基于机器视觉的尺寸测量方法
- 格式:doc
- 大小:12.55 KB
- 文档页数:2
基于机器视觉的机械零部件尺寸测量技术研究导言近年来,随着机械工业的不断发展,对机械零部件尺寸测量技术的要求也越来越高。
传统的人工测量虽然能够满足一定的需求,但其存在的主观性和不稳定性仍然是主要问题。
为了解决这一问题,基于机器视觉的机械零部件尺寸测量技术应运而生。
本文将探讨基于机器视觉的机械零部件尺寸测量技术的研究现状和未来发展趋势。
一、技术原理基于机器视觉的机械零部件尺寸测量技术是利用计算机和摄像设备对机械零部件进行图像采集和处理,通过图像处理算法获取零部件的尺寸信息。
其技术原理主要分为图像采集、图像处理和尺寸测量三个步骤。
图像采集是基于机器视觉的机械零部件尺寸测量技术的第一步。
通过高分辨率摄像设备对机械零部件进行拍摄,获取清晰的图像。
高分辨率的摄像设备能够提供更多的图像信息,有助于提高尺寸测量的准确性。
图像处理是基于机器视觉的机械零部件尺寸测量技术的核心步骤。
通过图像处理算法对采集到的图像进行分析和处理,去除图像中的噪声和干扰,提取出零部件的边缘特征。
常用的图像处理算法包括边缘检测、二值化、轮廓提取等。
尺寸测量是基于机器视觉的机械零部件尺寸测量技术的最终目标。
通过对图像处理后的图像数据进行尺寸计算,得到机械零部件的尺寸信息。
常用的尺寸测量方法包括长度测量、宽度测量、直径测量等。
二、研究现状基于机器视觉的机械零部件尺寸测量技术已经在工业领域得到广泛应用。
目前,研究人员主要集中在算法改进、设备优化和测量系统的智能化方面进行研究。
在算法改进方面,研究人员提出了许多新的图像处理算法和尺寸测量方法。
例如,基于边缘检测和霍夫变换的尺寸测量方法可以提高测量的准确性和稳定性。
另外,利用深度学习技术进行图像处理和尺寸测量也成为研究热点。
这些算法的出现极大地推动了基于机器视觉的机械零部件尺寸测量技术的发展。
在设备优化方面,研究人员致力于提高摄像设备的性能和精度。
高分辨率、高帧率的摄像设备能够提供更多的图像信息,从而提高尺寸测量的准确性。
基于机器视觉技术的工件尺寸测量实训教学项目设计作者:张苏新韩仲洋黄天宇张云昊来源:《现代信息科技》2021年第01期摘要:通过对机器视觉硬件电路的设计,同时使用VisionPro软件进行工件尺寸测量的编程设计,完成了工件尺寸测量实训教学项目的设计,具体完成了工件的长度、角度、孔径和直径的尺寸测量。
该实训项目包含了工件测量的常用测量变量,对于通过VisionPro软件进行工件测量的教学具有良好的教学效果,能够让学生更好地掌握机器视觉检测的应用。
关键词:机器视觉;实训教学项目;VisionPro中图分类号:TP391.41 文献标识码:A 文章编号:2096-4706(2021)01-0149-04Design of Practical Teaching Project of Workpiece Dimension MeasurementBased on Machine Vision TechnologyZHANG Suxin,HAN Zhongyang,HUANG Tianyu,ZHANG Yunhao(Suzhou Vocational University,Suzhou 215104,China)Abstract:By the means of designing of machine vision hardware circuit,and making the programming design of workpiece dimension measurement by VisionPro software,the design ofpractical teaching project of workpiece dimension measurement is completed. For more,the dimension measurement of the length,angle,aperture and diameter of the workpiece are completed. The training project includes the common measurement variables of the workpiece measurement. Which has good teaching effect for the teaching to measure the workpiece through VisionPro software,and can make students better master the application of machine vision detection.Keywords:machine vision;practical teaching project;VisionPro0 引言传统的工件尺寸测量都是检测技术员借助仪器仪表完成的。
基于机器视觉的尺寸测量应用综述机器视觉是一种将图像处理和模式识别技术应用于自动化检测和测量的方法。
尺寸是指物体在空间中的长度、宽度、高度等物理量,尺寸的测量应用是机器视觉应用的重点之一。
本文就基于机器视觉的尺寸测量应用进行综述。
(1)尺寸测量应用的基础原理机器视觉的尺寸测量基本原理是通过像素和实际尺寸之间的比例关系实现测量。
在尺寸测量之前,首先需要进行像素和实际尺寸的转换。
通常的方法是通过摄像机标定来获得相机的内部参数,包括焦距、主点等参数。
尺寸测量应用的技术难点主要包括以下几个方面:①测量精度:对于工业生产中对尺寸要求较高的应用,需要达到高精度的尺寸测量。
而且由于图像采集过程中会出现噪声等因素的干扰,会对测量精度产生影响。
②特征提取: 尺寸的测量需要先提取出物体的边缘和其他特征,而不是整个物体。
特征提取的准确度和快速性直接影响到尺寸测量的精度和效率。
③测量环境: 尺寸的测量受到环境因素的影响。
例如,在强烈的光线下或反光的表面上,会降低测量的准确度。
随着机器视觉技术的发展,尺寸测量应用得到了很大的进展。
尺寸测量应用主要分为两个方向:精度和效率。
①提高测量精度: 在精度方面,为了提高尺寸测量的精度,人们使用了更高分辨率的摄像头和更好的图像算法。
例如,通常使用的算法是基于边缘检测和边缘匹配的算法,是目前精度比较高的一种算法。
②提高测量效率:在效率方面,人们不断尝试使用更快、更简单的算法来实现快速的尺寸测量。
例如,特征点提取法和物体模板匹配法,可以在短时间内快速地提取特征和匹配物体。
尺寸测量应用可以应用于各种不同领域。
以下是一些尺寸测量的应用领域:①制造业: 尺寸测量在制造业中使用广泛。
例如,测量机配合机器视觉可以完成工件尺寸的测量、质量检测和快速计算。
②医疗: 机器视觉尺寸测量可以用于医疗器械的设计和制造中,如人工关节和牙科器具。
③建筑: 在建筑领域中,机器视觉尺寸测量可以用于建筑结构的检测和量化,如土木工程、桥梁和隧道测量。
基于机器视觉的服装尺寸在线测量系统李鹏飞;郑明智;景军锋【摘要】在服装尺寸在线测量过程中,针对传统人工测量所带来的误差率高、成本高、效率低等问题,提出了一种基于机器视觉的服装尺寸在线测量系统.服装尺寸在线测量系统从硬件和软件2个方面进行设计.系统硬件部分主要功能是通过CCD相机实现服装图像的采集;系统的软件部分是整个系统的核心,通过角点检测算法对特征点进行提取和定位,针对Forstner算法需要对图像中的每一个像素点进行扫描,从而导致检测速度比较慢的问题,采用SIFT算法先对图像进行快速的筛选,去除一些无关的点,然后运用Forstner算法在初选点集中进行角点提取.通过对提取出的关键角点进行坐标定位分析和比例尺寸测量,得到所测服装的真实值,并且运用友好的人机界面显示出尺寸测量的结果.所设计的系统用于对512 ×512的256级灰度图像进行检测,尺寸测量的标准误差均小于0.25 mm,重复性精度接近5 mm.实验误差和尺寸测量精度能够达到服装尺寸测量的标准.【期刊名称】《毛纺科技》【年(卷),期】2017(045)003【总页数】6页(P42-47)【关键词】尺寸测量;图像处理;角点检测;SIFT算法;Forstner算法【作者】李鹏飞;郑明智;景军锋【作者单位】西安工程大学电子信息学院,陕西西安710048;西安工程大学电子信息学院,陕西西安710048;西安工程大学电子信息学院,陕西西安710048【正文语种】中文【中图分类】TP391.41如今,在服装生产过程中,服装的尺寸测量已经成为非常重要的工序。
然而,传统的人工测量服装的尺寸的方法,由于服装的制造量大,面临检测人员的疲劳度高、检测速度慢、检测误差率高以及检测的成本高等问题[1-2]。
因此,研究一种自动检测服装尺寸的测量方法是尤为重要的。
计算机机器视觉图像处理技术正在广泛的应用于各行各业,替代人工视觉,以降低疲劳、提高效率和连贯性,降低检测的成本。
基于机器视觉的尺寸测量方法
机器视觉是一种通过摄像机、图像处理软件、计算机和人工智能技术来模拟人类视觉的技术。
在制造业中,机器视觉已经被广泛应用于尺寸测量,其高精度和高效率的特点使其成为自动化生产线上重要的测量手段。
基于机器视觉的尺寸测量方法是通过摄像机获取待测物体的影像,通过图像处理软件提取物体的轮廓或特征点,然后利用数学模型计算物体的尺寸。
这种方法不仅可以测量平面物体的尺寸,还可以对三维物体的长度、宽度、高度等尺寸参数进行测量。
在实际应用中,基于机器视觉的尺寸测量方法需要考虑以下几个方面:
1. 图像质量:图像质量直接影响测量精度,因此需要保证摄像机的分辨率、对比度、光线等条件都符合要求。
2. 物体表面的特征:在进行尺寸测量之前,需要对物体表面进行特征提取。
对于平面物体,可以直接提取物体的轮廓;对于三维物体,需要先通过立体匹配算法建立物体的三维模型,然后提取其特征点。
3. 计算模型:测量结果的精度和稳定性与计算模型密切相关。
因此需要根据实际应用场景选择适当的计算模型,并进行模型的优化和验证。
4. 测量环境:测量环境对测量精度也有一定的影响。
需要保证测量环境的稳定性和灰度均匀性,避免光照不均或者物体本身存在遮
挡等情况。
基于机器视觉的尺寸测量方法已经被广泛应用于汽车、航空、电子、医疗等领域。
随着机器视觉技术的不断发展和完善,基于机器视觉的尺寸测量方法将会更加精准和高效。