样的关系呢?(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜边的长度.(1)中的规律对这个三角形仍成立吗?勾股定理直角三角形两直角边的平方和等于斜边的平方.如果a,b和 c 分别表示直角三角形的两直角边和斜边那么a2+b2=c2名字的由来我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.在西方又称毕达哥拉斯定理三、运用新知求下列图形中未知正方形的面积或未知边的长度(口答):已知直角三角形两边,求第三边.利用勾股定理进行计算:例求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.四、巩固新知1. 图中阴影部分是一个正方形,则此正方形的面积为 .2. 判断题①△Rt ABC 的两直角边AB=5, AC=12,则斜边BC=13 ( )②△ABC 的两边a = 6 , b = 8, 则c = 10 ( )3. 填空题在△ABC中, ∠C=90°, AC = 6, CB = 8,则△ABC 的面积为_____,斜边上的高CD 为______.4. 一高为 2.5 米的木梯,架在高为 2.4 米的墙上(如图),这时梯脚与墙的距离是多少?五、归纳小结◆教学反思略.。
1.1.2探索勾股定理(2)执笔:黄海林 审核:初 二备课组 课型:新授 授课时间: 第 (1) 周【学习目标】1、 经历运用拼图的方法说明勾股定理的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2、 掌握勾股定理和他的简单应用【学习重点】能熟练运用拼图的方法证明勾股定理。
【学习难点】用面积法证勾股定理。
一、预习导学:1、补充完全平方公式:(a+b )2 =2、如图,在Rt ABC 中,∠B=900,a 、b 、c 的关系为:面积表示为二、探究活动:验证勾股定理在右图中,四边形APQC ,四边形CDEF ,四边形BCMN ,四边形ABGH 为正方形, ABC BGF 、 GHE 、 HAD 为全等的直角三角形,三边分别为a 、b 、c ,则正方形CDEF 的边长用a 、b 表示为:面积用a 、b 表示为还可用a 、b 、c 表示为:由此可得等式:从而推导出: 定理的关系式为:拼图验证. 准备的四个全等的直角三角形拼出正方形.思考1: 你能由图1表示大正方形的面积吗?能用两种方法吗?能由此得到勾股定理吗?2:你能由图2表示大正方形的面积吗?能用两种方法吗?能由此得到勾股定理吗? 3、请利用图3验证勾股定理图2 a a b b c c 图1 图3三、课堂检测:一、判断题.1.★∆ABC的两边AB=5,AC=12,则BC=13 ( )2.★∆ ABC的两边a=6,b=8,则第三边c=10 ( )二、填空题1.★在∆ ABC中,C=90°, (1)若c=10,a:b=3:4,则a=____,b=___.(2)若a=9,b=40,则c=______.2.★在∆ ABC中, C=90°,若AC=6,CB=8,则∆ABC面积为_____,斜边为上的高为______.三、选择题1、★放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离()A、600米;B、800米;C、1000米;D、不能确定2、★★直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是()A、6厘米;B、 8厘米;C、 80/13厘米;D、 60/13厘米;3、用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2C.c2=a2-2ab+b2 D.c2=(a+b)2.4、下列选项中,不能用来证明勾股定理的是()A.B.C.D.5、我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.16、利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为____ __,该定理的结论其数学表达式是____ __.C B A 四:归纳总结:验证勾股定理用的是什么方法?五、课外作业:1.★如图,是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q 三城市的沿江高速的建设成本是100万元∕千米,该沿江高速的造价是多少?2.★如图,从电线杆离地面6米处向地面拉一条长10米的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?3.★一直角三角形的斜边比直角边大2,另一直角边长为6,则斜边长为4、 ★直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是5.★直角三角形的三边长为连续偶数,则其周长为6.★以直角三角形的两直角边为边长向外作正方形,所作的正方形的面积分别为9和16,则直角三角形的斜边长为120km 50km 40km 30km QP N O ME D B C AF E D C BA 7.★★如图,是一块直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,求CD 的长8、如图1-4,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动多少米?9★★★如图7,矩形纸片ABCD 的边AB=10,BC=6,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长。
1.1探索勾股定理导学案【学习目标】1、经历探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
3、【学习重点】了结勾股定理的由来,并能用它来解决一些简单的问题。
【自学探究】阅读课本2-5页回答下列问题1、鱼角三角形的两条直角边的长度分别为a=3 cm, b=4 cm和a=6 cm, b=8 cm(1) (2)②、进行有关的计算。
(l)a2+b2= c2=(2)a2+b2= c2=③、得出结论:2、思考:(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A, B, C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1 — 1中三个正方形A, B, C围成的直角三角形三边的关系吗?(4)你能发现课本图1 — 3中三个正方形A, B, C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
3、解决实际问题:例:已知一旗杆长为16m,由于台风,在C处折断,测得.旗杆顶部落在离旗杆底部8米处,求旗杆折断处离地面的高度(BC)的长。
【练习】1、平静的湖面有一支红莲,高出水面Im,阵阵风吹来,红莲被吹到一边,花朵齐及水面, 已知红莲移动的水平距离为2m,问:此处水有多深?2、如图,滑杆在机械槽内运动,ZACB 为直角,底端B 到C 点的距离为0.7m,,若滑杆上端下滑0.4m 至点E,则底端沿水 平方向外滑0.8m 至点D,求滑杆的长度【随堂练习】1、 P5随堂练习1、22、 求出下列直角三角形中未知边的长度。
3、求斜边长17厘米、一条直角边长15厘米的直角三角形的面积【巩固练习】1. 在AABC 中,ZC = 90° , (1)若 a=5, b = 12,贝U c =2. 等腰AABC 的腰长AB = 10cm,底BC 为16cm,则底边上的高为 ____ ,面积为3. A ABC 中,AB=15, AC=13,高 AD = 12,则 AABC 的周长为()A. 42B. 32C. 42 & 32D. 37 & 334. 一个抽屉的长为24cm,宽为7cm,在抽屉里放铁条,铁条最长能是多少? 6(2)若 c=41, a=9,贝b8(1)【延伸拓展】1、.已知四边形ABCD中,AD〃BC, ZA=90° , AB=8, AD=4, BC = 6,则以DC为边的正方形面积为—2、.在AABC 中,ZACB = 90° , AC=12, CB=5, M、N 在AB 上且AM=AC, BN=BC 则MN 的长为()A. 2B. 26C. 3D. 4 3、在一棵树的10m高的B处有两只猴子,其中一只爬下树走到离树20m处的池「塘A处,另一只爬到树顶D后直接沿AD跃到池塘A处,如果两只猴子所经过的距离相等,试问:这棵树有多高?4、如图,A ABC 中,AD 丄BC 于D, AB=13, BC=14, AC=15,求AD的长5、数学理解3。
第一章勾股定理1.2探索勾股定理第2课时教学设计一、教学目标1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.在实际问题的情景中,能熟练运用勾股定理解决问题.3.通过拼图法验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想.二、教学重点及难点重点:经历勾股定理的验证过程,能利用勾股定理解决实际问题.难点:用拼图法验证勾股定理.三、教学准备四个全等的直角三角形纸片,一个以斜边为边长的正方形纸片、课件四、相关资源五、教学过程【复习后顾】复习回顾,引出新课1.直角三角形的性质:(1)直角三角形两锐角;(2)直角三角形斜边上的中线等于;(3)直角三角形中30°的角所对的直角边等于.2.勾股定理的内容:_________________________________________________.3.在直角三角形中,两直角边长分别为5、12,求斜边长.师生活动:学生口述勾股定理,师总结勾股定理是由形到数的转变.强调勾股定理的应用,引出新课.这是我们上节课应用测量和数格子法发现的定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!板书:探索勾股定理(2)【新知讲解】合作探究:面积法验证勾股定理教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)设计意图:利用交互动画可以让学生动手操作,不断探究,直到拼出来为止。
增加学习兴趣。
活动1:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)你能用两种方法表示图1中大正方形的面积吗?(学生先独立思考,再4人小组交流)(2)你能由此得出勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c2.并得到222cba=+从而利用图1验证了勾股定理. )(3)利用图2验证勾股定理.学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证勾股定理,在验证过程中,大家注意数形结合思想和类比思想的应用.设计意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一图1个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想和类比思想在数学中的应用,体会成功的快乐.设计意图:利用视频可以辅助面积法的教学,过程清晰易学活动二:分别以直角三角形的三条边的长度为边长向外作正方形,你能利用下图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.师:出示教材P5图1-5和图1-6,小明对这个大正方形适当割补后得到图1-5和图1-6.想一想:小明是怎样进行验证的?图1-5 图1-6学生先独立探究,再小组交流教师总结:图1-5是在大正方形的四周补上四个边长为a、b、c的直角三角形;图1-6是把大正方形分割成四个边长为a、b、c的直角三角形和一个小正方形.图1-5采用的是“补”的方法,而图1-6采用的是“割”的方法,请同学们将所有三角形和正方形的面积用a 、b 、c 的关系式表示出来.归纳总结:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.活动三:欣赏勾股定理的证明方法1、毕达哥拉斯证明勾股定理设计意图:经过活动1的探究,学生对验证过程有了初步了解,进一步借助图形进行验证,再次巩固了勾股定理的验证过程,培养学生辨析图形的能力,注重割补法在几何证明中的应用,培养了解决数学问题的能力.2、利用微课学习赵爽弦图的证明方法:无字的证明设计意图:利用视频可以辅助赵爽弦图的无字证明方法的教学,让学生了解历史上有名的证明方法,拓展思路,过程清晰易学【典型例题】例1. 我方侦查员小王在距离东西向公路400 m 处侦查,发现一辆敌方汽车在公路上疾使,他赶紧拿出红外测距仪,测得汽车与他相距400 m ,10 s 后,汽车与他相距500 m ,你能帮小王计算敌方汽车的速度吗?分析:根据题意,可以画出图1-7,其中点A 表示小王所在的位置,点C 、点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m ,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到222AB BC AC =+,也就是222500400BC =+,所以BC =300.敌方汽车10 s 行驶了300 m ,那么它1 h 行驶的距离为300×6×60=108 000(m ),即它行驶的速度为108 km/h .例2.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对讲机联系,已知对讲机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?解:如图:甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时,走了5千米,即OB =5.在Rt △OAB 中,AB 2=122+52=169,∴AB =13.因此,上午10:00时,甲、乙两人相距13千米.∵15>13,∴甲、乙两人还能保持联系.所以上午10:00时,甲、乙两人相距13千米,两人还能保持联系.设计意图:通过利用勾股定理解决实际问题,加深学生对勾股定理的理解.培养学生灵活运用定理解决问题的能力.【随堂练习】1.下列选项中,不能用来证明勾股定理的是 ( )2.一个等腰三角形的底边长为10 cm,腰长为13 cm,则腰上的高为.3.如图,△ABC中,AD⊥BC于D,AB=13,AC=8,则22BD DC-=.4.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速公路,已知沿江高速公路的建设成本是5 000万元/km,该沿江高速公路的造价预计是多少?答案:1、 C2、123、1054.解:50130501301805 000/km5 000180900000()900000()MOOQMO OQ====+=+=∴⨯=∴,,.沿江高速公路的建设成本是万元, 万元.该沿江高速公路的造价预计是 万元.六、课堂小结谈谈本节课的收获:1.勾股定理的验证过程以及利用勾股定理解题.2.通过验证过程要学会解决数学问题的方法:① 观察—探索—猜想—验证—归纳—应用;②面积法;O50 km40 km120 km30 kmQPNMDB CA③“割、补、拼、接”法. 3.体现的数学思想:①特殊—一般—特殊;②数形结合思想.七、板书设计:。
课题:探索勾股定理(二)教案教学目标:1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2.掌握勾股定理和他的简单应用重点难点:重点:能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程一、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c 为边长的正方形,并与同学交流。
在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能:(1))(22b a (2)2421c ab )在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
22b a =2421c ab 请同学们对上面的式子进行化简,得到:22222c ab b aba 即22b a =2c这就可以从理论上说明勾股定理存在。
请同学们去用别的拼图方法说明勾股定理。
二、讲例例1 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。
如右图,图中△ABC 的4000,90AC c 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB 的长,由于直角△ABC 的斜边AB=5000米,AC=4000米,这样的CB 就可以通过勾股定理得出。
这里一定要注意单位的换算。
解:由勾股定理得千米)(94522222AC AB BC 即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:小时)千米/(5403203600答:飞机每个小时飞行540千米。
1.1、探索勾股定理(二)导学案学科:数学年级:八年级主备人:审核人:时间:一、1、学习目标:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.3.教学难点:验证勾股定理.二、知识回顾:(1)勾股定理的内容是(2)直角三角形两边长为3和4,求第三边长(3)、求出x的值三、探索活动:验证勾股定理问题一请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(小组合作讨论完成)1、小组学生通过自主探究,拼出图一和图二(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(2)你能由此得到勾股定理吗?为什么?注意:这是一个几何图形的两种面积表示方法。
问题二你还能利用图2验证勾股定理吗?3、请利用图3验证勾股定理图四、例题讲解1、例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?小结:根据题意,可以先画出符合题意的直角三角形。
注意单位的换算。
当堂检测1、若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.在∆ ABC中, ∠C=90°,若AC=6,CB=8,则∆ABC面积为_____,斜边为上的高为______.4.等腰三角形的腰长为13cm,底边长为10cm,则面积为().A.30 cm2 B.130 cm2 C.120 cm2 D.60 cm2 x 17图25.轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB两地间的距离.课后训练1、有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.2、如图:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50 m,CB=40 m,那么A、B两点间的距离是_________.3.直角三角形两直角边长分别为5cm,12cm,则斜边上的高为.4、一棵9m高的树被风折断,树顶落在离树根3m之处,若要查看断痕,要从树底开始爬多高?5、我方侦查员小王在距离东西向500米处公路侦察,发现一辆敌方汽车在公路上疾驶。
第一章勾股定理1.探索勾股定理(一)在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC=(3+4)2-4×21×3×4=72-24=25即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+722.探索勾股定理(二)下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么?②图中(1)(2)(3)的面积分别是多少?③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?测验评价等级:A B C,我对测验结果(满意、一般、不满意)参考答案①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a为边长的正方形,(2)是以b为边长的正方形,(3)的四条边长都是c,且每个角都是直角,所以(3)是以c为边长的正方形.②图中(1)的面积为a2,(2)的面积为b2,(3)的面积为c2.③图中(1)(2)面积之和为a2+b2.④图中(1)(2)面积之和等于(3)的面积.因为图乙、图丙都是以a+b为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.2.探索勾股定理(二)班级:________ 姓名:________1.填空题(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.(2)有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.(3)如图1:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50 m,CB=40 m,那么A、B两点间的距离是_________.图12.已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.3.在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.4.如图2:要修建一个育苗棚,棚高h=1.8 m,棚宽a=2.4 m,棚的长为12 m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图3,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.测验评价结果:_____________;对自己想说的一句话是:______________________.参考答案1.(1)2.5 (2)30 (3)30米2.如图:等边△ABC 中BC =12 cm ,AB =AC =10 cm作AD ⊥BC ,垂足为D ,则D 为BC 中点,BD =CD =6 cm 在Rt △ABD 中,AD 2=AB 2-BD 2=102-62=64 ∴AD =8 cm ∴S △ABD =21BC ·AD =21×12×8=48(cm 2)3.解:(1)∵△ABC 中,∠C =90°,AC =2.1 cm ,BC =2.8 cm ∴AB 2=AC 2+BC 2=2.12+2.82=12.25 ∴AB =3.5 cm ∵S △ABC =21AC ·BC =21AB ·CD∴AC ·BC =AB ·CD ∴CD =ABBC AC ⋅=5.38.21.2⨯=1.68(cm)(2)在Rt △ACD 中,由勾股定理得: AD 2+CD 2=AC 2∴AD 2=AC 2-CD 2=2.12-1.682 =(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.21×0.21∴AD =2×3×0.21=1.26(cm)∴BD =AB -AD =3.5-1.26=2.24(cm)4.解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为3 m,所以矩形塑料薄膜的面积是:3×12=36(m 2)5.解:根据题意得:Rt △ADE ≌Rt △AEF∴∠AFE =90°,AF =10 cm,EF =DE设CE =x cm ,则DE =EF =CD -CE =8-x 在Rt △ABF 中由勾股定理得: AB 2+BF 2=AF 2,即82+BF 2=102, ∴BF =6 cm∴CF =BC -BF =10-6=4(cm)在Rt △ECF 中由勾股定理可得: EF 2=CE 2+CF 2,即(8-x )2=x 2+42 ∴64-16x +x 2=x 2+16 ∴x =3(cm),即CE =3 cm参考例题[例1]如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.分析:△ABC 是一般三角形,若要求出BC 的长,只能将BC 置于一个直角三角形中. 解:过点C 作CD ⊥AB 于点D 在Rt △ACD 中,∠A =60° ∠ACD =90°-60°=30° AD =21AC =12(cm)CD 2=AC 2-AD 2=242-122=432, DB =AB -AD =15-12=3. 在Rt △BCD 中,BC 2=DB 2+CD 2=32+432=441BC =21 cm.评注:本题不是直角三角形,而要解答它必须构造出直角三角形,用勾股定理来解. [例2]如下图,A 、B 两点都与平面镜相距4米,且A 、B 两点相距6米,一束光线由A 射向平面镜反射之后恰巧经过B 点.求B 点到入射点的距离.分析:此题要用到勾股定理,全等三角形,轴对称及物理上的光的反射的知识.解:作出B 点关于CD 的对称点B ′,连结AB ′,交CD 于点O ,则O 点就是光的入射点.因为B ′D =DB .所以B ′D =AC .∠B ′DO =∠OCA =90°, ∠B ′=∠CAO所以△B ′DO ≌△ACO (SSS ) 则OC =OD =21AB =21×6=3米.连结OB ,在Rt △ODB 中,OD 2+BD 2=OB 2 所以OB 2=32+42=52,即OB =5(米).所以点B到入射点的距离为5米.评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础.。
课题探索勾股定理(二)课型新授课教学目标具体要求1.知识与技能目标:掌握勾股定理,并能运用勾股解决一些实际问题。
2.过程与方法目标:了解利用拼图验证勾股定理的方法。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受。
教学重点难点1、重点:勾股定理的证明及其应用。
2、难点:勾股定理的证明。
教学方法讲授法、启发式教学法学习方法讨论交流法教学工具多媒体、三角板教学过程教师活动学生活动一、复习导入上节课我们学习了什么内容?勾股定理那么谁能说一下勾股定理的内容是什么?直角三角形两条直角边的平方和等于斜边的平方。
a2+b2=c2我们还学习了通过数格子的方法发现了勾股定理,学习了运用“割补法”,通过计算图形的面积来验证勾股定理,同时还学习了勾股定理的简单运用。
(注:其实,勾股定理的运用只不过在课后的作业上出现了几个简单的问题而已。
)1、图中的字母表示区的面积是多少?2、图中的字母代表的长度?二、讲授新课(一).拼一拼,展示成果,(出示大屏幕)在一张硬纸板上画4个如右图所示全等的直角三角形.并把它们剪下来.用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以学生先进行独立思考,后小组交流结果,并寻找依据。
2035AX1213教学过程斜边c为边长的正方形,你能利用它说明勾股定理吗?(对于上面2个问题,教师提前让学生预习,并进行提前探索,把自己的探索过程展现在纸上。
课堂上教师要引导学生大胆和鼓励学生大胆的拼摆,进行展示,只要符合要求,教师都应予以鼓励,同时提示学生根据自己拼出的图形,联系(a+b)2=a2+2ab+b2的拼图推证方法说明勾股定理).如下图所示的图形,中间是一个边长为c的正方形.观察图形我们不难发现,大的正方形的边长是(a+b).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可.大正方形面积可以表示为:(a+b)2,又可以表示为:21ab×4+(b-a).对比这两种表示方法,可得出c2=21ab×4+(b-a).化简、整理得c2=a2+b2.因此我们得到了勾股定理.(这个过程教师可以运用几何画板进行直观的验证,启发学生的情趣。
《探索勾股定理二》教案教学目标1、经历探索直角三角形三边间的数量关系,培养学生的说理和简单推理的意识和能力.2、通过探索过程,使学生理解并掌握勾股定理,并能利用勾股定理解决一些实际问题.3、培养学生的动手操作能力、合作交流意识.教学方法采用“引导——探究——发现——应用”法来进行教学.在学生现有的知识基础上引导学生“自主探究与合作交流”完成新知识的学习.教学重难点勾股定理的验证是本节课的重点,如何验证勾股定理和勾股定理的应用是难点.引导学生进行自主探究,若仍有疑问可以相互间交流得到需要的结果,这样可以锻炼学生的探究能力、交流能力等.课前准备相同规格的直角三角形、直尺、三角板、实物投影.教学过程一、创设问题情景,引入新课1、上节课我们通过测量和数格子的方法发现了直角三角形三边的关系(即勾股定理),那么谁能叙述一下勾股定理呢?(学生回答,教师适当评价鼓励)2、大家对勾股定理理解掌握的很好,但是同学们知道吗,严格意义来讲,通过测量和数格子的方法验证的勾股定理,只能是一些特殊值.今天我们一起继续学习勾股定理的验证.同学们,在6000多年前三国时期的数学家赵爽已经完成了勾股定理的验证,大家有没有信心完成?(学生回答:有)接着大家一起来看这幅图,知道他的名字吗?弦图,也是2002年世界数学家大会会标.大家别小看这幅图,三国时期的数学家赵爽就是用这幅图完成了勾股定理的验证.同学们观察一下是如何拼成的?(学生回答)回答的太棒了,今天我们就通过拼图,来完成勾股定理的验证.(学生组内讨论交流一下,有验证的方向或思路,并保留等待验证)3、追溯到很久很久的上学期,我们就用拼图的方法验证了一个公式,大家还记得吗? 完全平方公式的验证:大的正方形的面积可以表示为 ;又可以表示为 ;所以 = .大家完成的很棒,我们能不能把这种方法,应用到“弦图”中,验证勾股定理呢?二、大家一起来四个同学一组拿出自己的直角三角形,拼成弦图进行勾股定理的验证.正方形的面积也有两种表示方法:既可以表示为c 2,又可以表示为21ab ×4+(b -a )2. 对比两种表示方法可得c 2=21ab ×4+(b -a )2.化简得c 2=a 2+b 2. 鼓励学生大胆展示本组的验证过程,找一组好的作模本投影展示,讲解同时也要找出几组有问题的进行展示,明确问题,解决问题,引以为戒.让学生说说与自己与之前课刚开始时的思路有何异同,自己有什么感想.三、思绪飞扬真棒!同学们利用拼图的方法验证勾股定理.同学们知道吗?在所有的几何定理中,勾股定理的证明方法也许是最多的有人做过统计,说有五百余种,大家能不能利用手中的直角三角形继续验证呢?大家试一试4个直角三角形,还能拼成正方形吗?还可以验证勾股定理吗?学生组内讨论交流,学生拼出来的图形一定会很多,教师注意巡查,发现不足及时指导,鼓励学生进行展示.我拼出了如下图所示的图形,中间是一个边长为c 的正方形.观察图形我们不难发现,大的正方形的边长是(a +b ).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可.大正方形面积可以表示为:(a +b )2,又可以表示为:21ab ×4(b -a ). 对比这两种表示方法,可得出c 2=21ab ×4+(b -a ). 化简、整理得c 2=a 2+b 2,因此我们得到了勾股定理.三、随堂练习如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三城市的沿江高速公路,已知沿江高速公路的建设成本是5000万元/km ,该沿江高速的造价预计是多少?120千米50千米40千米30千米Q P ON M四、课后作业布置课后作业习题1.2,让学生自主完成.。
1.1、探索勾股定理(二)学案
一、1、学习目标:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.
2.教学重点 :用面积法验证勾股定理,应用勾股定理解决简单的实际问题. 3.教学难点:验证勾股定理. 二、知识回顾:
(1)勾股定理的内容是 (2)直角三角形两边长为3和4,求第三边长 (3)、求出x 的值
三、探索活动:验证勾股定理
拼图验证. 准备的四个全等的直角三角形拼出正方形.
思考1: 你能由图1表示大正方形的面积吗? 能用两种方法吗?能由此得到勾股定理吗?
2:你能由图2表示大正方形的面积吗?能用两种方法吗? 能由此得到勾股定理吗?
3、请利用图3验证勾股定理
图3
4、利用四个全等的直角三角形拼图验证勾股定理你还有哪些方法?
x 17
图
1
a b
四、例题讲解
1、例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?
基础训练
1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .
2.某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,木板的长为.
3.直角三角形两直角边长分别为5cm,12cm,则斜边上的高为.
4.等腰三角形的腰长为13cm,底边长为10cm,则面积为().
A.30 cm2 B.130 cm2 C.120 cm2 D.60 cm2
提高训练
5.轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB两地间的距离.
6.一棵9m高的树被风折断,树顶落在离树根3m之处,若要查看断痕,要从树底开始爬多高?
知识拓展
7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC 的长.
F
C。