亥姆霍兹函数和吉布斯函数..
- 格式:ppt
- 大小:551.00 KB
- 文档页数:26
亥姆霍兹自由能(Helmholtz free energy): F=U-TS,U 是系统的内能,T 是温度,S 是熵。
(注意与吉布斯自由能的区别)吉布斯自由能(Gibbs free energy): G=H-TS ,H为焓,S为熵,T为当前温度由于吉布斯自由能G 可以表示为G = F + pV,另有G = μN,所以F = μN –pV;亥姆霍兹自由能的微分形式是:dF = - SdT - PdV + μdN其中P 是压强,V 是体积,μ是化学势在统计物理学中,亥姆霍兹自由能是一个最常用的自由能,因为它和配分函数Z直接关联:F = -kTlnZ吉布斯自由能的微分形式是:dG = − SdT + Vdp + μdN,其中μ是化学势,也就是说每个粒子的平均吉布斯自由能等于化学势;ΔG叫做吉布斯自由能变(吉布斯自由能判据)吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。
吉布斯自由能改变量。
表明状态函数G是体系所具有的在等温等压下做非体积功的能力。
反应过程中G的减少量是体系做非体积功的最大限度。
这个最大限度在可逆途径得到实现。
反应进行方向和方式判据。
(功函判据)亥姆霍兹函数是一个重要的热力学参数,等于内能减去绝对温度和熵的乘积:两个状态差值的负数等于一个可逆等温等容过程的最大功输出。
亥姆霍兹自由能是等温下做所有功的能力,亦称功函吉布斯自由能是等温等压下除体积功以外的功的能力玻尔兹曼常数(Boltzmann constant)(k 或kB)是有关于温度及能量的一个物理常数:记为“K”,数值为:K=1.3806488(13)×10^-23J/K理想气体常数等于玻尔兹曼常数与阿伏伽德罗常数的乘积:R=kN;熵函数熵可以定义为玻尔兹曼常数乘以系统分子的状态数的对数值:S=k㏑Ω;焓变熵变焓焓是物体的一个热力学能状态函数,即热函:一个系统中的热力作用,等于该系统内能加上其体积与外界作用于该系统的压力的乘积的总和(Enthalpy is a combination of internal energy and flow work.)。
物理化学Physical Chemistry物理化学(上册)绪论第一章气体第二章热力学第一定律第三章热力学第二定律第四章多组分系统热力学第五章化学平衡第六章相平衡第三章热力学第二定律The second law of thermodynamics§3-!本章基本要求§3-1 热机效率与卡诺热机效率§3-2 自发过程的共同特征与热力学第二定律§3-3熵、亥姆霍兹函数、吉布斯函数§3-4热力学第二定律对理想气体的应用§3-5热力学第二定律对一般固、液体的应用§3-6热力学第二定律对相变化的应用§3-7热力学基本方程与热力学证明方法§3-8热力学第二定律对实际气体的应用§3-$ 本章小结序§3-3熵、亥姆霍兹函数、吉布斯函数1.亥姆霍兹函数定义:A =U -TS 称为亥姆霍兹函数(或称为自由能)单位:J 或kJ特点:状态函数,广延性质。
亥姆霍兹函数是人为定义的函数本身没有明确的物理意义。
亥姆霍兹函数无法得到绝对值,只能计算变化过程的改变量。
四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数2.亥姆霍兹函数判据四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数()不可逆环可逆dU T dS W δ-≤()()dATS d dU dS T dU T T =-=-==)(:环常数,环恒温过程不可逆 可逆T dA W δ∴≤(注意:此判据适用条件是封闭系统、恒温过程)不可逆可逆T A W ∆≤2.亥姆霍兹函数判据对恒温、恒容过程:四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数W dV p W dA '+-=≤δδ)(环,不可逆可逆T V dA W δ'≤,不可逆可逆T V A W '∆≤(此判据适用条件封闭系统、恒温、恒容过程)2.亥姆霍兹函数判据对恒温、W '=0过程:四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数W dV p W dA '+-=≤δδ)(环,不可逆(环)可逆T V dA p dV ≤-,不可逆(体)可逆T V A W ∆≤(此判据适用条件封闭系统、恒温、W '=0过程)2.亥姆霍兹函数判据对恒温、恒容且W '=0过程:四、亥姆霍兹函数及其判据§3-3熵、亥姆霍兹函数、吉布斯函数,不可逆0可逆T V dA ≤,不可逆0可逆T V A ∆≤(此判据适用条件封闭系统、恒温、恒容且W '=0过程)W dV p W dA '+-=≤δδ)(环1.吉布斯函数定义:G =H-TS =U +pV-TS =A +pV称为吉布斯函数(或称为自由焓)单位:J 或kJ特点:状态函数,广延性质。
物理化学亥姆霍兹函数和吉布斯函数亥姆霍兹函数0 ≥−∆T Q S0 ≥−∆−∆T WU S 在封闭系统中进行的等温过程TSU A −=)( W TS U ≤−∆定义 A 称为亥姆霍兹函数。
A 状态函数,广度性质,绝对值未知,单位 J 。
W A T ≤∆WdA T δ≤恒温,恒容, ,T V dA W δ≤’',W A V T ≤∆或 若非体积功也为零。
,,00T V W dA δ=≤‘',,00T V W A =∆≤或 亥姆霍兹函数00,,'<∆=W V T A 自发过程00,,'=∆=W V T A 平衡00,,'>∆=W V T A 不可能自动发生亥姆霍兹函数在封闭系统中进行的等温等压过程' w V p A WA +∆−≤∆≤∆')( w pV A ≤+∆TS H pV TS U pV A G −=+−=+=定义 G 称为吉布斯函数或吉布斯自由能。
吉布斯函数根据定义')( w pV A ≤+∆,,00T p W dG δ=≤’',,00T p W G =∆≤或 若w ’也为零 00,,'<∆=W p T G 自发过程00,,'=∆=W p T G 可逆过程00,,'>∆=W p T G 不可能自动发生吉布斯函数pV A TS H TS pV U G +=−=−+=TSU A −=)()()()(pV A TS H TS pV U G ∆+∆=∆−∆=∆−∆+∆=∆)(TS U A ∆∆∆−=ST H G ∆−∆=∆ST U A ∆−∆=∆恒温过程 ∆G 和∆A 的计算等温等压可逆相变过程A 0G V p G ∆+∆=∆=∆理想气体恒温过程 2112ln ln p p nRT V V nRT S T A G −=−=−==∆∆∆∆G 和∆A 的计算物理化学。
亥姆霍兹自由能(HelmhOItZ free energy): F=U-TS,U是系统的内能,T是温度,S是熵。
(注意与吉布斯自由能的区别)吉布斯自由能(GibbS free energy):G=H—TS ,H为焓,S为熵,T为当前温度由于吉布斯自由能G可以表示为G = F + pV ,另有G = μN ,所以F = μN —PV;亥姆霍兹自由能的微分形式是:dF = — SdT - PdV + μdN其中P是压强,V是体积,μ是化学势在统计物理学中,亥姆霍兹自由能是一个最常用的自由能, 因为它和配分函数 Z直接关联:F = -kTl nZ吉布斯自由能的微分形式是:dG = - SdT + VdP + μdN其中μ是化学势,也就是说每个粒子的平均吉布斯自由能等于化学势;△ G叫做吉布斯自由能变(吉布斯自由能判据)吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。
吉布斯自由能改变量。
表明状态函数G是体系所具有的在等温等压下做非体积功的能力.反应过程中G的减少量是体系做非体积功的最大限度。
这个最大限度在可逆途径得到实现。
反应进行方向和方式判据.(功函判据)亥姆霍兹函数是一个重要的热力学参数,等于内能减去绝对温度和熵的乘积:两个状态差值的负数等于一个可逆等温等容过程的最大功输出.亥姆霍兹自由能是等温下做所有功的能力,亦称功函吉布斯自由能是等温等压下除体积功以外的功的能力、玄缭霍童能(IlCimhOltZ energ>)磨盏儈TdS-dU —p 外 d∕n—50,;•。
・ dK = 0 。
∙.d(7’S)—dC r>—d (U —TS ∖ v ≥ -SW 1令F=U-TS (〃称为功函) 则 —込? 〉—δW'即 -Ay 〉 -W ,(其中“ >”为不可逆过程;“二"为可逆过程) 动函(WkfIm“ion )又称亥姆霍兹能(HCllnlIOIZ ClICrgy),是状态性质,容量性质.根据 TAS —AU —P^AV 〉—SW 得-d(δ∕ + PV-TS ∖ P 〉 -δW ,—(I(H —TS)τ p ≥令 G = H-TS (称为吉布斯能)则 ^G T P ≥-δW’即 -AGT P ≥—W ,式中“ 〉”不可逆过程;“二”可逆过程吉布斯能(GibbS ClleIgV ) (G 丿也是状态性质, 容量性质.简、自发变化方向和限度的Mig〉 1 •爛变判据∆5f g5z≥ O (〉:自发* P平衡)(孤立体系)“N功函判据(∆F)rr≤0 (V 口发;二:平衡)(等温等容:呼Qo)r 3.吉布斯能判据(ΔG)77J≤O(<自发;=:平衡)(等温等压;rrι-0)玻尔兹曼常数(BoltZmann conStant) (k或kB)是有关于温度及能量的一个物理常数:记为“ K ”,数值为:K=1.3806488(13)× 10^-23J∕K理想气体常数等于玻尔兹曼常数与阿伏伽德罗常数的乘积:R=kN ;熵函数熵可以定义为玻尔兹曼常数乘以系统分子的状态数的对数值:S=k In Ω;焓变熵变焓焓是物体的一个热力学能状态函数,即热函:一个系统中的热力作用,等于该系统内能加上其体积与外界作用于该系统的压力的乘积的总和(En thalpy is a combi nation of in ternal energyand flow work。
1. 简述熵判据、亥姆赫兹函数判据和吉布斯函数判据的内容及使用条件:①对于孤立系统:(△S )u,v,w ’:>0自发 =0可逆 <0自阻不自发 ②非孤立系统:△S 总=△S 系+△S 环:>0自发 =0可逆 <0自阻不自发③亥姆霍兹自由能(F ) dF ≤w ’ 在恒温容器不做其他功的情况下△F :<0自发 =0可逆(平衡) >0自阻不自发④吉布斯自由能(G )dG ≤w ’在恒温恒压下不做其他功的情况下△G :<0自发 =0可逆(平衡) >0自阻不自发5. 说明为什么纯金属(纯铁材料除外)加热的固态相变是由密排结构到疏排结构的相变:dH=TdS+VdP →(əH/əV )T =(əS/əV )T +V (əP/əV )T Maxwell 方程(əS/əV )T =(əP/əV )T体积不变,温度升高导致压力升高(əP/əT )V >0 →(əS/əV )T >0 在温度一定时,熵随体积而增大,即:对于同一金属,在温度相同是,疏排结构的熵大于密排结构。
(əH/əV )T >0温度一定时,焓随体积而增大,即:对于同一金属,在温度相同是,疏排结构的焓大于密排结构。
G=H-TS 在低温时,TS 项对G 的贡献小,G 主要取决于H 项,H 疏排>H 密排,G 疏排>G 密排,低温下密排相是稳定相;在高温下,TS 项对G 的贡献很大,G 主要取决于TS 项,S 疏排>S 密排,G 疏排<G 密排,高温下疏排相是稳定相。
6. 说明为什么固相与气相或液相之间平衡时,相平衡温度T 与压力P 之间的关系是指数关系;而固相与液相之间平衡时,相平衡温度T 与压力P 之间的关系是直线关系:①由dT/dP=△V/△S 对于凝聚态之间的相平衡(L →S )dT/dP=△αβVm/△αβSm 压力改变不大时,△S 和△T 的改变很小,可以认为dT/dP=C P ∝T 为直线关系;②有一相为气相的两相平衡dP/dT=△vapH/T △vapV ,蒸发平衡,升华平衡的共同特点是其中有一相为气相,压力改变时△V 变化很大。