高考数学中的数列问题解析
- 格式:docx
- 大小:38.16 KB
- 文档页数:7
高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
专题13数列小题1。
【2017课标1,理4】记nS 为等差数列{}na 的前项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .8 【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S ad a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416aa +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C 。
【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na 为等差数列,若m np q +=+,则mnpqa a a a +=+。
2。
【2017课标3,理9】等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为A .24-B .3-C .3D .8 【答案】A 【解析】故选A 。
【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3。
【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()712381 12x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。
高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。
数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
高三数学数列极限试题答案及解析1.已知数列是公差为2的等差数列,是的前n项和,则= .【答案】【解析】由题意得:,因此【考点】数列极限2..【答案】【解析】.【考点】数列的极限.3.计算:.【答案】1【解析】这是“”型极限问题,求极限的方法是转化,分子分母同时除以化为一般的极限问题,.【考点】“”型极限.4.已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。
(1)求、的通项公式;;(2)若,试证数列为等比数列,并求的通项公式。
(3).【答案】(1)(2)是以2为公比,4为首项的等比数列.(3)1【解析】(1)在直线∵P1为直线l与y轴的交点,∴P1(0,1),又数列的公差为1(2)是以2为公比,4为首项的等比数列.(3)【考点】本题考查了数列的通项及前n项和点评:等差数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.随着新课标实施的深入,高考关注的重点为等差、等比数列的通项公式,错位相减法、裂项相消法等求数列的前n项的和等等5.设,,则等于( ).A.B.C.或D.不存在【答案】B【解析】即.6.… =_______________【答案】【解析】,所以.7.数列中,则数列的极限值()A.等于B.等于C.等于或D.不存在【答案】B【解析】解:因为数列中,,可知数列有规律,那么利用极限概念可知其项的值趋近于1,选B.8.计算.【答案】【解析】略9.数列{an}中,a1=,an+an+1=,则(a1+a2+…+an) = ()A.B.C.D.【答案】B【解析】本题考查数列求和技巧及无穷等比数列各项和知识。
由an+an+1=(a1+a2+…+an) =10.数列的通项公式为,则A.1B.C.1或D.不存在【答案】B【解析】由数列的极限的定义可知,数列的极限与该数列的前有限项的值无关,所以故选择B11.设正数满足,则【答案】【解析】略12.。
高考数学复习考点知识与结论专题讲解第33讲 数列的概念和性质通关一、数列的概念一般地,按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.数列的一般形式可以写成:123,,,,,n a a a a ,简记为{}n a ,其中数列的第1项1a ,也称首项;数列的第n 项n a ,也叫数列的通项. 要点诠释:(1){}n a 与n a 的含义完全不同:{}n a 表示一个数列,n a 表示数列的第n 项;(2)数列的项与项数是两个不同的概念:数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号;(3)数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同序排列次序不同,那么它们就是不同的数列;(4)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出.通关二、数列的分类1,2,3,4,,100 ,,n3,4,5,,n1,,20156,6,6,6,2,3,4,-1,1,1,-1,3,4,4,通关三、数列的通项公式如果数列{}n a 的第n 项n a 与n 之间的函数关系可以用一个公式表示成n a ()f n =,那么这个公式就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式. 要点诠释:(1)并不是所有数列都能写出其通项公式.(2)一个数列的通项公式有时是不唯一的.如数列:1,0,1,0,1,0,通项公式可以是11(1)2n n a ++-=,也可以是sin 2n n a π=.(3)数列通项公式的作用: ①求数列中任意一项;②检验某数是否是该数列中的一项.(4)数列的通项公式具有双重身份,它表示了数列的第n 项,又是这个数列中所有各项的一般表示.通关四、数列{}n a 的前n 项和数列{}n a 的前n 项和:指数列{}n a 的前n 项逐个相加之和,通常用n S 表示,即12n n S a a a =+++,1*1(1)2(n n n S n a S S n n -=⎧⎪=⎨-∈⎪⎩N )且….结论一、数列通项公式给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系; (2)若第n 项和第1n +项正负交错,那么符号用(1)n-或1(1)n +-或1(1)n --来调控;(3)熟悉一些常见数列的通项公式;(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式进行变形,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.【例1】根据数列的前几项,写出下列各数列的一个通项公式.(1)4142,,,,52117;(2)1925,2,,8,,222;(3)7,77,777,; (4)0,3,8,15,24,.【答案】(1)432n a n =+(2)22n n a =(3)()71019n n a =-(4)21n a n =-【解析】(1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为4444,,,581114,,它们的分母相差3,因而有432n a n =+. (2)把分母统一为2,则有1491625,,,,,22222,因而有22n n a =.(3)把各项除以7,得到1,11,111,,再乘以9,得到9,99,999,,因而有()71019n n a =-. (4)观察数列递增速度较快,用平方数列对照看一看,即222221,2,3,4,5,,则有21n a n =-.【变式】根据数列的前几项,写出下列各数列的一个通项公式(1)23451,,,,,3579;(2)3143984,,,,251017;(3)392565,,,,24816;(4)5791,,,,81524--.【答案】(1)21n n -(2)221n n n ++(3)12n n +(4)1221(1)2n n n n ++-+【解析】(1)先将数列23451,,,,,3579,第1项也化为分数,数列变为12345,,,,13579,此时可以看出分子是按正整数顺序排列,分母是按奇数排列,因此此数列的通项公式为21n na n =-. (2)将数列各项化为带分数,即149161,2,3,4,251017,可以发线正整数部分是按正整数顺序排列的,分数部分各分子均为2n ,分母都比分子大1,所以分数部分的通项公式为221n n +.两部分合成为221n n a n n =++.(3)将数列各项化为带分数,即11111,2,3,4,24816,可以发现整数部分是按正整数顺序排列的,分数部分各分子均为1,分母是2n,所以两部分合成为12nn +. (4)先将数列各项取为正数,即为5791,,,,81524,再将第1项也化为分数(注意第1项化为分子符合各项分子变化规律的分数)即为3579,,,,381524,可以观察出各项分子是3开始的奇数,通项公式可以写为21n +,分母排成的数列后项与前项的差呈现出等差数列规律,求出分母的通项公式是22n n +,合起来为2212n n n ++,再考虑正负号变化规律,即可得出通项公式为1221(1)2n n n n++-+. 结论二、数列的周期性对于数列{}n a ,如果存在一个常数()*T T ∈N,使得对任意的正整数0n n >,恒有n Tn aa +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.若01n =,则称数列{}n a 为纯周期数列,若02n …,则称数列{}n a 为混周期数列,T 的最小值称为最小正周期,简称周期. 【例2】设数列{}n a 满足1112,1n na a a +==-,记数列{}n a 前n 项之积为n T ,则2020T 的值为(). A.2 B 1 C.1-D.2-【答案】D 【解析】因为12a =,111n n a a +=-,所以211112a a =-=,32111a a =-=-,43112a a =-=,即数列{}n a 是周期为3的周期数列,且1231a a a ⋅⋅=-,故673202067331(1)22T T ⨯+==-⨯=-.故选D.【变式】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,若167a =,则20a 的值为().A.67B57C.37D.17【答案】B【解析】因为数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,167a =,所以215217a a =-=,323217a a =-=,43627a a ==,所以数列{}n a 是周期为3的循环数列,所以20257a a ==.故选B.结论三、已知n S 求n a 的一般步骤任意数列{}n a 的前n 项和1121(1);(2)n n n nn S n S a a a a S S n -=⎧=+++=⎨-⎩….要点诠释:由前n 项和n S 求数列通项时,要分三步进行: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用1,2n n n a S S n -=-…便求出当2n …时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n …时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n …两段来写. 【例3】已知数列{}n a 的前n 项和为21n S n =-,则其通项公式na =__________.【答案】0,121,2n n n =⎧⎨-⎩…【解析】因为已知数列{}n a 的前n 项和21n S n =-,所以当1n =时,110a S ==,当2n …时,1n n n a S S -=-22221(1)1(1)21n n n n n ⎡⎤=----=--=-⎣⎦,经检验,1n =时,1a 不满足上述式子,故数列{}n a 的通项公式0,1.21,2n n a n n =⎧=⎨-⎩…【变式】已知数列{}n a 的前n 项和31nn S =+,则其通项公式na =__________.【答案】14,123,2n n n -=⎧⎨⋅⎩… 【解析】当1n =时,11314a S ==+=;当2n …时,()()111131312323nnnnn n na S S ----=-=+-+=⋅=⋅.当1n =时,111232a -⨯=≠,所以14,1.23,2n n na n -=⎧=⎨⋅⎩…结论四、n a 与n S 混合在一起的处理方法数列{}n a 的前n 项和n S 与通项n a 的关系为11,1,2n nn S n a S S n -=⎧=⎨-⎩…,通过纽带:1(2)n n n a S S n -=-…,根据题目已知条件,消掉n a 或n S ,再通过构造成等差数列或者等比数列进行求解. 要点诠释:(1)若消掉n S ,应利.用已知递推式,把n 换成1n -得到另一个式子,两式相减即可求得通项. (2)若消掉n a ,只需把1n n n a S S -=-代入递推式得到n S ,1n S -的关系,求出n S 后再利用n a 与n S 的关系求通项.【例4】若数列{}n a 的前n 项和为2133n n S a =+,则1a =数列{}n a 的通项公式n a =__________.【答案】11(2)n --【解析】由已知条件得,当1n =时,112133a a =+,故11a =.当2n …时,2133n n S a =+,112133n n S a --=+,所以12233n n n a a a -=-,即12n n a a -=-.所以{}n a 是以1为首项,2-为公比的等比数列,所以1(2)n n a -=-.【变式】已知数列{}n a 的前n 项和n S ,若1111,3n n a S a +==,则7a =().A.74B. 534⨯C. 634⨯D. 641+【答案】B【解析】由113n n S a +=,可得11,23n n S a n -=…,两式相减可得:111,233n n n a a a n +=-…,即14,2n n a a n +=….数列{}n a 是从第二项起的等比数列,公比为4, 因为113n n S a +=,11a =.所以23a =.所以72572434a a -==⨯.故选B.结论五、数列单调性的判断方法①作差法:10n n a a +->⇔数列{}n a 是递增数列; 10n n a a +-<⇔数列{}n a 是递减数列; 10n n a a +-=⇔数列{}n a 是常数列.②作商法:当0n a >时,11n n a a +>⇔数列{}n a 是递增数列; 11n na a +<⇔数列{}n a 是递减数列; 11n na a +=⇔数列{}n a 是常数列. 当0n a <时,11n na a +>⇔数列{}n a 是递减数列; 11n na a +<⇔数列{}n a 是递增数列; 11n na a +=⇔数列{}n a 是常数列. 【例5】已知{}n a 是递增数列,且对于任意的*2,n n a n n λ∈=+N 恒成立,则实数λ的取值范围是__________. 【答案】3λ>-【解析】解法一(定义法)因为{}n a 是递增数列,所以对任意的*n ∈N ,都有1n a +>n a ,即22(1)(1)n n n n λλ+++>+,整理得210n λ++>,即(21)(*)n λ>-+. 因为1n …,所以(21)3n -+-…,要使不等式(*)恒成立,只需3λ>-.解法二(函数法)设2()n f n a n n λ==+,其图像的对称轴为直线2n λ=-,要使数列{}n a 为递增数列,只需使定义在正整数上的函数()f n 为增函数,故只需满足(1)(2)f f <,即3λ>-. 【变式】已知数列{}n a 的通项公式为(37)0.9n n a n =+⨯,则数列{}n a 的最大项是().A.5aB. 6aC. 7aD. 8a 【答案】C 【解析】由1310913710n n a n a n ++=⨯>+,解得203n <,又*n ∈N ,所以6n ….于是12a a <<7a <,当7n …时,11n na a +<, 故78a a >>, 因此最大项为7a .故选C .。
高考数学中的极限与数列应用实战解析高考作为一个国家级考试,其数学考试内容无疑是备少数几个难点最多的科目之一,其中数列与极限无疑是经常出现的难点。
在遇到数列与极限问题时,很多同学会感到无从下手,下面我们就来深度剖析高考数学中常见的数列与极限应用实战。
1. 数列与极限的定义和概念首先,我们需要首先了解数列与极限的定义与概念。
数列是指按照一定规律排列而成的数的集合。
例如,1、2、3、4、5……就是一个数列。
其中,每一个数叫做数列的项,称为“通项”。
而数列的通项公式就是从一个通项出发,通过一定的数学公式计算出其他所有的项的数列。
接下来,我们来看一下数列的求和公式:数列的求和公式:$a_n=a_1+(n-1)\cdot d$ (递推公式)$S_n=\dfrac{(a_1+a_n)\cdot n}{2}$(通项公式)极限是数列中不停地逼近某一个数的过程,这个极限值称为该数列的极限。
比如,当$n$的值越来越大时,$\dfrac{1}{n}$的值越来越小,但$\dfrac{1}{n}$不会等于零,那么$\dfrac{1}{n}$的极限值为$0$。
在进行极限计算的过程中,我们经常会使用夹逼定理、单调有界准则等方法。
2. 应用实战1:数列极限的计算问题题目:$a_{n+1}=\sqrt{2+a_n}$,$a_1=1$。
求$\lim\limits_{n \to \infty}a_n$。
解析:我们通过分析可以知道,这是一个递推数列,所以我们需要通过递推公式来求解。
首先,我们计算$a_2$的值:$a_2=\sqrt{2+a_1}=\sqrt{3}$接着,计算$a_3$的值:$a_3=\sqrt{2+a_2}=\sqrt{2+\sqrt{3}}$继续计算$a_4$的值:$a_4=\sqrt{2+a_3}=\sqrt{2+\sqrt{2+\sqrt{3}}}$我们可以持续计算下去,但很难发现此数列逆势递增的问题。
故我们需要对题目进行再次分析。
高考数学复习考点题型解题技巧专题讲解第18讲数列中的奇、偶项问题高考定位数列的奇、偶项问题,是近年来的高考的热点问题,考察了学生的分类与整合能力,考察了学生的探究发现的能力,也是今后考察的热点。
专题解析(1)求通项和求和时,分奇数项与偶数项分别表达;(2)求S n时,我们可以分别求出奇数项的和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.专项突破类型一、数列中连续两项和或积的问题(a n+a n+1=f(n)或a n·a n+1=f(n));例1-1.已知数列{a n}满足a1=1,a n+1+a n=4n.(1)求数列{a n}的前100项和S100;(2)求数列{a n}的通项公式.解(1)∵a1=1,a n+1+a n=4n,∴S100=(a1+a2)+(a3+a4)+…+(a99+a100)=4×1+4×3+...+4×99=4×(1+3+5+ (99)=4×502=10 000.(2)由题意,a n +1+a n =4n ,①a n +2+a n +1=4(n +1),② 由②-①得,a n +2-a n =4, 由a 1=1,a 1+a 2=4,所以a 2=3.当n 为奇数时,a n =a 1+⎝ ⎛⎭⎪⎫n +12-1×4=2n -1, 当n 为偶数时,a n =a 2+⎝ ⎛⎭⎪⎫n 2-1×4=2n -1.综上所述,a n =2n -1.练.设各项均为正数的等差数列{}n a 的前n 项和为n S ,520S =,且2a ,61a -,11a 成等比数列.(1)求数列{}n a 的公差d ;(2)数列{}n b 满足1n n n b b a ++=,且111b a +=,求数列{}n b 的通项公式. 【答案】 (1)1d =;(2)()11124n n n b -+-=+.【分析】(1)根据2a ,61a -,11a 成等比数列可得()262111a a a -=,利用1,a d 表示出520S =和()262111a a a -=,解方程组可求得1,a d ,结合0n a >可得结果;(2)由(1)可得11n n b b n +=-++,整理得()1131312424n n b n b n +⎛⎫--=---- ⎪⎝⎭,可知数列()13124n b n ⎧⎫---⎨⎬⎩⎭为等比数列,由等比数列通项公式可推导得到结果.(1)(1)设等差数列{}n a 的公差为d ,2a Q ,61a -,11a 成等比数列,()262111a a a ∴-=,即()()()21115110a d a d a d +-=++,又51545202S a d ⨯=+=,解得:121a d =⎧⎨=⎩或18217717a d ⎧=⎪⎪⎨⎪=-⎪⎩;当18217717a d ⎧=⎪⎪⎨⎪=-⎪⎩时,13182842120171717a a d =+=-=-<,与0n a >矛盾,121a d =⎧∴⎨=⎩,即等差数列{}n a 的公差1d =; (2)由(1)得:1n a n =+,11n n b b n +∴+=+,即11n n b b n +=-++,()1131312424n n b n b n +⎛⎫∴--=---- ⎪⎝⎭,又1121b a +==,解得:11b =,∴数列()13124n b n ⎧⎫---⎨⎬⎩⎭是以13144b -=为首项,1-为公比的等比数列, ()()113111244n n b n -∴---=-⨯,整理可得:()11124n n n b -+-=+.练.已知数列{}n a 的前n 项和为n S ,且11a =,121()n n a a n n N +++=+∈,则数列1{}nS 的前2020项的和为() A .20202021B .40402021C .40392020D .40412022【答案】B 【分析】首先根据已知条件求得n a ,然后求得n S ,利用裂项求和法求得正确答案. 【详解】数列{}n a 的前n 项和为n S ,且11a =,121n n a a n ++=+,则2132a a =-=. 所以2123n n a a n +++=+,两式相减得:22n n a a +-=,且11a =,22a =, 当n 为奇数时,11121122n n a a n n +⎛⎫=+-⨯=++-=⎪⎝⎭, 当n 为偶数时,212222n na a n n ⎛⎫=+-⨯=+-= ⎪⎝⎭,所以n a n =,所以数列{}n a 是首项为1,公差为1的等差数列. 所以(1)2n n n S +=, 故12112()(1)1n S n n n n ==-++,所以121111111112(1)2(1)22311n n T S S S n n n =++⋯+=-+-+⋯+-=-++,则2020140402(1)20212021T =-=. 故选:B例1-2.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n-1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .解 (1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列, 所以a 2n -1=⎝ ⎛⎭⎪⎫12n -1,a 2n =⎝ ⎛⎭⎪⎫12n,所以a n=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12n -12,n 为奇数,⎝ ⎛⎭⎪⎫12n 2,n 为偶数.(3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n=⎩⎪⎨⎪⎧3-32n2,n 为偶数,3-42n +12,n 为奇数.练.已知正项数列{}n a 的首项11a =,其前n 项和为n S ,且12n nn aa S +=.数列{}n b 满足:1n a +(b 1+b 2)n n b a ++=.(1)求数列{}n a 的通项公式; (2)记*n c n N =∈122n c c c +++<.【答案】 (1)(*)n a n n N =∈ (2)证明见解析 【分析】(1)根据题意得到12n n n a a S +=和112(2)n n n a a S n --=≥,两式相减得112(2)n n a a n +--=≥,解得答案.(2)计算1(1)n b n n =+,n c =n c <和n c >,利用裂项相消法计算得到证明. (1)由12n n n a a S +=得112(2)n n n a a S n --=≥,两式相减得112(2)n n a a n +--=≥,由11a =,得22a =,数列的偶数项和奇数项分别是公差为2的等差数列, 当n 为奇数时,n a n =,当n 为偶数时,n a n =. 综上所述(*)n a n n N =∈. (2) 由1211n n n a nb b b a n ++++==+,1211n n b b b n --+++=,2n ≥,112b =, 两式相减得1(1)n b n n =+,2n ≥,验证112b =成立,故1(1)n b n n =+.则n c那么n c =,故12111112(1)2231n c c c nn +++<-+-++-+=2(12<,同理n c,故121111112()233412n c c c n n +++>-+-+-++.类型二、含有(-1)n 的类型;例2-1.数列{a n }中,a 1=1,a 2=2,数列{b n }满足b n =a n +1+(-1)n a n ,n ∈N *. (1)若数列{a n }是等差数列,求数列{b n }的前100项和S 100; (2)若数列{b n }是公差为2的等差数列,求数列{a n }的通项公式. 解 (1)∵{a n }为等差数列,且a 1=1,a 2=2,∴公差d =1,∴a n =n .∴b n =⎩⎨⎧a n +1-a n =1,n 为奇数,a n +1+a n =2n +1,n 为偶数,即b n =⎩⎨⎧1,n 为奇数,2n +1,n 为偶数,∴b n 的前100项和S 100=(b 1+b 3+...+b 99)+(b 2+b 4+...+b 100) =50+(5+9+13+ (201)=50+50×5+50×(50-1)2×4=5 200.(2)由题意得,b 1=a 2-a 1=1,公差d =2, ∴b n =2n -1.∴⎩⎨⎧b 2n -1=a 2n -a 2n -1=4n -3, ①b 2n =a 2n +1+a 2n =4n -1, ② 由②-①得,a 2n +1+a 2n -1=2, ∴a 2n +1=2-a 2n -1,又∵a 1=1,∴a 1=a 3=a 5=…=1, ∴a 2n -1=1,∴a 2n =4n -2, 综上所述,a n =⎩⎨⎧1,n 为奇数,2n -2,n 为偶数.例2-2.设S n 为数列{a n }的前n 项和,S n =(-1)na n -12n ,n ∈N *.(1)求a 3;(2)求S 1+S 2+…+S 100.解(1)令n=4,则S4=a4-124,∴S3=-124.令n=3,则S3=-a3-1 23,∴a3=-S3-123=-124.(2)当n=1时,a1=-1 4;当n≥2时,a n =S n-S n-1=(-1)n·a n-12n-(-1)n-1·a n-1+12n-1=(-1)n·a n+(-1)n·a n-1+12n ,即a n=(-1)n·a n+(-1)n·a n-1+12n.(*)①当n为偶数时,由*式可得a n-1+12n=0,则a n-1=-12n ,∴a n=-12n+1,此时n为奇数.②当n为奇数时,由*式可得a n-1=-2a n+12n=-2·⎝⎛⎭⎪⎫-12n+1+12n=12n-1,∴a n=12n,此时n为偶数.综上所述,a n=⎩⎪⎨⎪⎧-12n +1,n 为奇数,12n,n 为偶数.∴S 1+S 2+…+S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)-⎝ ⎛⎭⎪⎫12+122+…+12100 =2⎝ ⎛⎭⎪⎫14+116+…+12100-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1. 练 .数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400 答案 B解析 S 100=1-5+9-…-397=4×(-50)=-200.练.已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式; (2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0, 所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0, 即a 2n +1-a 2n -1=2,又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列. 所以b n =1+(n -1)×2=2n -1,n ∈N *.(2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0, 当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0, 即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0, 即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =⎣⎢⎡⎦⎥⎤n ×1+12n (n -1)×2+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=n 2+1-12n ,n ∈N *.类型三、含有{a 2n },{a 2n -1}的类型;例3-1.已知数列{a n }为各项非零的等差数列,其前n 项和为S n ,满足S 2n -1=a 2n . (1)求数列{a n }的通项公式;(2)记b n =n a n a n +1(-1)n ,求数列{b n }的前n 项和T n .解 (1)S 2n -1=(2n -1)(a 1+a 2n -1)2=a n (2n -1)=a 2n ,∵a n ≠0,∴a n =2n -1(n ∈N *). (2)b n =n a n a n +1(-1)n =n (2n -1)(2n +1)(-1)n =14⎝⎛⎭⎪⎫12n -1+12n +1(-1)n ,当n 为偶数时T n =14⎝⎛⎭⎪⎫-11-13+13+15-15-17+…+12n -1+12n +1 =14⎝ ⎛⎭⎪⎫-11+12n +1=-n4n +2,当n 为奇数时T n =14⎝ ⎛⎭⎪⎫-11-13+13+15-15-17+…-12n -1-12n +1 =14⎝ ⎛⎭⎪⎫-11-12n +1=-n -14n +2. 所以T n=⎩⎪⎨⎪⎧-n 4n +2,n 为偶数,-n +14n +2,n 为奇数.练.已知数列{}n a 满足11a =,()2211nn n a a -=+-,2123n n n a a +=+(*N n ∈),则数列{}n a 的前2017项的和为() A .100332005- B .201632017- C .100832017- D .100932018-【答案】D 【分析】根据给定条件求出21{}n a -与2{}n a 的通项,进而求得212n n a a ++即可求出数列{}n a 的前2017项的和. 【详解】在数列{}n a 中,11a =,221(1)n n n a a -=+-,2123n n n a a +=+,*N n ∈, 则有1122212(1)3(1)n n n n n n a a a ++++=+-=++-,即12223(1)n n n n a a ++-=+-,而20a =,于是得2242642224222()()()()n n n n n a a a a a a a a a a ---=+-+-++-+-223211[3(1)][3(1)][3(1)][3(1)]n n n n ---=+-++-+++-++-221231[3333][(1)(1)(1)(1)]n n n n ---=+++++-+-++-+-113(13)1(1)113(1)1131(1)22n n n n -----=+=⋅+⋅-----,因此,212222113232[3(1)1]322n n n n nn n n n n a a a a a ++=++=+=⋅+⋅--+23(1)2n n =⋅+--,则2017123456720162017()()()()S a a a a a a a a a =+++++++++2233100810081[23(1)2][23(1)2][23(1)2][23(1)2]=+⋅+--+⋅+--+⋅+--++⋅+--23100823100812(3333)[(1)(1)(1)(1)]21008=++++++-+-+-++--⋅100810093(13)12020163201813-=+⋅+-=--,数列{}n a 的前2017项的和为100932018-. 故选:D练.数列{}n a 满足11a =,21n n a a n --=(*n N ∈且2n ≥),数列{}21n a -为递增数列,数列{}2n a 为递减数列,且12a a >,则99a =(). A .4950- B .4851- C .4851 D .4950【答案】D 【分析】由数列{}21n a -为递增数列,得到()()2122210n n n n a a a a +--+->,进而得出2120n n a a +->,又由数列{}2n a 为递减数列,得到()()22212120n n n n a a a a ++++-<-,得到22210n n a a ++-<, 得出当n 为奇数且3n ≥时,21n n a a n --=,当n 为偶数时,21n n a a n --=-,即可求解.【详解】因为数列{}21n a -为递增数列,所以2121n n a a -+<,即21210n n a a +-->,则()()2122210n n n n a a a a +--+->,由题意22212221(21)(2)n n n n a a n n a a +--=+>=-,则由()()212221212221n n n n n n n n a a a a a a a a +-+-⎧-+->⎪⎨->-⎪⎩得2120n n a a +->,*n N ∈,因为数列{}2n a 为递减数列,所以222n n a a +>,即2220n n a a +-<, 则()()22212120n n n n a a a a ++++-<-,由题意得,222221(22)(21)n n a a n n ++-=+>+212n n a a +=-,由()()222121222213120n n n n n n n na a a a a a a a ++++++⎧-+-<⎪⎨->-⎪⎩,可得22210n n a a ++-<,*n N ∈,又12a a >,即210a a -<,所以当n 为奇数且3n ≥时,21n n a a n --=; 当n 为偶数时,21n n a a n --=-. 所以99a =()()()()999898979796211a a a a a a a a a -+-+-++-+…2222229998979632199=-+-++-+=+…9897963214950++++++=….故选:D .类型四、已知条件明确的奇偶项问题. 例4-1.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧12a n +n -1,n 为奇数,a n-2n ,n 为偶数,记b n =a 2n ,求证:数列{b n }为等比数列,并求出数列{a n }的通项公式.证明 ∵b n +1=a 2(n +1)=12a 2n +1+2n +1-1=12a 2n +1+2n=12(a 2n -2·2n )+2n =12a 2n =12b n , ∴{b n }为等比数列,且公比q =12.又b 1=12a 1=12,可得b n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以,当n 为偶数时,a n =b n2=⎝ ⎛⎭⎪⎫12n;当n 为奇数且n ≥3时,a n =a (n -1)+1=a (n -1)-2(n -1)=b n -12-2(n -1)=⎝ ⎛⎭⎪⎫12(n -1)-2(n -1),可验证a 1=1也符合上式,综上所述,a n=⎩⎨⎧⎝ ⎛⎭⎪⎫12(n -1)-2(n -1),n 为奇数,⎝ ⎛⎭⎪⎫12n,n 为偶数.练.已知数列{a n }满足a n=⎩⎨⎧n2an +12+12,n 为正奇数,2a n 2+n2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由;(2)求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n 2n 是等差数列,并求数列{a 2n }的通项公式.(1)解 由a 1=12a 1+12+12=12a 1+12⇒a 1=1,a 2=2a 22+22=2a 1+1=3,a 3=32a 3+12+12=32a 2+12=5,a 4=2a 42+42=2a 2+2=8.∵a 3-a 2=2,a 4-a 3=3,∴a 3-a 2≠a 4-a 3, ∴数列{a n }不是等差数列.又∵a 2a 1=3,a 3a 2=53,∴a 2a 1≠a 3a 2,∴数列{a n }也不是等比数列.(2)证明 ∵对任意正整数n ,a 2n +1=2a 2n +2n , ∴a 2n +12n +1-a 2n 2n=12,a 22=32,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n 2n 是首项为32,公差为12的等差数列,从而对∀n ∈N *,a 2n 2n=32+n -12,则a 2n =(n +2)·2n -1. ∴数列{a 2n }的通项公式是a 2n =(n +2)·2n -1(n ∈N *).练.数列{}n a 且21,212sin ,24n n k n na n n k π⎧=-⎪⎪+=⎨⎪=⎪⎩()k N *∈,若n S 为数列{}n a 的前n 项和,则2021S =__________.【答案】30342023【分析】由题意,当n 为奇数时,21111222n a n n n n ⎛⎫==- ⎪++⎝⎭;当n 为偶数时,sin 4n n a π=.然后根据分组求和法、裂项相消求和法及三角函数的周期性即可求解.【详解】解:数列{}n a 且21,212sin ,24n n k n na n n k π⎧=-⎪⎪+=⎨⎪=⎪⎩()k N *∈, ①当n 为奇数时,21111222n a n n n n ⎛⎫==- ⎪++⎝⎭,②当n 为偶数时,sin4n n a π=,24680a a a a +++=,则偶数项和为()()246810121416a a a a a a a a ++++++++()20102012201420162018202020182024201a a a a a a a a a a +++++++==+=,所以()()2021132021242020S a a a a a a =+++++++1111111233520212023⎛⎫=-+-++- ⎪⎝⎭101130341120232023+=+=, 故答案为:30342023. 练.已知n S 数列{}n a 的前n 项和,1a λ=,且21(1)n n n a a n ++=-,若201920192101020192019S a μ-=-,(其中,0λμ>),则20191λμ+的最小值是()A .B .4C .D .2018【答案】B 【分析】由21(1)n n n a a n ++=-,可得2221223341,2,3a a a a a a +=-+=+=-,2245201820194,,2018a a a a +=+=,以上各式相加得可求得()12345201820192a a a a a a a +++++++,结合201920192101020192019S a μ-=-,根据均值不等式,即可求得答案. 【详解】21(1)n n n a a n ++=-∴2221223341,2,3a a a a a a +=-+=+=-,2245201820194,,2018a a a a +=+=,以上各式相加得,()22222212345201820192123420172018a a a a a a a +++++++=-+-+--+,()()()2222222019120192123420172018S a a ∴--=-++-+++-+(21)(21)(43)(43)(20182017)(20182017)=-⨯++-⨯+++-⨯+,12342017201820191009=++++++=⨯20192019121009201920192019S a a∴-=+ 又201920192101020192019S a μ-=-, 1100910102019a μ∴+=-, 即112019a μ+=, 又1a λ=,20191201912019λμλμλμ⎛⎫⎛⎫∴+=++ ⎪ ⎪⎝⎭⎝⎭201911242019μλλμ=++++…, 当且仅当20192019μλλμ=时等号成立,故选:B .练.已知数列{}n a 满足12a =,23a =且*21(1),n n n a a n N +-=+-∈,则该数列的前9项之和为() A .32 B .43C .34D .35【答案】C 【分析】讨论n 为奇数、偶数的情况数列{}n a 的性质,并写出对应通项公式,进而应用分组求和的方法求数列的前9项之和.【详解】*21(1),n n n a a n N +-=+-∈,∴当n 为奇数时,21210n n a a +--=,则数列21{}n a -是常数列,2112n a a -==;当n 为偶数时,2222n n a a +-=,则数列2{}n a 是以23a =为首项,公差为2的等差数列,129139248()()a a a a a a a a a ∴+++=+++++++4325(342)2⨯=⨯+⨯+⨯34=. 故选:C练.设n S 为数列{}n a 的前n 项和,*1(1),N 2n n n n S a n =--∈,则12100S S S +++=( )A .10011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ B .9811132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦C .5011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ D .4911132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】A 【分析】由递推式求出数列的首项,当2n ≥时分n 为偶数和奇数求出n a ,代入*1(1),2n n n nS a n N =--∈后分组,然后利用等比数列的前n 项和公式求解. 【详解】由*1(1),2n n a n S a n =--∈N ,当1n =时,1112S a =--,得114a =-;当2n ≥时,111111(1)(1)22----=-=----+nn n n n n n n n a S S a a ,即11(1)(1)2n nn n n na a a -=-+-+. 当n 为偶数时,11(2)2n n a n -=-≥,所以112n n a +=-(n 为正奇数), 当n 为奇数时,11111112(2)2222n n n n nn a a -+-⎛⎫=-+=--+= ⎪⎝⎭,所以12n na =(n 为正偶数),所以122211,22a a -==,所以412342411112,,2222a a a a -+=⨯=-==,所以34991004310010011112,,,2222a a a a -+=⨯=⋯-==,所以991001009911222a a -+=⨯=.因为123100S S S S ++++()()()()12345699100a a a a a a a a =-++-++-+++-+-2100111222⎛⎫+++⎪⎝⎭359911112222=++++2100111222⎛⎫-+++= ⎪⎝⎭501001111112422111142⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭-=--10011132⎛⎫=- ⎪⎝⎭. 故选:A练.已知正项数列{}n a 的前n 项和为n S ,11a =,且()212n n n S S a n -+=≥,设()()121nn nna b S -+=,则数列{}n b 前n 项和的取值范围为_________.【答案】32,11,23⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦【分析】根据n n S a ,之间关系可得数列{}n a 为等差数列并得到n a ,然后得到n b ,根据裂项相消可得数列{}n b 前n 项和,最后进行判断即可. 【详解】由21n n n S S a -+=①,则211n n n S S a +++=②②-①化简可得:()()1110n n n n a a a a ++--+=,又0n a >,所以()112n n a a n +-=≥当2n =时,21212122222a a S S a a a a +=⇒++=⇒= 所以211a a -=符号11n n a a +-=,故数列{}n a 是首项为1,公差为1的等差数列 所以n a n =,则()12n n nS +=所以()()()()2112111112nn n n n b n n n ⋅-+==⋅⎛⎫+ ⎪+⎝+⎭- 令设数列{}n b 前n 项和n T 所以()()111111121...11223341n nn T n n ⎡⎤=--++--++-⋅+-⋅⎢⎥+⎣⎦所以11,1111n n n T n n ⎧-⎪⎪+=⎨⎪--⎪+⎩为偶数,为奇数, 当n 为偶数时,111n T n =-+,则12133n T ≤-=-且1n T >- 当n 为奇数时,111n T n =--+,则13122n T ≥--=-且1n T <- 综上所述:32,11,23n T ⎡⎫⎛⎤∈--⋃--⎪ ⎢⎥⎣⎭⎝⎦故答案为:32,11,23⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦练.设n S 是数列{}n a 的前n 项和,若1(1)2n n n n S a =-+,则1211S S S ++⋯+=_____. 【答案】13654096 【分析】运用数列的递推式,讨论n 为奇数或偶数,结合等比数列的求和公式,即可得到所求和.【详解】解:()112n n n nS a =-+, 当1n =时,11112a S a ==-+,解得114a =,2n ≥时,1n n n a S S -=-, 可得()()1112n n n n nS S S -=--+, 当n 为偶数时,112n n n S S S π-=-+,即有1n12n S -=; 当n 为奇数(3n ≥)时,()112n n n S S S π-=--+, 可得1122n n n S S -=-=1112022n n +⋅-=, 即有121114S S S +++=110001664+++++++1212 61111365441409614⎛⎫- ⎪⎝⎭==-. 故答案为13654096.。
2023新高考数学数列数列是数学中的一个重要概念,也是高考数学中经常出现的题型。
在2023年的新高考中,数列仍然是一个重要的考点。
本文将从数列的定义、常见数列类型、数列的应用等方面进行探讨。
一、数列的定义数列是由一系列数字按照一定规律排列而成的序列。
数列中的每个数字称为该数列的项,用a1, a2, a3, ..., an表示。
数列的形式可以是有限的,也可以是无限的。
有限数列是指数列中的项数是有限的,无限数列是指数列中的项数是无限的。
二、常见数列类型1.等差数列等差数列是指数列中的每一项与它的前一项之差都相等的数列。
等差数列可以用公式an = a1 + (n-1)d表示,其中a1为首项,d为公差。
2.等比数列等比数列是指数列中的每一项与它的前一项之比都相等的数列。
等比数列可以用公式an = a1 * q^(n-1)表示,其中a1为首项,q为公比。
3.斐波那契数列斐波那契数列是指数列中的每一项都是前两项之和的数列。
斐波那契数列的特点是前两项都是1,即a1 = a2 = 1,后续的项可以用公式an = an-1 + an-2表示。
三、数列的应用1.数列的求和对于一些特定的数列,我们可以求出它们的和。
对于等差数列,求和可以用公式Sn = (a1 + an) * n / 2表示,其中Sn为前n项和;对于等比数列,求和可以用公式Sn = a1 * (1 - q^n) / (1 - q)表示。
这些求和公式在实际问题中有着广泛的应用,比如计算利息、人口增长等。
2.数列的递推关系数列的递推关系是指数列中的每一项与它的前一项之间的关系。
通过找到数列的递推关系,我们可以进一步推导出数列的通项公式。
数列的通项公式能够帮助我们快速计算数列中的任意一项。
3.数列的应用于几何问题数列在几何问题中也有着重要的应用。
比如等差数列可以用来描述一条等差数列数列的公差,等比数列可以用来描述一条等比数列数列的公比。
通过数列的应用,我们可以解决一些与几何有关的问题,如等差数列的面积和等比数列的体积等。
高考数学数学数列多选题试题及解析一、数列多选题1.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <, 又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC.【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.2.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立 D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n nn n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121n a <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确;对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n nn n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确. 故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.3.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =C .()261n S n n =+D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.4.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤< 【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭,代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a n n n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C ,令1121612m b m m ⎛⎫=-=⎪++⎝⎭得,215308m m ++=,解得m +=N ,所以C 错误;对于D , n +∀∈N ,1231111112233412n S b b b n n ⎛⎫=+++=-+-++- ⎪++⎝⎭112211222n n ⎛⎫=-=-< ⎪++⎝⎭,可以看出n S 是关于n 递增的,所以1n =时有最小值13, 所以113n S ≤<,D 正确. 故选:BD. 【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a ,然后代入求出n b ,考查了学生的推理能力、计算能力.5.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.6.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列.所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.7.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( )A .11111n n n a a a +=-+ B .{}n a 是单调递增数列C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.8.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( ) A .2n S n = B .122310*********a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310111111021a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确;而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值;(3)利用裂项相消法,对12231011111a a a a a a ++⋅⋅⋅+求和; (4)对选项逐个判断正误,得到结果.二、平面向量多选题9.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确;因为1122 23132APQABCAB hSS AB h⨯⨯==⋅△△,所以,2APQS=△,故选项D正确.故选:BCD【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.10.如图所示,设Ox ,Oy是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e,2e分别是与x,y轴正方向同向的单位向量,则称平面坐标系xOy为θ反射坐标系中,若12OM xe ye=+,则把有序数对(),x y叫做向量OM的反射坐标,记为(),OM x y=.在23πθ=的反射坐标系中,()1,2a =,()2,1b=-.则下列结论中,正确的是()A.()1,3a b-=-B .5a=C.a b⊥D.a在b上的投影为37【答案】AD【分析】123a b e e-=-+,则()1,3a b-=-,故A正确;3a=,故B错误;32a b⋅=-,故C错误;由于a在b上的投影为3372147a bb-⋅==-,故D正确.【详解】()()121212223a b e e e e e e-=+--=-+,则()1,3a b-=-,故A正确;()2122254cos33a e eπ=+=+=B错误;()()22121211223222322a b e e e e e e e e ⋅=+⋅-=+⋅-=-,故C 错误; 由于()22227b e e =-=a 在b 上的投影为327a b b -⋅==,故D 正确。
在高考数学中,数列是经常考察的一种题型。
数列通项公式解法有:待定系数法。
“待定系数法”求解数列通项公式,一般来说有5种类型。
八、待定系数法
待定系数法是数列通项公式求解中,最为常见的一种方法。
以下关于待定系数法的求解公式中,一共有5种递推式的情况。
第一种:
第二种:
第三种:
第四种:
第五种:
总结:在使用待定系数法时,要注意以下几点:
(1)使用“待定系数法”做题时,先去观察题干条件中所给出的数列形式,然后针对不同的数列递推公式去选择适合的解题方法。
(2)“待定系数法”的本质思路是将我们不熟悉的数列形式转化为等差数列或等比数列。
当进行适当的转化以后,将会让相应的数列题目变得越来越简单。
(3)数列的本质是一个函数,其定义域是自然数集的一个函数。
(4)在求解完相应的数列题目以后,一般情况下,要验证数列的第一项是否符合求解出来的数列公式,这样更完备一下。
数列中的奇、偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.例 已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *. (1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式;(2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0,即a 2n +1-a 2n -1=2,又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列,所以b n =1+(n -1)×2=2n -1,n ∈N *.(2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0,即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=⎣⎡⎦⎤n ×1+12n (n -1)×2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n 2+1-12n ,n ∈N *.(1)数列中的奇、偶项问题的常见题型①数列中连续两项和或积的问题(a n +a n +1=f (n )或a n ·a n +1=f (n ));②含有(-1)n的类型;③含有{a2n},{a2n-1}的类型;④已知条件明确的奇偶项问题.(2)对于通项公式分奇、偶不同的数列{a n}求S n时,我们可以分别求出奇数项的和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.1.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于() A.200 B.-200 C.400 D.-400答案 B解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.2.已知数列{a n}的前n项和S n=(-1)n·n,若对任意的正整数n,使得(a n+1-p)·(a n-p)<0恒成立,则实数p的取值范围是________.答案(-1,3)解析当n=1时,a1=S1=-1;当n≥2时,a n=S n-S n-1=(-1)n n-(-1)n-1(n-1)=(-1)n(2n-1).因为对任意的正整数n,(a n+1-p)(a n-p)<0恒成立,所以[(-1)n+1(2n+1)-p][(-1)n(2n-1)-p]<0.①当n是正奇数时,化为[p-(2n+1)][p+(2n-1)]<0,解得1-2n<p<2n+1,因为对任意的正奇数n都成立,取n=1时,可得-1<p<3.②当n是正偶数时,化为[p-(2n-1)][p+(1+2n)]<0,解得-1-2n<p<2n-1,因为对任意的正偶数n都成立,取n=2时,可得-5<p<3.联立⎩⎪⎨⎪⎧-1<p <3,-5<p <3,解得-1<p <3. 所以实数p 的取值范围是(-1,3).3.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式;(2)求数列{a n }的通项公式;(3)求S n .解 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, 所以数列{b n }是公比为12的等比数列. 因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *. (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列, 所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n ,所以a n =11221,212n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩为奇数,偶,为数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n , 所以S n =21233,2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩为偶数,为奇数.,。
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
高考数学总复习考点知识专题讲解 专题4 数列的递推与通项公式一、数列的前n 项和S n 与a n 的关系(和式代换)类型1 已知n S 与n 的关系式,记为()n S f n =,它可由和式代换⎩⎨⎧≥-==-2,1,11n S S n Sa n nn 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11S a =,求1a 的值;(2)2n ≥时,由1n n n a S S -=-,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎩⎨⎧≥-==-2,1,11n S S n S a n nn .【例1】已知数列{}n a 满足12323(1)(2)n a a a na n n n +++⋯=++,求数列{}n a 的通项公式.已知n S 与n a 的关系式,记为(),0n n f a S =,求它的通项公式n a ,一般有两种思路: (1)消n S :容易直接求n a 的情况,可利用阶差公式:()12n n n S S a n --=≥,消去n S ,转化为等差或等比数列直接求出n a ;(2)消n a :难以直接求n a 的情况,可利用阶差公式:()12n n n a S S n -=-≥,消去n a ,得出n S 与1n S -的递推关系式,先求出n S 后,即可转化为“第1种情形”,从而间接求出n a ,如例3.在求解具体的题目时,应根据条件灵活恰当地选择两种方法,确定变形方向.通常情况下,先求n S 要比直接求n a 麻烦;但也有时先直接求n a 会比先求n S 麻烦得多. 类型2 消n S【例2】设数列{}n a 的前n 项和为n S ,且342n n S a =-.求数列{}n a 的通项公式.【例3】设数列{}n a 的前n 项和为n S ,*226()n n S a n n N =+-∈.求数列{}n a 的通项公式.【例4】已知正整数列}{n a 的前n 项和为n S ,且对任意的自然数满足1n a =+.求}{n a 的通项公式.类型3 消n a【例5】(2022•天津模拟)已知数列}{n a 的前n 项和为n S ,且满足()1+202n n n a S S n -=≥,211=a ,求n a .【例6】在正项数列}{n a 中,n S 是数列}{n a 的前n 项和,且1+2n n na S a =,求n a .【例7】已知数列{}n a 中,13a =,前n 项和1(1)(1)12n n S n a =++-.求数列{}n a 的通项公式.二、数列的前n 项积n T 与a n 的关系已知n T 与n 的关系式,记为()n T f n =,它可由积式代换⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11T a =,求1a 的值; (2)2n ≥时,由1-=n nn T T a ,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n .【例8】已知数列{}n a 满足(1)*2122()n n n a a a n N +=∈.求数列{}n a 的通项公式.三.累加法:适用于邻项差结构11()()n n n n a a f n a a f n ---=⇔=+ 累加法是利用:11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,将问题转化为基本数列求和,从而得到所求数列的通项.以下为三种累加后可裂项相消求和的题型:①若()f n 是关于n 的分式函数,()1111()()f n n n k k n n k==-++;②若()f n 是关于n 的对数函数,()1ln(1)ln(1)ln f n n n n =+=+-;③若()f n是关于n 的无理式函数,()1f n k=.④若()f n 是关于n 的一次函数,()f n kn b =+,累加后可转化为等差数列求和; ⑤若()f n 是关于n 的二次函数,()2f n an bn c =++,累加后可分组求和; ⑥若()f n 是关于n 的指数函数,()n f n p =,累加后可转化为等比数列求和; 【例9】在数列{a n }中,a 1=1,a n +1=a n +1n -1n +1,求a n .【例10】已知数列{a n }满足a 1=1,a n =a n -1+n +1-n (n ≥2),求a n .【例11】已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求n a .四.累乘法:适用于邻项商结构()()11nn n n a f n a a f n a --=⇔=⋅ 累乘法是利用:13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅,将问题转化为基本数列求和,从而得到所求数列的通项.【例12】已知数列{}n a 中,12a =,12n n n a a n++=,求数列{}n a 的通项公式;【例13】设{}n a 是首项为1的正项数列,2211(1)0n n n n n a a a na ++++-=(*∈N n ),求{}n a 的通项公式.五、跳跃等差数列通项公式——形如d a a n n =-+2类型定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足d a a n n =-+2条件的数列{}n a 为跳跃等差数列.1.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是d n a d n a d k a a a k n 21)121()1(11112-+=-++=-+==-;②当n 为偶数时,可令k n 2=(k N *∈),反解得2nk =,于是d n a d n a d k a a a k n 22)12()1(2222-+=-+=-+==.综上所述,⎪⎪⎩⎪⎪⎨⎧-+-+=为偶数为奇数n d n a n d n a a n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.2.待定系数法:此类型题由于1a 和2a 作为数列奇数项和偶数项首项,会使得数列一些变形出现一些计算难度,故可以采用待定系数法来求统一的通项公式,考虑首项的因素,需要在原始的待定系数的前面加上()n 1-.具体操作如下:n a 1221,4,23n n a a a a n -===+≥n a【例14】(2014•新课标1卷理)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{n a }为等差数列?并说明理由.衍生1 等和数列——形如c a a n n =++1类型1.“等和数列”定义: 在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.2.若c a a n n =++1(c 为常数),则数列}{n a 为“等和数列”,它是一个周期数列,周期为2,其通项分为奇数项和偶数项来讨论.衍生2 类等和数列——形如)(1n f a a n n =++类型处理思路:等和数列、类等和数列可以归结为跳跃等差数列问题,其基本思路是生成、相减;与“差型”的生成、相加(累加法)的思路刚好相呼应.当()b dn n f a a n n +==+++12时,则()b n d a a n n +-=++11,两式相减得:d a a n n =-+2,故{}n a 是公差为d 的跳跃等差数列,通过分奇偶项讨论进而将问题转化为{}12-n a 与{}n a 2是等差数列,然后求通项. 【例15】已知数列{}n a 的首项1a a =,1354n n a a n ++=-,求数列{}n a 的通项公式.六、跳跃等比数列通项公式——形如q a ann =+2类型1.定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足q a a nn =+2条件的数列{}n a 为跳跃等比数列.2.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是21112111112--+--⋅=⋅=⋅==n n k k n q a q a qa a a ;②当n 为偶数时,可令k n 2=(k N *∈),反解得2n k =,于是222122122---⋅=⋅=⋅==n n k k n q a q a qa a a .综上所述,⎪⎩⎪⎨⎧⋅⋅=--为偶数为奇数n qa n qa a n n n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.【例16】已知数列{}n a 满足*212(),N ,1,2n n a qa q n a a +=≠∈==1,且233445,,a a a a a a +++成等差数列.求数列{}n a 的通项公式.衍生1 等积数列——形如p a a n n =⋅+1类型1.“等积数列”定义: 在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.2.若p a a n n =⋅+1(p 为常数),则数列}{n a 为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.衍生2 类等积数列——形如)(12n f a a n n =⋅++类型处理思路:等积数列、类等积数列可以归结为跳跃等比数列问题,其基本思路是生成、相除;与“商型”的生成、相乘(累乘法)的思路刚好相呼应.若()n f 为n 的函数时,可通过逐商法得)1(1-=⋅+n f a a n n ,两式相除后,通过分奇偶项讨论将问题转化为{}12-n a 与{}n a 2是等比数列,然后再求通项.1.分奇偶讨论法:()B An n n q n f a a +++==12,则B n A n n q a a +-+=)1(1,两式相除得:A nn q a a =+2,故 {}n a 是公比为A q 的跳跃等比数列,⎪⎩⎪⎨⎧⋅=⋅⋅=⋅=∴----为偶数为奇数n q a q a n q a q a a A n n A n n A An 222221211211)()(.}{n a n n a a a 2,111=⋅=+七.斐波那契数列定义:一个数列,前两项都为1,从第三项起,每一项都是前两项之和,那么这个数列称为斐波那契数列,又称黄金分割数列;表达式2110,1,1--+===n n n F F F F F ()n N +∈通项公式:n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦(又叫“比内公式”,是用无理数表示有理数的一个范例)证明:线性递推数列的特征方程为:21x x =+,解得:1x =,2x 则1122n n n F c x c x =+∵121F F ==∴112222112211c x c x c x c x =+⎧⎨=+⎩解得:1c =;2c =∴n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦斐波那契数列的一些性质:求和问题:①12-=+n n a S ;②n n a a a a a 212531=+++- ;③1122642-=++++n n a a a a a . 证明:①()()()1111112112122+=++++=+-++-+-=-=-++++++n n n n n n n n n n S a a a a a a a a a a a S S a ,故12-=+n n a S ,此证明方法也是错位相减的一种特例.②()()()n n n n n a S a a a a a a a a a a a 22212232432111231=+=+++++++=+++---- ,此证明过程也需要利用①的结论.③()()()11212122254321242-==+++++++=++++---n n n n n a S a a a a a a a a a a .这三个式子用数学归纳法证明也非常简单,无需强化记忆,每次列出前几项比划一下,考试中如果出现需要这些结论的,拿出前几项及时推导即可.平方和问题:122221+=+++n n n a a a a a (根据面积公式推导,如下图)构造正方形来设计面积,()()433221321232221a a a a a a S S S a a a =++=++=++,以此类推,也可以用数学归纳法证明,知道一个大致的方向即可. 裂项问题:⎪⎪⎭⎫⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=++++------123222423312222123242311111111111111n n n n n n n a a a a a a a a a a a a a a a a a n n n n n a a a a a a a 212212221211111----=⎪⎪⎭⎫ ⎝⎛-+. 注意:如果是斐波那契数列的部分项求和也可以,比如⎪⎪⎭⎫⎝⎛-=++++++-++++n m m m n m n m m m m m a a a p a a p a a p a a p 1112312 ,前提就是必须隔项,否则无法裂项相消.【例17】已知数列{}n a 满足:113a =,213a =,*11(,2)n n n a a a n N n +-=+∈…,则132435202120231111a a a a a a a a +++⋯+的整数部分为() A .6B .7C .8D .9【例18】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n --=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅B .12321n n a a a a a +++++=-C .1352121n n a a a a a -++++=-D .()121)4(3n n n n c c a n a π--+-≥=⋅【例19】斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列{}n a 满足10a =,21a =,()*21n n n a a a n ++=+∈N ,若记1352019a a a a M ++++=,2462020a a a a N ++++=,则2022a =________.(用M ,N 表示)【例20】(2022•天河区期末)意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,…….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列a n 说法正确的是( ) A .a 12=144B .a 2022是偶数C .a 2022=a 1+a 2+a 3…a 2022D .a 2022+a 2024=3a 2022【例22】(2023•荆州期末)2022年11月23日是斐波那契纪念日,其提出过著名的“斐波那契”数列,其著名的爬楼梯问题和斐波那契数列相似,若小明爬楼梯时一次上1或2个台阶,若爬上第n 个台阶的方法数为b n ,则( ) A .b 7=21B .b 1+b 2+b 3+b 5+b 7=51C .b 12+b 22+…+b n 2=b n •b n +1﹣1D .b n ﹣2+b n +2=3b n八.不动点与蛛网图(无需通项的无敌技能) 知识点一函数迭代和数列的关系已知函数)(x f y =满足+1=()n n a f a ,则一定有+1211=()()()n n n n a f a f a f a -==,故函数)(x f y =通过反复迭代产生的一系列数构成了数列{}n a 或者记为{}{}n n b x 、,而数列的每一项与函数迭代的关系可以如下表所示: 下面以函数21y x =+和数列121n n a a +=+①数列的递推式和函数的迭代式是有着相同的法则的,故数列的任何一项()+1,n n a a 都在函数)(x f y =上.②数列的通项公式是函数对1a 迭代1-n 次的结果,即11()n n a f a -=,每一次由于迭代产生出的因变量成为下一次迭代的自变量.③数列的首项1a 对整个数列有很大的影响,当迭代不断重复出现同一结果时,我们将其称为不动点.知识点二函数的迭代图像——蛛网图函数的迭代图像,简称蛛网图或者折线图,函数)(x f y =和直线y x =共同决定. 其步骤如下:1.在同一坐标系中作出)(x f y =和y x =的图像(草图),并确定不动点.(如图1所示)图1 图22.在找出不动点之后,确定范围,将不动点之间的图像放大,并找出起始点1a (如图2所示)3.由1a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()12,a a . 4.由()12,a a 向y x =作平行于x 轴的直线与y x =相交,并确定交点()22,a a . 5.由()22,a a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()23,a a . 重复4,5,直至找到点()1,n n a a +的最终去向.【例23】设数列{}n a 满足11(0),n a a a a +=>=证明:存在常数M ,使得对于任意的*n N ∈,都有n a M ≤.【例24】首项为正数的数列{a n }满足2*11(3),,4n na a n N +=+∈若对*n N ∈,一切都有1n n a a +>,求a 1的取值范围.知识点三蛛网图与数列的单调性定理1:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一上凸的图形时,(如图9)则数列)(1n n a f a =+在两个不动点之间的区间是递增的,即1n n a a +>,在两不动点以外的区间则是递减的,即1n n a a +<.定理2:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一下凹的图形时,(如图10)则数列)(1n n a f a =+在两个不动点之间的区间是递减的,即1n n a a +<,在两不动点以外的区间则是递增的,即1n n a a +>.图9 图10综上可得,当)(x f y =的单调增区间位于上凸内或者下凹外时,即当迭代起点1a 位于此区域时,一定有1n n a a +>同理,当迭代起点1a 位于单调增区间的上凸外或者下凹内时,一定有1n n a a +<.知识点四摆动数列以及由求导构造函数单调性来解决数列问题由反比例(递减函数)函数迭代构成的摆动数列,如图11所示,当)(x f 在区间为减函数时,和直线x y =相交于不动点,那么由此函数迭代构成的数列为摆动数列,即奇数项和偶数项构成相反的单调性,但都螺旋靠近不动点,极限也是不动点。
高考数学中数列问题归类解析数列是高中数学的主要内容之一,它在每年的高考数学试题中占有相当大的比例。
一般安排2~3道题目(1~2道选择或填空小题,1道解答型大题),分值20分左右,约占总分的13%。
选择或填空题的难度控制在中等,学生答题时一般较容易;而在试题的后半部分安排的1道解答型大题,多为中等偏上乃至较难的题目,它们是高考数学中的热点与难点。
为了复习时突破这一难点,结合新课标教材及近几年高考试题的命题趋向,针对数列在高考数学中的几个热点问题作如下归类与解析。
1.求通项公式问题1.1 已知数列的前n项和表达式,求数列的通项公式。
(例2009年安徽卷)已知数列{a n}的前n项和s n=2n 2+2n,求这个数列的通项公式。
方法解析:由s n=2n 2+2n得,当n≥2时,有s n-1 =2(n-1) 2+2(n-1)∴a n=s n-s n-1 =(2n 2+2n)-[2(n-1) 2+2(n-1)]=4n,n∈n *。
说明:解答这类问题的关键,是充分利用前n项和表达式这一条件,再根据a n=s n-s n-1 这一相等关系即可解决。
1.2 给出已知数列的递推公式,求数列的通项公式。
如果一个数列的任一项a n与它的前一项a n-1 (或前几项)间的关系可以用一个公式来表示,那么这个公式就称这个数列的递推公式。
利用数列的递推公式求数列的通项,是历年高考数学的一个热点。
解决这类问题的主要方法有累加法、累乘法、分离常数化归为等差数列和分项整理化归为等比数列等。
例1:已知数列{a n}满足a 1=2,a a+1 =a n+2 n,求这个数列的通项公式。
方法解析:由a n+1 =a n+2 n得,a n+1 -a n=2 n,据此可写出如下等式:a 2-a 1=2,a 3-a 2=2 2,a 4-a 3=2 3……a n-a n-1 =2 n-1将上述等式两边分别相加得,a n-a 1=2+2 2+2 3+……2 n-1 =2(1-2 n-1 )1-2=2 n-2∴a n=a 1+2 n-2=2 n。
高考数学中的数列问题解析
数列作为高中数学中的一个重要知识点,也是高考数学考试必
考内容之一,其考察形式多样。
解题要求考生掌握数列的概念和
性质,熟悉数列的常见变形和常用公式,能够灵活运用数列的基
本思想和方法,多角度、多方式考虑问题,进行问题转化和求解,从而获得高分。
一、数列的概念和性质
数列是由一定的规律按照一定的次序排列起来的一列数,其中
每一个数都叫做这个数列的项。
对于数列 $\{a_n\}$, $a_n$表示
第 $n$ 项,$n$称为项号。
项号从1开始,依次递增,可以是自然
数或正整数等。
数列也可以用通项公式或递推公式来表示。
数列中有些重要的性质,比如数列的通项公式和前n项和的公式,需要考生掌握。
比较常见的有等差数列和等比数列。
1.等差数列
如果一个数列从第二项开始,每一项与它前面的项之差等于同
一个常数 $d$,那么这个数列就叫做等差数列。
等差数列的通项公式和前n项和分别为:
$$a_n=a_1+(n-1)d$$
$$S_n=\dfrac{n}{2}(a_1+a_n)=\dfrac{n}{2}[2a_1+(n-1)d]$$
其中,$a_1$表示首项,$d$表示公差,$S_n$表示前$n$ 项和。
2.等比数列
如果一个数列从第二项开始,每一项与它前面的项之比等于同
一个常数 $q$,那么这个数列就叫做等比数列。
等比数列的通项公式和前n项和分别为:
$$a_n=a_1q^{n-1}$$
$$S_n=\dfrac{a_1(1-q^n)}{1-q}$$
其中,$a_1$表示首项,$q$表示公比,$S_n$表示前$n$ 项和。
二、数列的常见变形和常用公式
在高考中,常常会出现各种数列的常见变形,考生需要熟悉各
种数列变形的求法和特点,这样才能在考试中不失分机会。
1.递推数列
递推数列是指每一项都是由它前面的项或几项经过一定的运算
算出来的,因此我们称之为递推数列。
比如斐波那契数列、鬼谷
数列等就是递推数列的典型例子。
在高考数学考试中,考生通常需要利用递推数列的递推式来求
得数列的某一项。
2.变形求和
某一数列的前 $n$ 项和可以用原数列的通项公式和递推公式表示,但在一些特定情况下,一些数列的前 $n$ 项和可以通过变形
公式求得,比如:
$$S_n=(a_1+a_n)+(a_2+a_{n-1})+\cdots+(a_{n-
1}+a_2)+(a_n+a_1)=\dfrac{2n}{2}(a_1+a_n)$$
其中, $a_1$表示首项,$a_n$表示末项, $n$表示项数。
3.变形列求和
通常考生在做数列题时,会遇到一类数列求和问题:将数列进
行适当变形之后,再求其前 $n$ 项和。
$$S_n=n(a_1+a_n)/2=a_1n+n(n-1)d/2$$
例如等差数列从第二项开始,每一个项都比它前面的项大$m$,设其首项为 $a_1$,其通项公式为,$a_n=a_{n-1}+m (n\geq 2)$,
则前 $n$ 项和为:
$$S_n=\dfrac{a_1+a_n}{2}n=\dfrac{a_1+[a_1+(n-1)m]}{2}n$$
$$=\dfrac{2a_1+(n-1)m}{2}n=\dfrac{n}{2}[2a_1+(n-1)m]$$
三、数列问题的解析
1.数列的求和
在高考数学考试中,数列的求和问题是最为常见的,需要灵活
运用关于数列求和的各种公式,同时注意运算的准确性和合理性,避免粗心计算带来的失误。
2.数列的反演
数列的反演是一种重要的思想方法,通常可以借助适当的变形
公式将数列逆向思考,从而推导出数列的性质和特点,得到有效
的解题思路。
比如,有时候我们需要证明某一个数列是等差数列
或等比数列,就可以考虑利用反演的思想,先证明这个数列的某
个表达式具有等差或等比的形式,再利用一些有效的公式或方法
求得该数列的通项公式或递推公式。
3.数列的连续和
数列的连续和也是考试中经常出现的题型,通常考生需要考虑其分段求和,或运用分差求和等方法,确定前若干项和的值,并据此推导出整个数列的和。
4.数列的极限
数列的极限在高考数学中也是一个非常重要的概念。
当一个数列 $a_n$ 的前若干项都相近并趋于某个常数 $A$ 时,我们说该数列的极限是 $A$,记为:
$$\lim\limits_{n\to\infty}a_n=A$$
数列极限的求解要求考生熟悉极限的概念和性质,掌握数列极限的求解方法,例如夹逼原理、单调有界原理等,熟悉相关的计算方法,并能够运用这些方法求出数列的极限。
总之,数列在高考数学中是一个非常重要的知识点,从基本概念、性质到各种变形、求解问题都需要考生熟练掌握,并能对各种实际问题进行转化和求解。
在备考过程中,考生可以通过多做相关习题,巩固和拓展数列相关的知识,提高自己的解题能力和应试水平。