高中数学学业水平考试 ——数列
- 格式:doc
- 大小:209.93 KB
- 文档页数:4
浙江省高中数学学业水平考试知识条目精校版LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】必修1第一章集合与函数概念选修2-1 第一章常用逻辑用语第二章圆锥曲线与方程第一章空间向量与立体几何▲4. 空间向量的正交分解及其坐标表示①空间向量基本定理及其意义②空间向量的正交分解 ③空间向量的坐标表示④在简单的问题中选用合适的基底表示其他向量 a b b▲5.空间向量运算的坐标表示①向量的长度公式、空间两点间的距离公式 ②两向量夹角公式b b立体几何中的向量方法▲立体几何中的向量方法①利用空间向量表示空间的点、直线、平面等元素 ②平面法向量的定义③空间向量解决立体几何问题的“三步曲”④利用空间向量解决线面位置关系的判定与空间角的计算问题⑤通过选择适当的坐标系,解决简单的立体几何问题b b bc c考试形式与试题结构一、考试形式数学学业水平考试采用闭卷、笔答形式。
考试时间为110分钟。
试卷满分为100分。
二、考试结构数学学业水平考试卷的结构如下: 1.考试内容分布《教学指导意见》所规定必修课程内容。
2.考试要求分布了解:约占10%;理解:约占40%;掌握:约占40%;综合运用:约占10% 3.试题类型分布选择题:约占60%;填空题:约占10%;解答题:约占30% 4.试题难度分布容易题:约占70% 稍难题:约占20% 较难题:约占10%参考试卷一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分。
) 1.已知集合{1,2,3,4}A =,{2,4,6}B =,则A B 的元素个数是(A)0个 (B)1个 (C)2个 (D)3个 2.22log 12log 3-=(A)2- (B)0 (C)12(D)23.若右图是一个几何体的三视图,则这个几何体是 (A)圆锥 (B)棱柱 (C)圆柱 (D)棱锥4.函数R))(3π2sin()(∈+=x x x f 的最小正周期为(A) 2π(B) π (C) π2 (D) 4π5.直线230x y ++=的斜率是(A)12- (B)12 (C)2- (D)26.若1x =满足不等式2210ax x ++<,则实数a 的取值范围是 (A)(3,)-+∞ (B)(,3)-∞- (C)(1,)+∞ (D)(,1)-∞ 7.函数3()log (2)f x x =-的定义域是(A)[2,)+∞ (B)(2,)+∞ (C)(,2]-∞ (D)(,2)-∞ 8.圆22(1)3x y -+=的圆心坐标和半径分别是(A)(1,0),3- (B)(1,0),3 (C)(1,0),3- (D)(1,0),3 9.各项均为实数的等比数列{}n a 中,11a =,54a =,则3a = (A)2 (B)2- (C)2 (D)2- 10.下列函数中,图象如右图的函数可能是 (A)3y x = (B)2x y = (C)y x = (D)2log y x =11.已知a ∈R ,则“2a >”是“22a a >”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 12.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是(A) ()+∞,0 (B)()2,0 (C)()+∞,1 (D) ()1,0 13.设x 为实数,命题p :x ∀∈R ,20x ≥,则命题p 的否定是 14.若函数()(1)()f x x x a =+-是偶函数,则实数a 的值为(A)1 (B)0 (C)1- (D)1±15.在空间中,已知,a b 是直线,,αβ是平面,且,,//a b αβαβ⊂⊂,则,a b 的位置关系是 (A)平行 (B)相交 (C)异面 (D)平行或异面(第3题图) (第10题图)16.在△ABC 中,三边长分别为c b a ,,,且︒=30A ,︒=45B ,1=a ,则b 的值是(A)21(B) 22 (C) 2 (D) 2617.若平面向量,a b 的夹角为60,且|2|=|a b |,则(A)()⊥+a b a (B)()⊥-a b a (C)()⊥+b b a(D)()⊥-b b a18.如图,在正方体1111D C B A ABCD -中,E 为1BC 的中点,则DE 与面11B BCC 所成角的正切值为 (A)62 (B) 63 (C)2 (D)2219.函数44sin cos y x x =-在]3π,12π[-的最小值是(A)1- (B)32- (C)12(D)1 20.函数1()2x f x x=-的零点所在的区间可能是 (A)(1,)+∞ (B)1(,1)2 (C)11(,)32 (D)11(,)4321.已知数列{}n a 满足121a a ==,2111n n n na a a a +++-=,则65a a -的值为 (A)0 (B)18 (C)96 (D)60022.若双曲线22221x y a b-=的一条渐近线与直线310x y -+=平行,则此双曲线的离心率是(A)3 (B)22 (C)3 (D)10 23.若将一个真命题...中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题...,则该命题称为“可换命题”.下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行; ③平行于同一直线的两直线平行; ④平行于同一平面的两直线平行. 其中是“可换命题”的是(A)①② (B)①④ (C)①③ (D)③④CD A 1B 1C 1E(第18题图)24.用餐时客人要求:将温度为10C 、质量为25.0 kg 的同规格的某种袋装饮料加热至C C ~︒︒4030.服务员将x 袋该种饮料同时放入温度为80C 、5.2 kg 质量为的热水中,5分钟后立即取出.设经过5分钟加热后的饮料与水的温度恰好相同,此时,1m kg 该饮料提高的温度1t C ∆与2m kg 水降低的温度2t C ∆满足关系式11220.8m t m t ⨯∆=⨯⨯∆,则符合客人要求的x 可以是 (A)4 (B)10 (C)16 (D)2225.若满足条件20,20,210x y x y kx y k -+≥⎧⎪+-≥⎨⎪--+≤⎩的点(,)P x y 构成三角形区域,则实数k 的取值范围是(A)(1,)+∞ (B)(0,1) (C)(1,1)- (D)(,1)(1,)-∞-+∞ 二、填空题(共5小题,每小题2分,共10分)26.已知一个球的表面积为4πcm 3,则它的半径等于 ▲ cm .27.已知平面向量(2,3)=a ,(1,)m =b ,且//a b ,则实数m 的值为 ▲ .28.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ▲ .29.数列{}n a 满足⎩⎨⎧≤≤≤≤=--,1911,2,101,2191n n a n n n 则该数列从第5项到第15项的和为 ▲ .30.若不存在...整数x 满足不等式2(4)(4)0kx k x ---<,则实数k 的取值范围是 ▲ . 三、解答题(共4小题,共30分)31.(本题7分) 已知,54sin ),π,2π(=∈θθ求θcos 及)3πsin(+θ的值.32.(本题7分,有A 、B 两题,任选其中一题完成,)(A ) 如图,在直三棱柱111ABC A B C -中, 3AC =, 4BC =, 5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥; (2)求证:1AC ∥平面1CDB .(B )如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC平面⊥PA ABCD ,32,2,3===AB AD PA ,BC =6.(1)求证:;PAC BD 平面⊥DA B 1CBAC (第32题A图)(2)求二面角A BD P --的大小.33.(本题8分) 如图,由半圆221(0)x y y +=≤和部分抛物线 2(1)y a x =-(0y ≥,0a >)合成的曲线C 称为“羽毛球形线”, 且曲线C 经过点(2,3). (1)求a 的值;(2)设(1,0)A ,(1,0)B -,过A 且斜率为k 的直线 l 与“羽毛 球形线”相交于P ,A ,Q 三点,问是否存在实数k ,使得QBA PBA ∠=∠若存在,求出k 的值;若不存在,请说明理由.34.(本题8分) 已知函数9()||f x x a a x =--+,[1,6]x ∈,a R ∈. (1)若1a =,试判断并证明函数()f x 的单调性; (2)当(1,6)a ∈时,求函数()f x 的最大值的表达式()M a .yxOA BPQ(第33题图)。
一、单选题二、多选题三、填空题1. 若的展开式中所有项的二项式系数之和为16,则的展开式中的常数项为( )A .6B .8C .28D .562. 已知,则( )A.B.C.D. 3. “”是“函数的最小值等于2”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件4. 下列选项中,说法正确的是( )A .“”的否定是“”B .若向量满足,则与的夹角为钝角C .若,则D .“”是“”的必要条件5. 在平面直角坐标系中,若点与点关于直线对称,则等于( )A.B.C.D.6. 已知集合,则( )A.B.C.D.7. 过点的直线与抛物线交于,,的中点在直线上,且与圆相切,则等于()A.B .2C .3D .48.若函数是幂函数,则函数(其中且)的图象过定点( )A.B.C.D.9. 设向量,,则( )A.B.与的夹角为C .与共线D.10.若,且,则( )A.B.C.D.11. 已知a ,,,,则下列说法正确的是( )A .z的虚部是B.C.D .z 对应的点在第二象限12. 已知某圆锥的轴截面为正三角形,侧面积为,该圆锥内接于球,则球的表面积为__________.13. 定长为4的线段两端点在抛物线上移动,设点为线段的中点,则点到轴距离的最小值为__________.2023年黑龙江省普通高中学业水平合格性考试数学试题四、填空题五、填空题六、解答题七、解答题14. 设集合,,则的元素个数为__________个.15. 1.设等差数列的前项和,且满足,则的最大是________;数列()中最大的项为第____________项.16.已知数列的前项和为,且,记,则________;若数列满足,则的最小值是________.17. 用表示不超过的最大整数,已知数列满足:,,.若,,则________;若,则________.18. 如图,两射线、均与直线l 垂直,垂足分别为D 、E 且.点A 在直线l 上,点B 、C 在射线上.(1)若F 为线段BC 的中点(未画出),求的最小值;(2)若为等边三角形,求面积的范围.19. 2021年5月11日,第七次全国人口普查结果显示,中国65岁及以上人口为19064万人,占总人口的.随着出生率和死亡率的下降,我国人口老龄化趋势日益加剧,与老年群体相关的疾病负担问题越来越受到社会关注,虚弱作为疾病前期的亚健康状态,多发于65岁以上人群.虚弱指数量表(frailty in—dex ,FI,取值范围是)可以用来判定老年人是否虚弱,若FI 分,则定义为“虚弱”.某研究团队随机调查了某地1170名男性与1300名女性65岁及以上老年人的身体状况,并采用虚弱指数量表分析后得出虚弱指数频数分布表如下:FI男41157910179女417463162258(1)根据所调查的65岁及以上老年人的虚弱指数频数分布表作出65岁及以上老年人虚弱与性别的列联表,并分析能否在犯错误的概率不超过0.01的前提下认为老年人身体虚弱与性别有关?非虚弱虚弱总计男1170女1300总计(2)以频率估计概率,现从该地区随机调查两位男性65岁以上老年人,这两位老人中身体虚弱的人数为随机变量,求随机变量的分布列、期望与方差?附表及公式:,.0.150.100.050.0250.0100.0050.0012.072 2.706 3.841 5.024 6.6357.87910.828八、解答题九、解答题十、解答题20. 如图,在三棱锥中,平面平面是的中点.(1)求证:平面;(2)设点N 是的中点,求三棱锥的体积.21. 2024年高三数学适应性考试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得6分,部分选对得3分,有错误选择或不选择得0分.(1)已知某同学对其中4道单选题完全没有答题思路,只能随机选择一个选项作答,且每题的解答相互独立,记该同学在这4道单选题中答对的题数为随机变量X .(i )求;(ii )求使得取最大值时的整数;(2)若该同学在解答最后一道多选题时,除确定B ,D 选项不能同时选择之外没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为,求该同学在答题过程中使得分期望最大的答题方式,并写出得分的最大期望.22. 如图所示,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(1)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正弦值;(2)用反证法证明:直线ME 与BN是两条异面直线.。
一、单选题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要2023年福建省普通高中高二1月学业水平合格性考试数学试题求的。
1.已知集合,则( )A.B.C.D.2.一个正方体的六个面上分别有字母A ,B ,C ,D ,E ,F ,如下图所示是此正方体的两种不同放置,则与D 面相对的面上的字母是( )A. BB. EC. B 或FD. E 或F3.直线的倾斜角是( )A. B.C. D.4.函数的定义域是( )A.B.C. D. R5.随机投掷一枚质地均匀的骰子,出现向上的点数为奇数的概率是( )A. B.C. D.6.等差数列中,若,公差,则( )A. 10B. 12C. 14D. 227.已知函数则( )A. 4B. 2C.D.8.已知,且为第一象限角,则( )A. B.C.D.9.函数的零点所在的区间是( )A. B.C.D.10.函数的最小正周期是( )A. B. C. D.11.如图,在长方体体中,分别是棱的中点,以下说法正确的是( )A.平面 B. 平面C. D.12.函数的图象大致为( )A. B.C. D.13.为了得到函数的图象,只需把函数的图象( )A. 向右平移个单位长度,再向上平移1个单位长度B. 向右平移个单位长度,再向下平移1个单位长度C. 向左平移个单位长度,再向上平移1个单位长度D. 向左平移个单位长度,再向下平移1个单位长度14.已知,则的大小关系是( )A. B. C. D.15.下列各组向量中,可以用来表示向量的是( )A. B.C. ,D.二、填空题:本题共5小题,每小题5分,共25分。
16.数列的前n项和为,且,则__________.17.的内角所对的边分别为,且,则__________.18.已知向量与满足,且,则与的夹角等于__________.19.一车间为了规定工时定额,需要确定加工某零件所需的时间,为此进行了多次试验,收集了加工零件个数x与所用时间分钟的相关数据,并利用最小二乘法求得回归方程据此可预测加工200个零件所用的时间约为__________分钟.20.某工厂要建造一个容积为的长方体形无盖水池.如果该水池池底的一边长为,池底的造价为每平方米200元,池壁的造价为每平方米100元,那么要使水池的总造价最低,水池的高应为__________三、解答题:本题共5小题,共50分。
一、单选题1. 广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为,若一动点从点出发,按路线运动(其中五点共线),设的运动路程为,与的函数关系式为,则的大致图象为()A.B.C.D.2. 在西双版纳热带植物园中有一种原产于南美热带雨林的时钟花,其花开花谢非常有规律.有研究表明,时钟花开花规律与温度密切相关,时钟花开花所需要的温度约为,但当气温上升到时,时钟花基本都会凋谢.在花期内,时钟花每天开闭一次.已知某景区有时钟花观花区,且该景区6时时的气温(单位:)与时间(单位:小时)近似满足函数关系式,则在6时时中,观花的最佳时段约为( )(参考数据:)A .时时B .时时C .时时D .时时3. 已知S n是等差数列的前n 项和,若,,则( )A .24B .26C .28D .304. 在正方体中,异面直线与所成角的大小是( )A.B.C.D.5. 若复数(为虚数单位),则的虚部为( )A .-1B.C .-2D .16. 已知椭圆的左、右焦点分别为,,直线与椭圆C 相交于A ,B 两点.有下列结论:①四边形为平行四边形;②若轴,垂足为E ,则直线BE 的斜率为;③若(O为坐标原点),则四边形的面积为;④若,则椭圆的离心率可以是.其中正确的结论是( )A .①④B .①②④C .①②③D .②④7. 已知双曲线(,)的渐近线与交于第一象限内的两点,,若为等边三角形,则双曲线的离心率( )A.B.C .2D.福建省普通高中2022-2023学年高二6月学业水平合格性考试数学试题(1)福建省普通高中2022-2023学年高二6月学业水平合格性考试数学试题(1)二、多选题三、填空题四、解答题8. 已知抛物线上一点到焦点的距离等于,则直线的斜率为( )A.B.C.D.9.已知数列满足,则下列结论正确的有( )A.为等比数列B.的通项公式为C .为递增数列D .的前n项和10. 已知随机变量服从二项分布,其方差,随机变量服从正态分布,且,则( )A.B.C.D.11. 已知三个互不相等的正数a ,b ,c 满足,,则( )A.B.C.D.12. 设等比数列的公比为,其前项和为,前项积为,并且满足条件,则下列结论正确的是( )A.B.C.的最大值为D .的最大值为13. 的展开式中常数项为___________.14.用一平面去截球所得截面的面积为cm 2,已知球心到该截面的距离为1 cm ,则该球的体 积是_______cm 3.15. 已知、均为单位向量,若,则与的夹角为___________.16. 为了了解某类工程的工期,某公司随机选取了10个这类工程,得到如下数据(单位:天):17,23,19,21,22,21,19,17,22,19.(1)若该类工程的工期服从正态分布,用样本的平均数和标准差分别作为和的估计值.(ⅰ)求和的值;(ⅱ)由于疫情需要,要求在22天之内完成一项此类工程,估计能够在规定时间内完成该工程的概率(精确到0.01).(2)在上述10个这类工程的工期中任取2个工期,设这2个工期的差的绝对值为,求的分布列和数字期望.附:若随机变量服从正态分布,则,,.17. 某学校有两个餐厅为学生提供午餐与晩餐服务,甲、乙两位学生每天午餐和晩餐都在学校就餐,近100天选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晩餐)甲30天20天40天10天乙20天25天15天40天为了吸引学生就餐,餐厅推出就餐抽奖活动,获奖的概率为,而餐厅推出就餐送贴纸活动,每次就餐送一张.假设甲、乙选择餐厅就餐相互独立,用频率估计概率.(1)分别估计一天中甲午餐和晩餐都选择A餐厅就餐的概率,乙午餐和晩餐都选择B餐厅就餐的概率;(2)记为学生乙在一天中获得贴纸的数量,求的分布列和数学期望;(3)餐厅推出活动当天学生甲就参加了抽奖活动,已知如果学生甲抽中奖品,则第二天午餐再次去餐厅就餐的概率为,如果学生甲并没有抽中奖品,第二天午餐依然在餐厅就餐的概率为,若餐厅推出活动的第二天学生甲午餐去餐厅就餐的概率是,求.18. 已知动点到点的距离比它到直线的距离小2.(1)求动点的轨迹方程;(2)记点的轨迹为,过点斜率为的直线交于,两点,,延长,与交于,两点,设的斜率为,证明:为定值.19. 已知双曲线:,为的右顶点,若点到的一条渐近线的距离为.(1)求双曲线的标准方程;(2)若,是上异于的任意两点,且的垂心为,试问:点是否在定曲线上?若是,求出该定曲线的方程;若不是,请说明理由.20. 已知函数.(1)求函数的单调区间;(2)证明:当时,.21. 在数列中,,其中.(1)证明数列是等差数列,并写出证明过程;(2)设,数列的前n项和为,求;(3)已知当且时,,其中,求满足等式的所有n的值之和.。
一、单选题二、多选题三、填空题1. 已知命题,,命题若是指数函数,则.则下列命题中为真命题的是( )A.B.C.D.2. 记的内角,,的对边分别为,,,分别以,,为边长的正三角形的面积依次为,,,且,则( )A.B.C.D.3. 体积为的某三棱锥的三视图如下图所示(其三个视图均为直角三角形),则该三棱锥四个面的面积中,最大值为()A.B.C.D .64. 下列常数集表示正确的是( )A .实数集RB .整数集QC .有理数集ND .自然数集Z5. 已知,,,则( )A.B.C.D.6. 下列关于回归分析的说法中的是( )A.线性回归方程对应的直线不一定经过其样本数据中的点B .残差图中的残差点比较均匀地落在水平的带状区域中,宽度越窄,则说明模型拟合精度越高C .若回归方程为,则当时,的值必为58.79D .以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和0.3错误7. 下列函数中,最小正周期为的是( )A.B.C.D.8. 在等比数列中,满足的通项公式可能是( )A.B.C.D.9. 已知向量,,若向量与向量共线,则实数的值为_____.10. 九连环是中国的一种古老智力游戏,它用九个圆环相连成串,环环相扣,以解开为胜,趣味无穷.中国的末代皇帝溥仪(1906—1967)也曾有一个精美的由九个翡翠缳相连的银制的九连环(如图).现假设有个圆环,用表示按照某种规则解下个圆环所需的银和翠玉制九连环最少移动次数,且数列满足,,,则______.2023年黑龙江省普通高中学业水平合格性考试数学试题(高频考点版)2023年黑龙江省普通高中学业水平合格性考试数学试题(高频考点版)四、解答题11.已知椭圆,经过仿射变换,则椭圆变为了圆,并且变换过程有如下对应关系:①点变为;②直线斜率k 变为,对应直线的斜率比不变;③图形面积S变为,对应图形面积比不变;④点、线、面位置不变(平行直线还是平行直线,相交直线还是相交直线,中点依然是中点,相切依然是相切等).过椭圆内一点作一直线与椭圆相交于C两点,则的面积的最大值为______.12. 已知,,,为有穷整数数列,对于给定的正整数m ,若对于任意的,在中存在,,,使得,则称为“同心圆数列”.若为“同心圆数列”,则k 的最小值为______.13.三棱锥中,,且异面直线AC 与BD 所成的角为,E ,F 分别是棱DC ,AB 的中点,求直线EF 和AC 所成的角.14. 已知双曲线过点,左右顶点分别为,过左焦点且垂直于轴的直线交双曲线于两点,以为直径的圆恰好经过右顶点.(1)求双曲线的标准方程;(2)若是直线上异于的一点,连接分别与双曲线相交于,当轴正半轴上的虚轴端点到直线的距离最大时,求直线的方程.15. (1)证明:;(2)记的内角,,所对的边分别为,,,已知.(ⅰ)证明:;(ⅱ)若成立,求实数的取值范围.16. 在三棱锥中,,,.(1)求证:平面平面;(2)若点满足,求二面角的余弦值.。
高中数学学业水平考知识点总结高中数学学业水平考试中的常见知识点总结如下:
1. 代数与函数
- 方程与不等式
- 函数与图像
- 指数与对数
- 三角函数与图像
- 复数与复平面
2. 数列与数学归纳法
- 等差数列与等比数列
- 递推公式与通项公式
- 数学归纳法的应用
3. 平面几何与向量
- 平面图形的性质
- 平行线与垂直线
- 圆与圆的性质
- 向量的表示与运算
- 向量的共线与垂直
4. 空间几何与解析几何
- 空间图形的性质
- 空间坐标系与坐标计算
- 空间直线与平面的性质
- 空间几何问题的解析几何方法
5. 三角学
- 三角函数的定义与性质
- 三角函数的图像与变换
- 三角函数的应用问题
6. 概率与统计
- 随机事件的概率
- 统计与频率分布
- 统计图表的分析
- 概率与统计的应用问题
这些知识点主要涵盖了高中数学学业水平考试中的大部分内容。
建议你结合自己的教材和学校的教学大纲进行复习,重点掌握这些知识点的定义、性质和应用。
同时,还可以做一些相关的练习题和模拟考试来提升自己的解题能力。
一、单选题二、多选题1. 已知函数,若不等式对任意均成立,则的取值范围为( )A.B.C.D.2.复平面内表示复数的点在直线上,则( )A .1B.C .2D.3.已知函数的定义域为,给出以下两个结论:① 若函数②的图像是轴对称图形,则函数的图像是轴对称图形;② 若函数的图像是中心对称图形,则函数的图像是中心对称图形.它们的成立情况是( )A .①成立,②不成立B .①不成立,②成立C .①②均不成立D .①②均成立4.已知直线经过双曲线的一个焦点,且平行于的一条渐近线,则的实轴长为( )A.B.C.D.5. 已知,,则的最大值为( )A.B.C.D.6. 已知函数,若函数在区间上没有零点,则的取值范围是( )A.B.C.D.7. 已知,且.若,则的最大值是( )A .6B .5C .4D .38.已知复数,是的共轭复数,则( )A .0B.C .1D .29. 下列条件中,使M 与A ,B ,C 一定共面的是( )A.B.C.D.10. 已知P 为抛物线C :上的动点,在抛物线C 上,过抛物线C 的焦点F 的直线l 与抛物线C 交于A ,B 两点,,,则( )A.的最小值为4B .若线段AB 的中点为M ,则的面积为C .若,则直线l 的斜率为2D.过点作两条直线与抛物线C 分别交于点G ,H ,且满足EF 平分,则直线GH 的斜率为定值11. 设,分别是双曲线的左、右焦点,且,则下列结论正确的是( )A.B .的取值范围是C .到渐近线的距离随着的增大而减小D .当时,的实轴长是虚轴长的3倍江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(3)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(3)三、填空题四、解答题12. 为了得到函数的图象,只需将函数的图象( )A .所有点的横坐标缩短到原来的,纵坐标不变,再将所得图象向右平移个单位长度B .所有点的横坐标伸长到原来的3倍,纵坐标不变,再将所得图象向右平移个单位长度C .向右平移个单位长度,再将所得图象所有点的横坐标缩短到原来的,纵坐标不变D .向右平移个单位长度,再将所得图象所有点的横坐标缩短到原来的,纵坐标不变13. 已知圆台的上底面半径为1,下底面半径为2,其表面积为,则圆台的体积为___________.14. 已知椭圆,直线与轴交于点,与椭圆交于,两点,若,则________.15. i 是虚数单位,则复数______.16. 自1980年以来我国逢整十年进行一次人口普查,总人口等指标与年份如下表所示:指标19801990200020102020年份数12345总人口(亿)9.811.312.613.414.1(1)建立总人口关于年份数的回归直线方程.(2)某市某街道青年人(15-35岁)、中年人(36-64岁)与老年人(65岁及以上)比例约为,为了比较中青年人与老年人购物方式,街道工作人员按比例随机调查了120位居民,购物方式统计如下表.实体店购物网上购物电视购物其它青年人15354中年人1582老年人221将实体店购物视作传统购物方式,网上购物、电视购物和其它方式视作新兴购物方式.根据所给数据,补充上表并完成下面的列联表:传统购物方式新兴购物方式总计中青年人(15-64岁)老年人(65岁及以上)总计并请判断是否有99.9%的把握认为该街道居民购物方式与其是否为老年人有关?参考公式:,.,其中.参考数据:,0.100.050.010.0050.0012.7063.841 6.6357.87910.82817. 已知函数(1)当时,求函数的单调区间;(2)当时,过点可作几条直线与曲线相切?请说明理由.18. 已知函数的图象过点,.(1)求函数的解析式;(2)记是正整数,是数列的前n项和,解关于n的不等式;(3)对(2)中的数列,求数列的前n项和.19. 已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明:.20. 已知函数.(1)若,求证;函数的图象与轴相切于原点;(2)若函数在区间,各恰有一个极值点,求实数的取值范围.21. 已知函数.当m=1时,曲线在点处的切线与直线x-y+1=0垂直.(1)若的最小值是1,求m的值;(2)若,是函数图象上任意两点,设直线AB的斜率为k.证明:方程在上有唯一实数根.。
2021年4月浙江省普通高中学业水平考试数学试题第Ⅰ卷(共54分)一、选择题:本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4U = ,若{}1,3A =,则UA =( )A .{}1,2B .{}1,4C .{}2,3D .{}2,42.已知数列1,a ,5是等差数列,则实数a 的值为( )A .2B .3C .4D 3.计算lg 4lg 25+=( ) A .2B .3C .4D .104.函数3xy =的值域为( ) A .(0,)+∞B .[1,)+∞C .(0,1]D .(0,3]5.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a =60A =︒ ,45B =︒,则b 的长为( )A .2B .1CD .26.若实数10,20,x y x y -+>⎧⎨-<⎩则点(,)P x y 不可能落在( )A .第一象限B .第二象限C .第三象限D .第四象限7.在空间中,下列命题正确的是( )A .若平面α内有无数条直线与直线l 平行,则//l αB .若平面α内有无数条直线与平面β平行,则//αβC .若平面α内有无数条直线与直线l 垂直,则l α⊥D .若平面α内有无数条直线与平面β垂直,则αβ⊥ 8.已知θ锐角,且3sin 5θ=,则sin(45)θ+︒=( )A .7210B .7210-C .210D .210-9.直线y x =被圆22(1)1x y -+=所截得的弦长为( )A .22B .1C .2D .210.设数列{}n a 的前n 项和为n S ,若121n n S a +=+,*n N ∈,则3a =( ) A .3B .2C .1D .011.如图,在三棱锥A BCD -中,侧面ABD ⊥底面BCD ,BC CD ⊥,4AB AD ==,6BC =,43BD =,该三棱锥三视图的正视图为( )12.在第11题的三棱锥A BCD -中,直线AC 与底面BCD 所成角的大小为( ) A .30︒B .45︒C .60︒D .90︒13.设实数a ,b 满足||||a b >,则“0a b ->”是“0a b +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件14.过双曲线22221x y a b-=(0a >,0b >)的左顶点A 作倾斜角为45︒的直线l ,l 交y 轴于点B ,交双曲线的一条渐进线于点C ,若AB BC =,则该双曲线的离心率为( )A .5B .5C .3D .5215.若实数a ,b ,c 满足12b a <<<,108c <<,则关于x 的方程20ax bx c ++=( ) A .在区间()1,0-内没有实数根B .在区间()1,0-内有一个实数根,在()1,0-外有一个实数根C .在区间()1,0-内有两个相等的实数根D .在区间()1,0-内有两个不相等的实数根16.如图(1),把棱长为1的正方体沿平面11AB D 和平面11A BC 截去部分后,得到如图(2)所示几何体,该几何体的体积为( )A .34B .1724C .23D .1217.已知直线22(2)0x y y λ+++-=与两坐标轴围成一个三角形,该三角形的面积记为()S λ,当(0,)λ∈+∞时,()S λ的最小值是( )A .12B .10C .8D .418.已知函数2()f x x ax b =++(a ,b R ∈),记集合{}|()0A x R f x =∈≤,{}|(()1)0B x R f f x =∈+≤,若A B =≠∅,则实数a 的取值范围为( ) A .[]4,4- B .[]2,2-C .[]2,0-D .[]0,4第Ⅱ卷(共46分)二、填空题(每空3分,满分15分,将答案填在答题纸上)19.设向量(1,2)a =,(3,1)b =,则a b +的坐标为 ,a b ⋅= .20.椭圆2213x y +=两焦点之间的距离为 . 21.已知a ,b R ∈,且1a ≠-,则1||||1a b b a ++-+的最小值是 . 22.设点P 是边长为2的正三角形ABC 的三边上的动点,则()PA PB PC ⋅+的取值范围为 .三、解答题 (本大题共3小题,共31分.解答应写出文字说明、证明过程或演算步骤.)23.已知函数2()2cos 1f x x =-,x R ∈. (Ⅰ)求()6f π的值;(Ⅱ)求函数()f x 的最小正周期; (Ⅲ)设()()3cos 24g x f x x π=-+,求()g x 的值域.24.已知抛物线C :22y px =过点(1,1)A .(Ⅰ)求抛物线C 的方程;(Ⅱ)过点(3,1)P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合).设直线AM ,AN 的斜率分别为1k ,2k ,求证:12k k ⋅为定值. 25.已知函数()3|||1|f x x a ax =-+-,其中a R ∈. (Ⅰ)当1a =时,写出函数()f x 的单调区间;(Ⅱ)若函数()f x 为偶函数,求实数a 的值;(Ⅲ)若对任意的实数[]0,3x ∈,不等式()3||f x x x a ≥-恒成立,求实数a 的取值范围.2017年4月浙江省普通高中学业水平考试数学试题第Ⅰ卷(共54分)一、选择题:本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4U = ,若{}1,3A =,则UA =( )A .{}1,2B .{}1,4C .{}2,3D .{}2,4【答案】D【知识点】本题主要考察知识点:集合问题 【解析】 由题可以知道A={2,4}选择D 。
2019年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至6页。
考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。
考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色字迹签字笔在答题卡上作答。
在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。
每小题只有一个选项符合题目要求)1.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩C uA=9)A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}2.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,...1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生3.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.44.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.135.幂函数y=f(x)的图象经过点(8,22),则f(x)的图象是()6.经过点A(8,-2),斜率为.−12的直线方程为()A.x+2y-4=0B.x-2y-12=0C.2x+y-14=0D.x+2y+4=07.设f(x)为奇函数,且当x≥0时,f(x)=e-X-1.则当x<0时,f(x)=()A.e-X-1B.e-X+1C.-e-X-1D.-e-X+18.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB =(1,-2),AD =(2,1),则AB ·AD =()A.5B.4C.3D.29.函数f(x)=1X—x3的图像关于()A.x轴对称B.y轴对称C.直线y=x对称D.坐标原点对称10.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.111.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是()A.若m⊥n,n//α,则m⊥αB.若m//β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α12.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或一12C.-2或-12D.2或1213.在区间[o,2]上随机地取一个数x,则事件“-1≤log1(x+12)≤1发生的概率为()2A.34B.23C.13D.1414.为了得到函数y=sin2x的图象,只要把函数y=sin x的图象上所有点()A.横坐标缩短到原来的12,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的12,横坐标不变D.纵坐标伸长到原来的2倍,横坐标不变15.已知{a n}是首项为1的等比数列,s n是{a n}的前n项和,且9S3=S6,则数列{1a n}的前5项和为()A.158或5B.3116或5C.3116D.158第Ⅱ卷(非选择题55分)二、填空题(本大题共5小题,每小题3分,共15分)16.函数y=7+6x−x2的定义域是。
高三数学学业水平考试范围主要包括以下内容:
1. 集合与简易逻辑:集合的概念与运算、数轴、区间、特称命题和全称命题等。
2. 函数:函数的概念、函数的单调性、奇偶性、周期性、对称性、最值等。
3. 三角函数:正弦函数、余弦函数、正切函数的图象和性质,三角函数定理、公式等。
4. 数列:等差数列、等比数列的定义、通项公式、性质和前n项和公式等。
5. 解析几何:直线方程、圆方程、椭圆方程、双曲线方程和抛物线方程等。
6. 立体几何:平面几何的性质和定理、空间几何体的表面积和体积,以及空间几何中的线面关系等。
7. 排列组合与概率统计:排列组合的基本计算、随机事件的概率、随机变量的分布和统计学的相关概念等。
8. 复数:复数的概念、复数的运算和复数的三角形式等。
9. 导数及其应用:导数的概念、导数的计算,以及导数在研究函数中的应用等。
具体考试范围可能会根据不同地区和学校的要求有所差异。
建议查阅所在地区或学校的考试大纲,以获取更准确的信息。
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
一、单选题二、多选题1. 已知在三角形ABC 中,,,,点M ,N 分别为边AB ,AC 上的动点,,,其中x ,,,点P ,Q 分别为MN ,BC 的中点,则取得最小值时,( )A.B.C.D.2. 装饰公司制作一种扇形板状装饰品,其圆心角为,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串联(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为( )A .55厘米B .63厘米C .69厘米D .76厘米3. 已知全集,集合,集合,则( )A.B.C.D.4. 设,则A.B.C.D.5. 函数的大致图象是( )A.B.C.D.6.已知向量, ,则在方向上的投影是( )A.B.C.D.7. 某大学理工学院有5名学生(包含甲)参加信息安全、场馆引导、成绩记录、接待翻译这四项志愿者服务活动,要求每项服务活动至少有一人参加,每人参加一项活动,若学生甲不能参加接待翻译活动,则不同的安排方法种数为( )A .108B .160C .180D .1988.设双曲线的左、右顶点分别为,,焦距为,两条渐近线的夹角为.设点的坐标为.若为等腰三角形,则( )A.B.C.D .29. 已知函数,则( )A.函数的最小正周期为B .点是函数图象的一个对称中心C.将函数图象向左平移个单位长度,所得到的函数图象关于轴对称D .函数在区间上单调递减10. 已知P 是圆O:上的动点,点Q (1,0),以P 为圆心,PQ 为半径作圆P ,设圆P 与圆O 相交于A ,B 两点.则下列选项正确的是2023年黑龙江省普通高中学业水平合格性考试数学试题(3)2023年黑龙江省普通高中学业水平合格性考试数学试题(3)三、填空题四、解答题( )A .当P 点坐标为(2,0)时,圆P 的面积最小B .直线AB 过定点C .点Q 到直线AB 的距离为定值D.11. 设a ,b 为两条不同的直线,为两个不同的平面,则下列结论不正确的是( )A .若,则B .若,则C .若,则D .若,则12. 在正方形中,设D是正方形的内部的点构成的集合,,则集合表示的平面区域可能是( )A .四边形区域B .五边形区域C .六边形区域D .八边形区域13. 南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第2层有3个球,第3层有6个球,…,则第100层球的个数______.14. 设a 为实数,函数的导函数为,若是偶函数,则__________,此时,曲线在原点处的切线方程为______________.15. 某医院从3名医生和3名护士中选派4人参加志愿者服务,事件A 表示选派的4人中至少有2名医生,事件B 表示选派的4人中有2名护士,则___________.16. 已知椭圆:,设过点的直线交椭圆于,两点,交直线于点,点为直线上不同于点A 的任意一点.(1)若,求的取值范围;(2)若,记直线,,的斜率分别为,,,问是否存在,,的某种排列,,(其中,使得,,成等差数列或等比数列?若存在,写出结论,并加以证明;若不存在,说明理由.17.已知数列的前项和为,.(1)求数列的通项公式;(2)用表示不小于实数的最小整数,例如,,.设,求数列的前项和.18. 在中,角的对边分别为,且.(1)求角C 的大小;(2)若,求的周长的取值范围.19. 已知椭圆的离心率为,短轴长为.(1)求C的方程;(2)如图,经过椭圆左顶点A且斜率为的直线l与C交于A,B两点,交y轴于点E,点P为线段AB的中点,若点E关于x轴的对称点为H,过点E作OP(O为坐标原点)垂直的直线交直线AH于点M,且面积为,求k的值.20. 已知椭圆:的左焦点为,点在椭圆上,且椭圆上存在点与点关于直线对称.(1)求椭圆的标准方程.(2)若直线与椭圆只有一个公共点,点,是轴上关于原点对称的两点,且点,在直线上的射影分别为,,判断是否存在点,,使得为定值,若存在,求出,的坐标及该定值;若不存在,请说明理由.21.已知椭圆的离心率为,其左右顶点分别为,下焦点为,若.(1)求椭圆的方程;(2)若点为椭圆上的动点,且在第一象限运动,直线的斜率为,且与轴交于点,过点与垂直的直线交轴于点,若直线的斜率为,求值.。
2019年山东省普通高中学业水平考试数学试题(带答案)2019年山东省普通高中学业水平考试数学试题(带答案)一、选择题(共20小题,每小题3分,共60分)1.已知集合 $A=\{2,4,8\}$,$B=\{1,2,4\}$,则 $A\capB=$()A。
{4} B。
{2} C。
{2,4} D。
{1,2,4,8}2.周期为 $\pi$ 的函数是()A。
$y=\sin x$ B。
$y=\cos x$ C。
$y=\tan 2x$ D。
$y=\sin2x$3.在区间 $(1,2)$ 上为减函数的是()A。
$y=x$ B。
$y=x^2$ C。
$y=\frac{1}{x}$ D。
$y=\ln x$4.若角 $\alpha$ 的终边经过点 $(-1,2)$,则 $\cos\alpha=$()A。
$-\frac{5}{13}$ B。
$\frac{5}{13}$ C。
$-\frac{1}{13}$ D。
$\frac{1}{13}$5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件 $P$ 为“甲分得黄牌”,设事件 $Q$ 为“乙分得黄牌”,则()A。
$P$ 是必然事件 B。
$Q$ 是不可能事件 C。
$P$ 与$Q$ 是互斥但不对立事件 D。
$P$ 与 $Q$ 是互斥且对立事件6.在数列 $\{a_n\}$ 中,若 $a_{n+1}=3a_n$,$a_1=2$,则$a_4=$()A。
18 B。
36 C。
54 D。
1087.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是()A。
1,2,3,4,5 B。
2,4,8,16,32 C。
3,13,23,33,43 D。
5,10,15,20,258.已知 $x,y\in (0,+\infty)$,且 $x+y=1$,则 $xy$ 的最大值为()A。
1 B。
$\frac{1}{3}$ C。
$\frac{1}{4}$ D。
2013年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:Mn M a n a log log =;b mnb a n amlog log=, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)通项公式:d n a a n)1(1-+= (其中首项是1a ,公差是d ;)(3)前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)通项公式:11-=n nq a a (其中:首项是1a ,公比是q )(3)前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S n n n 第四章 三角函数 1弧度制:(1)π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin22=+ααααc o st a n =1c o t t a n =αα5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααt a n )180t a n (c o s )180c o s (s i n )180s i n (=+︒-=+︒-=+︒ ααααααt a n )t a n (c o s )c o s (s i n )s i n (-=-=--=-6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)α2S : αααcos sin 22sin =α2C :ααα22sin cos 2cos -= 1cos 2sin 2122-=-=ααα2T :ααα2t a n 1t a n22t a n -=(2)、降次公式:(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα9、三角函数:ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 21sin 21sin 21===∆(2)正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示:(3)余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b A bc c b a +-+=-+=⋅-+=⋅-+=求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:(1)设()()2211,,,y x b y x a==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a,02121=+⇔⊥→→y y x x b a则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab ba 2≥+或2)2(b a ab +≤ 一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程 1、斜 率:αtan =k,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B Ak -=,y 轴截距为B C -3、两直线的位置关系 (1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+; (2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程: (2)圆的一般方程022=++++F Ey Dx y x0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第九章 直线 平面 简单的几何体 1、长方体的对角线长2222c b a l++=;正方体的对角线长a l 3=2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 R Vπ=,球的表面积公式:24 RS π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十一章:概率:1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0) 2、等可能性事件的概率:()mP A n=.3、互斥事件有一个发生的概率: A ,B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P (A )+ P(B)=14、独立事件同时发生的概率:独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-山东省2008年普通高中学生学业水平考试数学试题第Ⅰ卷(选择题 共45分)一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题目要求)1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( ) A.{1,2,3} B.{2} C.{1,3,4} D.{4}2.若一个几何体的三视图都是三角形,则这个集合体是 ( ) A. 圆锥 B.四棱锥 C.三棱锥 D.三棱台3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( ) A. -2 B. 55-C. 21- D. 552 4.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3D. y=x15.设a >1,函数f (x )=a |x|的图像大致是 ( )6.为了得到函数y=sin (2x-3π)(X ∈R )的图像,只需把函数 y=sin2x 的图像上所有的点 ( )A.向右平移3π个单位长度B.向右平移6π个单位长度 C.向左平移3π个单位长度 D.向左平移6π个单位长度7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是( )A. R=aB. R=a 23C. R=2aD. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( ) A.101 B. 51 C. 52 D. 539.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )A. -4B. -1C. 1D. 410.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )A. 24B. 48C. 96D. 19211.在知点P (5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 ( )A. -1<a <1B. a <131C.51-<a <51D. 131-<a <13112.设a ,b ,c ,d ∈R ,给出下列命题: ①若ac >bc ,则a >b ; ②若a >b ,c >d ,则a+b >b+d ; ③若a >b ,c >d ,则ac >bd ; ④若ac 2>bc 2,则a >b ;其中真命题的序号是 ( ) A. ①② B. ②④ C. ①②④ D. ②③④13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。
一、单选题二、多选题1. 已知函数,若函数有四个零点,则实数的取值范围是( )A.B.C.D.2.已知,,则下列不等式一定成立的是A.B.C.D.3. 若,,则A.B.C.D.4.下列四个命题中:①存在这样的四面体,使;②存在这样的四面体,使;③存在这样的四面体,使;④存在这样的四面体,使;其中真命题是( )A .①③④B .①②③C .②③④D .①②5. 由0,1,2,3,4,5共6个不同数字组成的6位数,要求0不能在个位数,奇数恰好有2个相邻,则组成这样不同的6位数的个数是( )A .144B .216C .288D .4326. 已知复数在复平面内对应的点分别为则的虚部为( )A .1B.C .D.7. 已知,,,则a ,b ,c 的大小关系为( )A.B.C.D.8. 已知,,则( )A.B.C.D.9. 已知函数的定义域为,函数的图象关于点对称,且满足,则下列结论正确的是( )A .函数是奇函数B.函数的图象关于轴对称C.函数是最小正周期为2的周期函数D .若函数满足,则10.已知圆:,直线:,则下列说法正确的是( )A .直线恒过定点B .直线被圆截得的弦最长时,C .直线被圆截得的弦最短时,D .直线被圆截得的弦最短弦长为11.若函数对,,不等式成立,则称在上为“平方差减函数”,则下列函数中是“平方差减函数”的有( )A.B.C.D.2023年黑龙江省普通高中学业水平合格性考试数学试题(3)2023年黑龙江省普通高中学业水平合格性考试数学试题(3)三、填空题四、解答题12. 如图,点是函数的图象与直线相邻的三个交点,且,则()A.B.C .函数在上单调递减D .若将函数的图象沿轴平移个单位,得到一个偶函数的图像,则的最小值为13. 已知正四棱锥的侧面是边长为3的正三角形,它的侧棱的所有三等分点都在同一个球面上,则该球的表面积为________.14.等比数列中,,,则数列的前8项和等于________.15.在中,内角,,的对边分别为,,.的面积,若,则______.16. 已知函数,.(1)当b =1时,讨论函数的单调性;(2)若函数在处的切线方程为,且不等式恒成立,求实数m 的取值范围.17.已知拋物线,为焦点,若圆与拋物线交于两点,且(1)求抛物线的方程;(2)若点为圆上任意一点,且过点可以作拋物线的两条切线,切点分别为.求证:恒为定值.18.已知正项数列满足,.(1)证明:当时,,(2)若(),,数列的前项和为,证明:.19. 安徽新高考改革方案正式公布,根据改革方案,计入高考总分的考试科目共有6门,即“3+1+2”,“3”为语文、数学、外语3门全国统一考试科目,不分文理科,使用全国卷,选择性考试科目为思想政治、历史、地理、物理、化学、生物学6门.由考生根据报考高校要求,结合自身特长兴趣,首先在物理和历史中选择1门,再从思想政治、地理、化学、生物学中选择2门.(1)若某学生根据方案从选择性考试科目中随机选择三科,求该生恰好选到政史地的概率;(2)由于物理和历史两科必须选择1科,某校想了解学生选科的需求,随机选取100名学生进行调查,得到如下统计数据,判断是否有99%的把握认为“选科与性别有关”?选择物理选择历史合计男401050女302050合计7030100附表:0.1500.1000.0500.0250.0102.072 2.7063.841 5.024 6.635,.20. 设是集合{且}中所有的数从小到大排列成的数列,即,,,,,,….将各项按照上小下大、左小右大的原则写成如下的三角形数表.(1)写出该三角形数表的第四行、第五行各数(不必说明理由);(2)设是该三角形数表第行的个数之和所构成的数列,写出的通项公式;(3)求的值.21. 已知数列满足.(1)求的通项公式;(2)设,求数列的前项和.。
江苏省2023年普通高中学业水平合格性考试数学试卷(七)数 学 试 题注意事项:1.本试卷包括选择题(第1题~第28题,共28题84分)、非选择题(第29题~第30题,共2题16分)共两部分。
满分100分,考试时间为75分钟。
2.答题前,考生务必将信息填写清楚。
一、选择题:本大题共28小题,每小题3分,共计84分.在每小题给出的四个选项中,只有一项符合题目要求.1.设集合A ={x |x ≥3},B ={y |0<y ≤8},则集合(∁R A )∩B = ( )A .[0,3)B .[0,3]C .(0,3)D .(0,3]2.在复平面内,复数 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数f (x )=ln (x +3)1-2x的定义域是 ( ) A .(-3,0) B .(-3,0] C .(-∞,-3)∪(0,+∞) D .(-∞,-3)∪(-3,0)4.已知向量 , ,则 与的夹角为 ( ) A . B . C . D .5.从装有2个红球,3个白球的不透明袋子中任取3个球,若事件 “所取的3个球中至少有1个红球”,则事件 的对立事件是 ( )A .1个白球2个红球B .3个都是白球C .2个白球1个红球D .至少有一个红球6.在 中,内角 , , 所对的边分别为 , , ,若 ,则 ( )A .B . 或C .D . 或7.一个侧棱长为 的直棱柱的底面用斜二测画法所画出的水平放置的直观图为如图所示的菱形 O A B C '''',其中2O A ''=,则该直棱柱的体积为 ( )A .B .C .D .8.过球 表面上一点 引三条长度相等的弦 、 、 ,且 、 、 两两夹角都为60°,若 ,则该球的体积为 ( )A .B .C .D .9.渐近线方程为x ±y =0的双曲线的离心率是 ( )A .22B .1C . 2D .210.已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q = ( )A .4B .52C .2D .1211.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为( )A .B . CD12.如图,某书中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断尖端落在地上,竹尖与竹根的距离为三尺,问折断处离地面的高为多少尺?现假设折断的竹子与地面的夹角(锐角)为θ,则tan 4πθ⎛⎫+= ⎪⎝⎭( ) A .15131-B .15131C .0916-D .916013.已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为 ( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b14.函数f (x )=ln(2x )-1的零点位于区间 ( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)15.在△ABC 中,a =7,b =8,cos B =-17.则A= ( )A .6πB .π3C .4πD .2π16.已知{a n }为等差数列,a 2+a 8=18,则{a n }的前9项和S 9= ( )A .9B .17C .72D .811F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-2117.若空间中四条两两不同的直线4321l l l l 、、、满足433221l l l l l l ⊥⊥⊥、、,则下列结论一定正确的是( )A .41l l ⊥B .41//l lC .41l l 与既不垂直也不平行D .41l l 与的位置关系不确定18.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞,,19.曲线在点处的切线的方程为 ( )A .21y x =+B .21y x =-C .1y x =+D .1y x =-20. 已知在区间上有极值点,实数a 的取值范围是 ( ) A .B .C .D .21.已知0a >,0b >,若不等式1m a b a b +≥+恒成立,则m 的最大值为 ( ) A .10B .12C .16D .922.设函数()sin 23f x x π⎛⎫=-⎪⎝⎭,则下列结论错误的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称23.sin 20cos10cos160sin10︒︒-︒︒=( )A. B C .12- D .1224.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是 ( ) (1)x y x e =+(0,1)()21ln 2f x x a x =-()0,2()0,2()()2,00,2-()0,4()()4,00,4-A .[3,+∞)B .(-∞,3]C .(-∞,-3)D .(-∞,-3]25.已知向量(),2a x =,()2,b y =,()2,4c =-,且//a c ,b c ⊥,则a b -=( )A .3B C D .26.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .427.体积为8的正方体的顶点都在同一球面上,则该球的表面积为 ( )A .12πB .323πC .8πD .4π28.在ABC ∆中,,,a b c 分别为,,A B C 的对边,如果,,a b c 成等差数列,30B =︒,ABC ∆的面积为32,那么b =( )A B .1C D .2二、解答题:本大题共2小题,共计16分,解答时应写出文字说明、证明过程或演算步骤.29.(本小题满分8分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin A +cos A =2,a =2. (1)求A ;(2)在①a cos B =b sin A ,②b 2+这两个条件中任选一个作为条件,然后求△ABC 的面积.30.(本小题满分8分)正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱DD 1中点.(1)求证:BD 1∥平面AEC ;(2)求证:平面B 1AC ⊥平面B 1BDD 1.。
一、单选题二、多选题1. 若两个等差数列,的前项和分别为和,且,则( )A.B.C.D.2.已知函数是奇函数,且,则A .9B.C.D .73.已知集合,,则( )A.B.C.D.4.已知都是锐角,,则( )A.B.C.D.5. 已知双曲线的左、右顶点分别为、,双曲线在第一象限的图象上有一点,,,,则( )A.B.C.D.6.的二项展开式中,奇数项的系数和为( )A.B.C.D.7. 已知命题:对任意,总有;:“”是“,”的充分不必要条件,则下列命题为真命题的是A.B.C.D.8. 在下面给出的函数中,哪一个函数既是区间上的增函数又是以为周期的偶函数( )A.B.C.D.9.有一组样本数据,其中是最小值,是最大值,则( )A.的平均数等于的平均数B .的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差10. 我们把()叫做“费马数”(费马是十七世纪法国数学家).设,,表示数列的前项和,则使不等式成立的正整数的值可以是( )A .7B .8C .9D .1011. 已知O 为坐标原点,F为抛物线的焦点,C 的准线与x 轴的交点为,过F 的直线l 与C 交于A ,B 两点,与C 的准线交于点E ,直线l 的倾斜角,且点A 在第一象限,下列选项正确的有( )A .为定值B .为定值C .若F 为AE的中点,则D .若B 为AE的中点,则12.已知函数的图象如图所示,令,则下列说法正确的是( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03三、填空题四、解答题A.B.函数图象的对称轴方程为C.若函数的两个不同零点分别为,则的最小值为D .函数的图象上存在点P ,使得在P点处的切线斜率为13. 已知函数,若的最小值为,且,则实数的取值范围是________.14. 已知函数(,,是常数,,).若在区间上具有单调性,且.则的最小正周期为__.15. 请写出一个幂函数满足以下条件:①定义域为;②为增函数;③对任意的,,都有,则__________.16. 已知P 为椭圆()上一点,,分别是椭圆的左、右焦点,,且椭圆离心率为.(1)求椭圆的标准方程;(2)过的直线l 交椭圆于A ,B 两点,点C 与点B 关于x轴对称,求面积的最大值17. 如图,在四棱锥中,平面平面ABCD ,,,,,.(1)证明:;(2)若直线与平面PAD所成角的正切值等于,求平面PAD 与平面PBC 所成锐二面角的余弦值.18. 已知两点分别在轴和轴上运动,且,若动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)过点作直线的垂线,交曲线于点(异于点),求面积的最大值.19.已知等差数列的前n 项和为,,,,成等差数列,,,成等比数列.(1)求及;(2)若,求数列的前n 项和.20. 在中,边所对的角分别为,,.(1)求角的大小;(2)若,求的面积.21. 如图,在三棱柱中,,.(1)证明:;(2)若,求二面角的余弦值.。
1.已知等差数列{}na的通项公式为23nan,
求(1)1a与公差d(2)该数列的前10项的和10S
2.在数列{}na中,112,3nnaaa,求na及前n项和nS
3.根据下列各题中的条件,求相应的等差数列na的有关未知数:
(1)151,,5,66nadS求n 及na; (2)12,15,10,nndnaaS求及
4.等差数列{}na中,15741aaa,3963aaa,求该数列前9项和S9
(用2种方法)
5.已知等比数列{}na中,123aa,1238aaa,
(1)求1a与q; (2)求数列{}na前10项的和.
6.在等差数列中,2310a,2225a(1)求1a及公差d;(2)n为何值时,nS的
值最大
7.已知3log1log23x,求nxxxx32
8.1)数列na中,*11,3,2Nnnaaann,求数列na的通项公式na
2)已知数列na的通项公式为nnan11 求它的前n项的和.
3)求数列a,2a2,3a3,4a4,…,nan(a为常数)的前n项和。
9.已知数列na中,31a,2110a,通项na是项数n的一次函数,
1)求na的通项公式,并求2005a,nS;
2)若nb是由2a,4a,6a,8a…组成,试分析数列nb是什么数列;
3)求数列nb的通项公式及前n项和Tn
10.设}na 为等差数列,Sn 为数列}na的前n 项和,已知S7 = 7, S15 = 75.
1)求1a与公差d; 2)na与Sn ;
3)记Tn 为数列nSn的前n 项和,求Tn .
11.数列na的前n项和为nS,11a,*12()nnaSnN.
1)求数列na的通项na;
2)求数列nna的前n项和nT.
12.已知数列*2{log(1)},()nanN为等差数列,且.9,331aa
1)求数列}{na的通项公式;(2)求数列}{na的前n项和nS
13.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每
年都增加4万元,每年捕鱼收益50万元, 1)问第几年开始获利?
2)若干年后,有两种处理方案:
A方案:年平均获利最大时,以26万元出售该渔船;
B方案:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.