水解酸化池设计计算书(免费)
- 格式:doc
- 大小:173.50 KB
- 文档页数:7
水解酸化池计算书一、基本参数进水指标出水指标Q(t/d);50000变化系数 K Z (不考虑)1.38S 0—进水COD浓度(mg/L);460Se—出水COD浓度(mg/L);322SSo—进水悬浮物浓度(mg/L)216SS e —出水悬浮物浓度(mg/L)54二设计参数污泥产率Y(kgMLSS/kgCOD)0.3停留时间h 4.5污泥转换率f(kgMLSS/kgSS)0.6池体深度m 5.7污泥含水率(%)96.5管道长度L(m)140反应器数量2管径D(mm)150每天排泥时间(h)1i0.012C H61弯头局部阻力系数 1.46出水槽长度19700弯头个数8出水槽个数8最低水位绝对标高H1 6.95堰上水头h10.03最高水位绝对标高H211.6三排泥设计6930污泥体积Qs=W/[(1-P)X 1000]198四污泥泵选型污泥泵台数每台污泥泵流量99五管道计算1.5569709841.81.4446006614.65m设计流速v=Qsx 1000/3.6/(3.14xD 2)x 4沿程阻力Hf=ilm局部阻力Hi=ξ x v 2/(2g)m水位差Hz=H1-H2v(m/s)污泥产量W=Q x Y x(S 0 - S e )/1000 + Q x f x(SS 0 - SSe)/1000W(kgSS/d)Qs(m3/d)2Qs(m3/h)7.894600661四反应器设计每座水解酸化池容积(m3)4687.5每座水解酸化池面积m2822.4每座反应器长度m 82.0每座水解酸化池宽度m 11.0每格水解酸化池实际面积m 902.0每格水解酸化池实际体积m 5141.4每座水解酸化池实际水力停留时间m4.9五出水槽设计每条出水槽承担的水量(m3/s)0.036169每条出水堰承担的水量(m4/s)0.018084每个溢流堰的水量m30.000218每条溢流堰个数N 82.86576每条溢流堰实际个数No129总水头损失H=Hf+Hi+Hzm污泥浓度(%)C H0.0100.02.081.04.061.06.045.08.532.010.125。
水解酸化池设计计算书(免费)1.XXX1.1 Hydrolysis XXX VolumeTo calculate the volume of the hydrolysis tank。
we use the formula V=KZQHRT。
where V is the volume of the tank in cubic meters。
Kz is the total n coefficient (1.5)。
Q is the design flow rate in cubic meters per hour。
and HRT is the hydraulic n time in hours (6 hours)。
For example。
if we take a n coefficient of 1.5.a flow rate of 5 cubic meters per hour。
and a hydraulic n time of 6 hours。
we get a volume of 45 cubic meters.In the case of dyeing and printing wastewater。
the hydrolysis tank is divided into four compartments with a length and width of 2 meters each。
The effective depth of the tank is 3 meters。
so the volume of each compartment is 16 cubic meters。
and the total volume of the four compartments is 48 cubic meters.1.2 n of Upward Flow XXXXXX。
we use the formula ν=QVH/AHRT。
总设计参数:进水流量Q=5000m³/d;污泥回流比R:1)二沉池回流比R二沉=10%~30%;2)初沉池回流比R初沉=50%~100%;有效停留时间tHRT=0.5d;设计计算:一、总回流比范围Rmax=130%,Rmin=50%;二、池体结构尺寸有效容积:=5000×0.5=2500m³分格n=4个;单格尺寸:=11.2×11.2=125㎡总面积S=125×4=500㎡有效池深: =5.0m超高取值: =0.5m布水区分支管开孔距池底=0.2m则总高度H=4.89+0.41+0.2=5.5m表面水力负荷校核=5000×(1+1.3/(24×512=0.94m³/(㎡×h)=5000×(1+0.5/(24×512=0.61m³/(㎡×h)经复核计算,在此表面水力负荷下,可以实现通过均匀布水减少死区的目的。
三、分支布水管计算采用大阻力配水系统,总布水点256个,每个池内布水点64个,进水口距池底0.2m,进水负荷1.96㎡/个布水口;分支配水管内流速取值:;;;;1)= 0.1879m,取值200mm校核:,符合设计要求;2)=0.1329m,取值125mm校核:,符合设计要求;3)=0.0939m,取值80mm校核:,符合设计要求;4)=0.05147m,取值40mm校核:,符合设计要求;四、潜水搅拌选型型号:GQT022×φ325功率:2.2KW叶轮直径:325mm转速:750r/min台数:16台推流面积:32㎡/台;6×10m五、污泥龄≥20d。
六、二沉池回流污泥安装电动阀DN150一个七、水解酸化池排泥电动阀DN200四个,时间控制,触摸屏显示,可调。
八、放空手动蝶阀DN300四个水损计算:1、分支管DN40=(。
目录第一章绪论第一节课程设计任务第二节设计目的第三节制药厂废水基本概况第四节任务分析第五节工艺流程第二章工艺流程概述第一节工艺原理第二节结构第三节工艺特点第四节实际应用第三章设计计算第一节设计参数第二节计算过程第四章补充部分第五章参考文献第六章总结第七章致谢第一章绪论第一节课程设计任务该制药厂废水水质情况如下:表1 制药厂废水水质情况表废水流量Q2500m3/d进水水质出水要求要求去除率COD6000mg/L120mg/L98%BOD53000mg/L60mg/L98%SS2500mg/L200mg/L92%PH 6.0—8.0 6.0—9.0不需要调节出水要求:处理后废水排放达到GB8978-1996综合污水排放二级标第二节设计目的通过本课程设计进一步巩固本课程所学习的核心内容,掌握设计的内容以与相关参数的选择与计算,并使所学习知识系统化,培养学生运用所学习知识进行水处理工艺的设计。
本次课程设计,是让学生针对给定的处理工艺,选择相应的参数计算,绘制工艺图,使学生具有初步的设计能力。
第三节制药厂废水基本概况制药工业废水中的污染物多属于结构复杂、有毒害作用和生物难以降解的有机物质,许多废水呈明显的酸碱性,部分废水中含有过高的盐分。
由于制药企业一般根据市场的需求决定产量,故排放废水的波动性很大;若在同一生产线上生产不同产品时,所产生废水的水质、水量差别也可能很大。
制药废水可简要地归结为高浓度难降解的有机废水,即COD浓度一般大于2000mg/L、可生化性指标BOD5/COD值一般小于0.3的有机废水。
考虑到制药废水可能残留某些药物成分等有毒害物质,排放到水体中会对生态环境造成不良影响,我国各类制药工业水污染排放标准中均选择了急性毒性的废水控制标准,以期有效控制有毒有害污染物对环境的影响。
第四节任务分析给定制药厂进水水质中含有大量有机物质和悬浮物,但是并没有出现有毒害物质,并且废水没有呈明显的酸碱性,同时没有盐分的数据,认定为没有含过高盐分。
免费的目录1水解酸化池设计计算 (1)1.1水解池的容积 (1)1.4.1堰长设计 (2)1.4.2出水堰的形式及尺寸 (2)1.4.3堰上水头h.................... 错误!未定义书签。
11.4.4集水水槽宽B (3)1.4.5集水槽深度 (3)1.4.6进水堰简略图 (4)1水解酸化池设计计算1.1水解池的容积 水解池的容积VQHRT K V Z =式中:V ——水解池容积,m 3;z K ——总变化系数,1.5;Q ——设计流量,m 3/h ;HRT ——水力停留时间,h ,取6h ;则345655.1m V =⨯⨯=印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。
1.2水解池上升流速校核已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下:HRTHHRTA V A Q ===ν 式中: ν——上升流速(m/h );Q ——设计流量,m 3/h ;V ——水解池容积,m 3;A ——反应器表面积,m 2;HRT ——水力停留时间,h ,取6h ;则)/(67.064h m ==ν水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。
1.3配水方式采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。
1.4进水堰设计已知每格沉淀池进水流量s m hm Q /00035.036004/533'=⨯=; 1.4.1堰长设计取出水堰负荷)/(2.0'm s L q ⋅=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ⋅)。
''qQ L =式中:L ——堰长m ;'q ——出水堰负荷,)/(m s L ⋅,取0.2)/(m s L ⋅;'Q ——设计流量,m 3/s ;则75.12.0100000035.0''=⨯==qQ L m ,取堰长m L 2=。
水解酸化池设计计算书
水解酸化池设计计算
设计依据及参考资料
平均流量Q=230日最大变化系数Kz=1水温T=20
最大流量 Qmax =230
进水水质
BOD5=10000COD=25000SS=1000
1.池表面积
设表面负荷q=1m3/m2.h采用2个,则表面积A= Q max/N.q = 4.79m2
2.有效水深
设停留时间t=4h
有效水深 h=q.t= 4.00m
3.有效容积
V=Ah=19.16667m2
4.长宽的确定
设池长L为池宽B=2m
B=A/L=SQRT(f/2)= 1.55m
5.布水管
设布水点服务区面积 s =0.5m3/个
每个池布水点个数n=A/s=9.58个
流速v1(m/s)=0.50.5 布水管径d1(mm)=58.2
流速v2(m/s)=0.60.25 布水管径d2(mm)=37.6
流速v3(m/s)=0.80.125 布水管径d3(mm)=23.0
流速v4(m/s)= 1.20.0625 布水管径d4(mm)=13.3
5.出水堰负荷
设三角形堰板角度为90°,堰上水位深度为0.025m 单齿流量Q’=1.43H2.5=0.000141m3/s
齿个数n=Qmax/Q'=9.42 ,取10个齿间距:L/n=0.31m
6.高度
设超高为0.3m , 则H=h+h1= 4.30m。
水解酸化池设计计算带管径计算序号设备设备参数数量单位单价总价清水箱25m 31座 3.2 3.2远传液位计0-10m ,带远传,介质清水1套0.180.18中间水箱10m 31座 2.1 2.1远传液位计0-10m ,带远传,介质清水1套0.180.18除盐水箱20m 3(2x4x2.5m )1座 3.2 3.2除盐水泵10m 3/h ,60m 2台12压力表0-0.6MPa 2只0.010.02远传液位计0-10m ,带远传,介质清水1套0.180.18盐酸储罐3m 31座 1.2 1.2碱储罐3m 31座0.90.9酸碱输送泵65FSB32L ,10m 3/h ,12.5m 2台0.30.6压力表0-0.6MPa 2只0.010.02阀门DN80,0-1.0MPa 2只0.0150.03凝结水箱30m 3(2x5x3m )1座 3.68 3.68凝结水泵32m 3/h ,60m 2台 1.53止回阀DN80,0-1.0MPa 2台0.010.02压力表0-0.6MPa 2只0.010.02阀门DN80,0-1.0MPa 2只0.040.08远传液位计0-10m ,带远传,介质清水1套0.180.186. 原水泵26m 3/h ,40m 2台0.30.67. 加热器26t/h 1台228. 管道混合器DN80,0—1.0 MPa 2台0.40.8多介质过滤器Φ1600mm ,26m 3/h/台2台 2.85 5.7压力表0-1.0MPa 4只0.010.04反洗水泵80m 3/h ,22m 1台0压力表0-1.0MPa 1只0.010.0111. 管道混合器DN80,0—1.0 MPa 2台0.40.8保安过滤器13m 3/h ,<0.6Mpa 2台24滤芯13m 3/h 4只0.10.4压力表0-1.0MPa 4只0.010.0413. 带远传余氯仪1台2214. 带远传温度计0-50℃1只015. 高、低压保护0~0.25MPa 4只016. 高压泵DN100,PN2.52台05. 9. 10. 12. 1. 2. 3. 4.17. 电磁阀DN100,PN2.52台 1.5318. 截止阀DN100,PN2.52台0.20.419. 主管止回阀DN100,PN2.52台0RO 膜BW30-400IG 36只0.414.4RO 滑架3只压力容器一组2套 4.59压力容器哈尔滨乐普6只0.32 1.92压力表0-2.5MPa 2只0.020.04压力表0-1.0MPa 4只0.0160.064压力表0-0.6MPa 2只0.050.1防爆膜0.2Mpa 2片0.0060.012止回阀DN80,PN1.02只0止回阀DN65,PN1.02只0流量计15m 3/h/套2只0流量计5m 3/h/套2只0带远传电导率仪2只0气动蝶阀DN804只021. RO 控制\仪表盘1只 1.8 1.8反渗透清洗系统1套/清洗药筒1m 31只0.150.15清洗水泵10-20m 3/h ,36-29m 1台0.70.7清洗保安过滤器15m 3/h 1台0.480.48压力表0-1.0MPa 1台0.010.01转子流量计0-50 m 3/h 1台0.080.08中间水泵20m 3/h ,32m 2台0.7 1.4压力表0-1.0MPa 2只0.010.02止回阀0-0.6MPa 2只0.020.04除碳器Φ600mm ,20m 3/h 1台1.1 1.1除碳风机1台0.450.45混合离子交换器Φ800mm ,20t/h 2台1.53阳树脂D101,500mm 0.55吨0.550.3025阴树脂D201,700mm 0.84方1.25 1.05产水电导率仪2套0.380.76有机玻璃转子式15m 3/h 2套0.080.16树脂捕捉器10m 3/h 2台0.20.4压力表0-1.0MPa 4台0.010.0426. 酸计量箱0.5m 31台0.20.227. 碱计量箱0.5m 31台0.20.225. 20. 22. 23. 24.28. 酸碱喷射器2台0.060.1229. 酸雾吸收器DN7001台0.080.0830. 再生水泵10m 3/h ,30m 2台0.6 1.231. 酸碱中和泵100WFB-AD ,10m 3/h ,20m 2台0.30.6高效絮凝剂加药装置1套加药泵0-5L/h ,1.00Mpa 2台PE 加药桶100L 1台现场液位开关1套氧化剂加药装置1套加药泵0-5L/h ,1.00Mpa 2台PE 加药桶100L 1台现场液位开关1套阻垢剂加药装置1套加药泵0-5L/h ,0.76Mpa 2台PE 加药桶100L 1台现场液位开关1套还原剂加药装置1套加药泵0-5L/h ,0.76Mpa 2台PE 加药桶100L 1台现场液位开关1套36. 电磁除铁过滤器40m 3/h ,工作压力:1.0MPa 2台4.18.237. 系统连接管材、管件PVC 1套1138. 阀门1套1139. 管道安装辅件1套0.50.541电缆、电线、桥架等1套 1.5 1.542设备保温容重80kg 国标1套1143安装费1121244管理费11132. 13.7 3.71.533. 34. 0.75135. 40GGD 标准柜2200×800×600mm 1套45运费122 46税金199碳钢防腐高位报警,低位停泵碳钢防腐高位报警,低位停泵碳钢防腐或聚脲不锈钢,卧式,凯泉不锈钢高位报警,低位停泵碳钢衬胶,磁翻板液位计碳钢,磁翻板液位计聚四氟乙烯,淄博泵业不锈钢PVC,进/出口碳钢防腐或聚脲不锈钢,卧式,凯泉不锈钢不锈钢PVC,进/出口高位报警,低位停泵凯泉,一用一备304材质,氧化剂/絮凝剂一用一备(含填料) 不锈钢凯泉304(还原剂/阻垢剂)304两套,每套各两根维尔思已有凯泉304304碳钢喷漆6只膜装型进水浓水/二段产水产水浓水产水2个浓水2个产水碳钢喷塑,含PLC控制凯泉304304内填Φ50多面空心球配套软连接碳钢衬胶碳钢衬胶,磁力翻板式液位计碳钢衬胶,磁力翻板式液位计碳钢衬胶,与混床配套碳钢衬胶凯泉国产优质,耐腐蚀自吸圆锥形机械隔膜式机械隔膜式电磁驱动式电磁驱动式清洗次数:4-6次碳钢/UPVC法兰/三通等过流、过载、电动机综合保护等IP30,碳钢喷塑,正泰产品。
(完整版)水解池计算厌氧生物处理法是一个较为复杂的生物化学过程,生物厌氧处理主要依靠水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的共同作用的结果,因此可将其大致分为水解酸化、产氢产乙酸和产甲烷等3个连续的阶段。
见下图:第1阶段为水解酸化阶段,它主要由一些兼性厌氧菌,如梭状芽孢杆菌、厌氧消化球菌、大肠杆菌等先将大分子、难溶解的有机物分解成小分子、易溶解有机物,然后再渗入细胞体内分解成易挥发的有机酸、醇、醛等,如甲酸、乙酸、低级醇等。
含氮有机物分解产生的NH3,除了提供合成细胞物质的氮源之外,还要在水中部分电解,生成碳酸氢铵,具有缓冲废水pH值的作用。
第2阶段为产氢产乙酸阶段。
在产氢产乙酸细菌的作用下。
第1阶段产生的各种有机酸被分解转化为乙酸和氢气,在降解有机酸时还产生二氧化碳。
第3阶段为产甲烷阶段,在完全无氧的条件下,甲烷菌将低分子的有机酸或低级醇进一步分解转化为甲烷。
水解酸化即将厌氧工艺控制在水解酸化阶段的厌氧水解,水解酸化工艺是不完全厌氧法的生化反应,水解酸化菌为优势菌种,考虑到产甲烷菌与水解酸化菌生产速度不同,在反应构筑物中利用水流动的淘洗作用造成甲烷菌难于繁殖。
应尽量降低废水中的溶解氧,使水解酸化细菌更适于繁殖。
水解酸化处理技术是针对长链高分子聚合物及含杂环类有机物处理的一种污水处理工艺。
水解酸化菌可将长链高分子聚合物水解酸化为可生化性更强的有机小分子醇或酸,也可以将部分不可生化或生化性较弱的杂环类有机物破环降解成可生化的有机分子;提高污水中有机污染物BOD5/CODCr值,从而改善整个污水的生化性。
水解酸化的优点为:A、正常条件下,经过2-4天的生化反应,所用时间短,无需大容积的消化池,能脱除废水COD的15-25%。
COD降低了,也减少了对氧的需求,降低供氧负荷,同时减少了由于综合N、P营养物缺乏而在废水中投加营养物质的量。
B、使不溶性的有机物水解为溶解性的有机物,将难生化的大分子物质转化为易于生物降解的小分子物质,如醋酸甲酯在水解酸化菌酶的作用下,分解成醋酸与甲醇:BOD/COD小于0.3的原废水经厌氧处理后其BOD/COD值提高到0.4~0.5,从而提高了废水的可生化性。
免费的
目录
1水解酸化池设计计算 (1)
1.1水解池的容积 (1)
1.4.1堰长设计 (2)
1.4.2出水堰的形式及尺寸 (2)
1.4.3堰上水头
h (3)
1
1.4.4集水水槽宽B (3)
1.4.5集水槽深度 (3)
1.4.6进水堰简略图 (4)
1水解酸化池设计计算
1.1水解池的容积 水解池的容积V
QHRT K V Z =
式中:V ——水解池容积,m 3;
z K ——总变化系数,1.5;
Q ——设计流量,m 3/h ;
HRT ——水力停留时间,h ,取6h ;
则345655.1m V =⨯⨯=
印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。
1.2水解池上升流速校核
已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下:
HRT
H
HRTA V A Q =
==
ν 式中: ν——上升流速(m/h );
Q ——设计流量,m 3/h ;
V ——水解池容积,m 3;
A ——反应器表面积,m 2;
HRT ——水力停留时间,h ,取6h ;
则)/(67.06
4h m ==ν
水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。
1.3配水方式
采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。
1.4进水堰设计
已知每格沉淀池进水流量s m h
m Q /00035.03600
4/533'
=⨯=
; 1.4.1堰长设计
取出水堰负荷)/(2.0'm s L q ⋅=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ⋅)。
''
q
Q L =
式中:L ——堰长m ;
'q ——出水堰负荷,)/(m s L ⋅,取0.2)/(m s L ⋅; 'Q ——设计流量,m 3/s ;
则75.12.01000
00035.0''=⨯==q
Q L m ,取堰长m L 2=。
1.4.2出水堰的形式及尺寸
出水收集器采用UPVC 自制90º三角堰出水。
直接查第二版《给
排水设计手册》第一册常用资料P683页,当设计水量为Q =5m 3/h 时,过堰水深为63mm ,每米堰板设6个堰口,过堰流速为s m /395.11=ν。
取出水堰负荷)/(2.0'm s L q ⋅=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ⋅)。
每个三角堰口出流量为)/(000033.0)/(033.06
2.06'3s m s L q q ==== 1.4.3堰上水头1h
2
51)4
.1(
q h = 式中:1h ——堰上水头m ;
q ——每个三角堰出流量,m 3/h ;
则014.0)4
.1000033.0()4.1(
2
5251===q h m 。
1.4.4集水水槽宽B
4
.0'9.0Q B ⨯=
式中:B ——堰上水头m ;
'Q ——设计流量,m 3/s ;
为了确保安全集水槽设计流量0Q =(1.2~1.5)'Q 则
044.0)00035.05.1(9.04.0=⨯⨯=B m ,因此水槽宽取50mm 。
1.4.5集水槽深度
集水槽的临界水深:
3
2
2
gB
Q h k = 式中:B ——堰上水头m ;
0Q ——安全设计流量,m 3/s ;
则1132.0044.08.9)
00035.05.1(32
2
3
2
2
0=⨯⨯==gB Q h k m 。
集水槽的起端水深:k h h 73.10= 式中:0h ——起端水深m ;
则195.01132.073.173.10=⨯==k h h m ;取mm h 2000=; 设出水槽自由跌落高度:mm m h 10010.02==。
则集水槽总深度31.0195.01.0014.0021=++=++=h h h h m
1.4.6进水堰简略图
图1 出水三角堰尺寸图
图2 集水槽剖面图
1.5进好氧池出水管设计
取水在管中的流速为s m /8.02=ν,(数据取自《建筑给排水设计手册》)
π
ν2'
14Q d =
式中:1d ——出水管直径,mm ;
2ν——过堰流速,m/s ;
则024.08.000035
.0442'
1=⨯=
=
π
π
νQ d m ,取DN25管。
1.6污泥回流泵设计计算
在水解酸化池中,按污泥回流泵的流量为h m Q Q p /53==计算。
取污泥回流管设计流速s m /5.03=ν,(数据取自《建筑给排水设计手册》),污泥回流管的直径为
π
ν324p
Q d =
式中:2d ——出水管直径,mm ;
3ν——过堰流速,m/s ;
则59.03600
5.05
443'
2=⨯⨯=
=
ππ
νQ d m ,取DN65管。
地地道道dd Sdsfdfsgf
sdfsdfdfffffffffffffffffffffffffffffffffffffffffffffffffff。