高中数列常考题型(超经典])
- 格式:docx
- 大小:129.11 KB
- 文档页数:10
高中数列经典习题 ( 含答案 )1、在等差数列 {a n}中,a1=-250,公差 d=2,求同足以下条件的全部 a n的和 , (1)70≤n≤ 200;(2)n 能被7 整除 .2、等差数列 {a n}的前 n 和 S n.已知 a3=12, S12>0,S13<0.(Ⅰ)求公差 d 的取范;(Ⅱ)指出S1,S2,⋯,S12,中哪一个最大 ,并明理由.3、数列 { a n }是首23,公差整数的等差数列,且前 6 正,从第 7 开始的,回答以下各: (1)求此等差数列的公差d;(2) 前n和 S n,求 S n的最大;(3)当 S n是正数,求n的最大 .4、数列 { a n}的前 n 和S n.已知首1a =3,且S n 1+ S n=2a n 1,求此数列的通公式a n及前n 和Sn .5、已知数列 { a n }的前 n 和S n13n(n+1)(n+2),求数列 { 1a n}的前 n 和 .6、已知数列 { a n}是等差数列 ,此中每一 及公差d均不 零 ,a i x 2 2a i 1xa i 2=0(i=1,2,3,⋯)是对于x 的一 方程 .回答: (1)求全部 些方程的公共根;(2) 些 方 程 的 另 一 个 根m i, 求m1, m1, m1,⋯ ,1 ,⋯也成等差数列 .112131m n17、假如数列 { a n} 中 ,相 两 a n和 a n 1是二次方程 x n23nx n c n=0(n=1,2,3⋯)的两个根 ,当 a 1=2 , 求c 100 的 .8、有两个无 的等比数列 { a n }和{ a n }, 它 的公比的 都小于 1,它 的各 和分 是 1 和 2, 而且 于全部自然数 n,都有 a n 1, 求 两个数列的首 和公比 .9、有两个各 都是正数的数列{ a n},{ b n}. 假如a =1,b =2,a =3.且, ,an 1 成等差数列 ,,an 1 , bn 1 成112a nb nb n等比数列 ,试求这两个数列的通项公式.10、若等差数列 {log2x n}的第 m 项等于 n,第 n 项等于 m(此中 m n),求数列 {x n}的前 m+n 项的和。
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。
数列考试题型及答案高中一、选择题1. 已知数列{a_n}是等差数列,且a_1=1,a_4=7,求a_7的值。
A. 13B. 15C. 10D. 7答案:A解析:根据等差数列的性质,a_4 = a_1 + 3d,其中d为公差。
已知a_1=1,a_4=7,可以求得公差d=(7-1)/3=2。
因此,a_7 = a_1 + 6d = 1 + 6*2 = 13。
2. 已知数列{a_n}是等比数列,且a_1=2,a_3=18,求a_5的值。
A. 72B. 108C. 144D. 162答案:C解析:根据等比数列的性质,a_3 = a_1 * q^2,其中q为公比。
已知a_1=2,a_3=18,可以求得公比q=√(18/2)=3。
因此,a_5 =a_1 * q^4 = 2 * 3^4 = 144。
二、填空题3. 已知数列{a_n}的前n项和为S_n,且S_n = 2^n - 1,求a_5的值。
答案:15解析:根据数列的前n项和公式,a_n = S_n - S_(n-1)。
已知S_n = 2^n - 1,可以求得S_5 = 2^5 - 1 = 31,S_4 = 2^4 - 1 = 15。
因此,a_5 = S_5 - S_4 = 31 - 15 = 16。
4. 已知数列{a_n}的通项公式为a_n = 3n - 2,求前5项的和。
答案:35解析:根据数列的通项公式,可以求得前5项分别为a_1=1,a_2=4,a_3=7,a_4=10,a_5=13。
因此,前5项的和为1+4+7+10+13=35。
三、解答题5. 已知数列{a_n}是等差数列,且a_1=2,a_3=8,求数列{a_n}的通项公式和前n项和公式。
答案:通项公式为a_n = 2 + 3(n-1) = 3n - 1;前n项和公式为S_n = n(2 + 3n - 1)/2 = 3n^2 - n。
解析:根据等差数列的性质,a_3 = a_1 + 2d,其中d为公差。
数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。
2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。
3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。
4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。
二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。
2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。
3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。
4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。
三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。
2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。
3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。
4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。
四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。
2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。
3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。
五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。
2. 一等比数列的第3项为12,第6项为48,求首项和公比。
3. 一数列的前n项和为2^n 1,求第10项的值。
4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。
六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。
4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。
数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
高中数学数列经典题型及解析1. 求数列的通项公式:题目描述:已知数列的前几项为1,4,9,16,...,求该数列的通项公式。
解析:观察该数列可以发现,每一项都是前一项的平方加1,所以可以得到通项公式为an =n^2 + 1。
2. 求数列的和:题目描述:已知数列的前几项为2,5,8,11,...,求前100项的和。
解析:观察该数列可以发现,每一项都是前一项加3,所以可以得到通项公式为an = 3n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前100项的和为S100 = (100/2)(2 + a100),代入通项公式,得到S100 = (100/2)(2 + (3*100 - 1)) = 10100。
3. 求等差数列的前n项和:题目描述:已知数列的前几项为3,7,11,15,...,求前20项的和。
解析:观察该数列可以发现,每一项都是前一项加4,所以可以得到通项公式为an = 4n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前20项的和为S20 = (20/2)(3 + (4*20 - 1)) = 820。
4. 求数列的极限:题目描述:已知数列的前几项为1,1/2,1/3,1/4,...,求该数列的极限值。
解析:观察该数列可以发现,每一项都是前一项的倒数,即an = 1/n。
当n趋向于无穷大时,an趋向于0,所以该数列的极限值为0。
5. 求数列的递推关系:题目描述:已知数列的前几项为1,2,4,7,11,...,求该数列的递推关系。
解析:观察该数列可以发现,每一项都是前一项加一个递增的数,递增的数可以依次为1,2,3,4,...,所以可以得到递推关系为an = an-1 + (n-1)。
以上是高中数学中数列的经典题型及解析,希望对你有帮助!。
一、 经典例题剖析考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b na +++=(n=1,2,3…), (1)求证{b n }为等差数列的充要条件是{a n }为等差数列。
(2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题 2.已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。
(1)证明:{}n b 从第2项起是以2为公比的等比数列;(2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。
考点二:求数列的通项与求和 例题3..已知数列{}n a 中各项为:12、1122、111222、……、111n ⋅⋅⋅⋅⋅⋅ 个222n ⋅⋅⋅⋅⋅⋅个…… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .例题4. 已知数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21nn a b =,求数列{}n b 的前n 项和n S ;(Ⅲ)设2)12(sinπ-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74<n T .考点三:数列与不等式的联系例题5.已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足n n b nb b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈例题7. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n n b a n >⋅. 考点四:数列与函数、向量等的联系 例题8.已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1)写出2a 、3a 的值; (2)试比较n a 与54的大小,并说明理由; (3)设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).例题9.在平面直角坐标系中,已知三个点列{A n },{B n },{C n },其中),(),,(n n n n b n B a n A )0,1(-n C n ,满足向量1+n n A A 与向量n n C B 共线,且点(B ,n )在方向向量为(1,6)的线上.,11a b a a -==(1)试用a 与n 表示)2(≥n a n ;(2)若a 6与a 7两项中至少有一项是a n 的最小值,试求a 的取值范围。
高中数学:数列的22个必考题型,看看你都会做吗?方法真
的不难
数列在高考中常以选择题、填空题、解答题的形式考到,在整个高中数学体系中算是相对简单的题型,所以对于想拿提高成绩的同学来说,是一定不能丢分的部分。
导数、函数已经不会了,数列再丢分,想及格都难,更别提拿高分!
总结多年高考真题,我们可以发现,数列的必考题型共计22个,只要我们研究透这22种题型,数列题再怎么考都不怕!今天小哥给大家分享一份由清北学霸整理的【高中数学·数列22个必考题型】,每一种题型都有对应的例题。
最厉害的解析中会教给大家每种题型的多种解题方法。
学会这些,数列问题通通都能搞定!
以上仅为部分展示,完整版不仅包含22个题型,还有全部的解析!高中数学难度值爆表,导数、函数、解析几何都搞不太懂,一做题就蒙!这些都搞不懂可以慢慢来。
但是如果数列你也不会,那问题可就大了!高中数学考试满分150分,数列一项就占了17分,而且数列题真的不难,只要多花一点时间,都能学会!。
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
数列的通项6种常见题型总结【题型目录】题型一:已知()n f S n =,求n a 题型二:叠加法(累加法)求通项题型三:叠乘法(累乘法)求通项题型四:构造法求通项题型五:已知通项公式n a 与前n 项的和n S 关系求通项问题【典型例题】题型一:已知()n f S n =,求na 【例1】已知数列{}n a 的前n 项和211n S n n =-.若710k a <<,则k =()A .9B .10C .11D .12【答案】B【分析】先求得n a ,然后根据710k a <<求得k 的值.【详解】依题意211n S n n =-,当1n =时,110a =-;当2n ≥时,211n S n n =-,()()22111111312n S n n n n -=---=-+,两式相减得()2122n a n n =-≥,1a 也符合上式,所以212n a n =-,*N k ∈,由721210k <-<解得911k <<,所以10k =.故选:B【例2】(2022·甘肃·高台县第一中学高二阶段练习(理))已知n S 为数列{}n a 的前n 项和,且121n n S +=-,则数列{}n a 的通项公式为()A .2n n a =B .3,12,2n nn a n =⎧=⎨≥⎩C .12n n a -=D .12n n a +=【答案】B【分析】当2n ≥时,由1n n n a S S -=-求出2n n a =;当1n =时,由11a S =求出1a ;即可求解.【详解】当2n ≥时,121n n S -=-,1112212n n nn n n a S S +---+=-==;当1n =时,1111213a S +==-=,不符合2n n a =,则3,12,2n n n a n =⎧=⎨≥⎩.故选:B.【例3】(2022·全国·高三专题练习)已知数列{}n a 满足123235n a a a na n ++++= ,求{}n a 的通项公式.【题型专练】1.已知数列{}n a 的前n 项和是2320522nS n =-+,(1)求数列的通项公式n a ;(2)求数列{||}n a 的前n 项和.2.(2022·浙江·高二期末)已知数列{}n a 的前n 项和221n S n n =-+,则51a a -=______.【答案】7【分析】将1n =代入根据11a S =可得出答案;当2n ≥时由1n n n a S S -=-,求出5a ,从而可得出答案.【详解】当1n =时,21112110a S ==-⨯+=;当2n ≥时,()()22121121123n n n n n n n a S S n -⎡⎤-+----+=⎣⎦-=-=.所以52537a =⨯-=,所以51707a a -=-=.故答案为:73.(2022·辽宁实验中学高二期中)设数列{}n a 满足123211111222n n a a a a n -+++⋅⋅⋅+=+,则{}n a 的前n 项和()A .21n -B .21n +C .2nD .121n +-【答案】C 【解析】【分析】当1n =时,求1a ,当2n ≥时,由题意得123122111222n n a a a a n --+++⋅⋅⋅+=,可求得n a ,即可求解.【详解】解:当1n =时,12a =,当2n ≥时,由1231221111112222n n n n a a a a a n ---+++⋅⋅⋅++=+得123122111222n n a a a a n --+++⋅⋅⋅+=,两式相减得,1112n n a -=,即12n n a -=,综上,12,12,2n n n a n -=⎧=⎨≥⎩所以{}n a 的前n 项和为()11212224822212n n n ---+++++=+=- ,故选:C.题型二:叠加法(累加法)求通项【例1】在数列{}n a 中,()()()111,11N n n a n n a a n *+=+-=∈,则2022a =()A .40432022B .20212022C .40402021D .20202021【例2】已知数列{}n a 满足1=2a ,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()A .2019B .2020C .2021D .2022,【例3】南宋数学家在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有高阶等差数列,其前7项分别为1,2,5,10,17,26,37,则该数列的第19项为()A.290B.325C.362D.399【例4】已知数列{}n a 满足11a =-,()*12N n n a a n n a a +-=∈,则9a =______.【例5】已知数列{}n a 中,11a =,39a =,1{}n n a a +-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)设12log n n na b a +=,求数列{}n b 的前n 项和n T ,求使得2022n T 成立的最小整数n .【答案】(1)2n a n =;(2)使得2022≥n T 成立的最小整数n 为101121-.【分析】(1)根据等差数列的定义求出2a ,从而可求出{}1n n a a +-的通项,再利用累加法求出数列{}n a 的通项公式;(2)利用裂项相消法求数列{}n b 的前n 项和n T ,解不等式2022≥n T 求n 的范围,确定满足条件的最小整数.=【题型专练】1.若1=1a ,12nn n a a n +-=-,*n ∈N ,则=n a _________.1)2.数列{}n a 满足1122n n na a a -==-,,则=n a _____.3.若数列{}n a 满足11a =,12n n a a n +-=.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)21n a n n =-+(2)证明见解析【分析】(1)运用累加法即可求出{}n a 的通项公式;(2)运用裂项相消法即可证明.【详解】(1)因为12n n a a n +-=,11a =,24.已知数列{}n a 满足:12a =,21a =,2145n n n a a a +++=(*n ∈N ).(1)证明:数列{}1n n a a +-是等比数列;(2)求数列{}n a 的通项公式.5.已知无穷数列{}n a 的前n 项和为n S ,11a =,24S =,对任意的*N n ∈,都有1232n n n n S S S a ++=++.(1)求数列{}n a 的通项公式;(2)若数列{}n c 满足*11(N )n n c c n a a +-=∈,11c =,求数列{}n c 的通项公式;题型三:叠乘法(累乘法)求通项【例1】已知数列{}n a 满足12n n a na n +=+,1=1a ,则数列{}n a 的通项公式是()A .2(1)n a n n =+B .1(1)n a n n =+C .1n a n=D .12n n a +=【例2】在数列{}n a 中,1=1a ,22a =,2n n a n+=,则12233420222023a a a a a a a a ++++= ()A .20202021⨯B .20212022⨯C .20222023⨯D .20232024⨯【例3】已知数列{}n a 满足()4(21)1N n n S n a n *=++∈,则n a =___________.【例4】记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .【例5】设数列{}n a 的前n 项和为n S ,11a =,()()21N n n S n a n *=+∈.(1)求{}n a 的通项公式;(2)对于任意的正整数n ,21,2,n n n n a n a a c n +⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .【例6】在数列{}n a 中,11a =,且2n ≥,1231231n n a a a a a n -++++=- .(1)求{}n a 的通项公式;(2)若1n b a a =,且数列{}n b 的前项n 和为n S ,证明:3n S <.【题型专练】1.数列{}n a 的前n 项和2n n S n a =⋅(2n ≥,n 为正整数),且11a =,则n a =______.a 2.数列{}n a 满足:11a =,()()*12312312,N n n a a a a n a n n -=++++-≥∈ ,则通项n a =________.3.设{}n a 是首项为1的正项数列且22*11(1)(21)0(N )n n n n na n a n a a n ++++-+=∈,且1+≠n n a a ,求数列{}n a 的通项公式_________4.已知数列{}n a 满足:12a =,12n n n a a n ++=,求数列{}n a 的通项公式.5.已知数列{}n a 中,11a =,()121n n a a n n -=≥-.(1)求数列{}n a 的通项公式;(2)求13523n a a a a +++++ .【答案】(1)n a n =,1n ≥;(2)244n n ++.【分析】(1)利用累乘法求出2n ≥时n a n =,通过验证11a =也满足n a n =,从而求出通项公式为n a n =,1n ≥;(2)根据第一问得到数列{}n a 为等差数列,进而利用等差数列求和公式进行求解.6.已知n S 为数列{}n a 的前n 项和,且11a =,2n n S n a =.(1)求2a ,3a ;(2)求{}n a 的通项公式.【例1】已知数列{}n a 中,114,46n n a a a +==-,则n a 等于()A .2122n ++B .2122n +-C .2122n -+D .2122n --【例2】若数列{}n a 和{}n b 满足12a =,10b =,1232n n n a a b +=++,1232n n n b a b +=+-,则20222021a b +=()A .2020231⋅+B .2020321⋅-C .2020321⋅+D .2021321⋅-【例3】(多选题)已知数列{}n a 满足132a =,16nn n a a +=+,则下列结论中错误的有()A .113n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为11321n -⋅-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和为213nn --【例4】(多选题)已知数列{}n a 满足:12a =,当2n ≥时,)221n a +=,则关于数列{}n a 的说法正确的是()A .27a =B .{}n a 是递增数列C .221n a n n =+-D .数列{}n a 为周期数列【例5】在①121n n a a +=+;②122n n S n +=-+;③24n n S a n =-+三个条件中任选一个,补充到下面问题的横线处,并解答.已知数列{}n a 的前n 项和为n S ,且1=1a ,_____.(1)求n a ;(2)设n n b na =,求数列{}n b 的前n 项和n T .注:如果选捀多个条件解答,按第一个解答计分.【例6】已知数列{}n a 的前n 项和为n S ,且1222(N )n n n S a n +*=-+∈.(1)求{}n a 的通项公式;(2)设4nn na b =,若123n n T b b b b =+++⋯+,求n T .【题型专练】1.(多选题)数列{}n a 的首项为1,且121n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是()A .37a =B .数列{}1n a +是等比数列C .21n a n =-D .121n n S n +=--【答案】AB【分析】根据题意可得()1121n n a a ++=+,从而可得数列{}1n a +是等比数列,从而可求得数列{}n a 的通项,再根据分组求和法即可求出n S ,即可得出答案.2.已知数列{}n a 满足1111,2n n n n a a a a a ++=-=,则数列{}1n n a a +的前n 项和为______.3.已知数列{}n a 中,11a =,121n n a a +=+,则{}n a 通项n a =______;4.已知数列{}n a 满足24a =,113n n n n a a a a ++-=.求数列{}n a 的通项公式;5.已知数列{}n a 的前n 项和23n n S a n =+-,求{}n a 的通项公式.【答案】121n n a -=+,*n ∈N .【分析】根据12,n n n n a S S -≥=-,构造等比数列即可.【详解】23n n S a n =+-.①当1n =时,11213=+-a a ,可得12a =,当2n ≥时,()11213--=+--n n S a n ,②①-②得121n n a a -=-,则()1121n n a a --=-,而111a -=不为零,故{}1n a -是首项为1,公比为2的等比数列,则112n n a --=,∴数列{}n a 的通项公式为121n n a -=+,*n ∈N .6.设数列{}n a 满足12a =,()1212n n a a n -=-≥.(1)设1n n b a =-,求证:{}n b 是等比数列;(2)设{}n a 的前n 项和为n S ,求满足1036n S ≤的n 的最大值.7.已知正项数列{}n a 满足11a =,且11n n n n a a a a ++-=.(1)求数列{}n a 的通项公式;(2)记22nn a b n =+,记数列{}n b 的前n 项和为n S ,证明:12n S <.8.已知数列{}n a ,11a =,121n n a a +=+.(1)求数列{}1n a +的前5项;(2)求数列{}n a 的前n 项和n S .【答案】(1)前5项依次为2,4,8,16,32;(2)122n n S n +=--.【分析】(1)由题设112(1)n n a a ++=+,根据等比数列的定义写出{}1n a +的通项公式,即可得前5项;(2)应用分组求和,结合等比数列前n 项和公式求n S .(1)由题设112(1)n n a a ++=+,而112a +=,9.已知数列{}n a 和{}n b 满足12a =,10b =,1231n n a b n ++=+,1231n n a b n ++=+,则n n a b -=______,n n a b +=______.【答案】2n2n【分析】由题设有112()n n n n a b a b ++-=-,根据等比数列的定义判断{}n n a b -为等比数列,进而写出通项公式,令n n n c a b =+则12(2)2(1)n n c n c n +--=-+,结合已知{2}n c n -是常数列,即可得{}n n a b +的通项公式.【详解】由题设,11(2)(2)0n n n n a b a b +++-+=,则112()n n n n a b a b ++-=-,而112a b -=,所以{}n n a b -是首项、公比均为2的等比数列,故2nn n a b -=,11(2)(2)62n n n n a b a b n +++++=+,则112()()62n n n n a b a b n +++++=+,令n n n c a b =+,则1262n n c c n ++=+,故12(2)2(1)n n c n c n +--=-+,而111220c a b -=+-=,所以{2}n c n -是常数列,且20n c n -=,则2n n n c a b n =+=.故答案为:2n ,2n .题型五:已知通项公式n a 与前n 项的和n S 关系求通项问题【例1】已知数列{}n a 的前n 项和为n S ,23a =,且122n n a S +=+N n *∈(),则下列说法中错误..的是()A .112a =B .4792S =C .{}n a 是等比数列D .{}1n S +是等比数列【例2】(2022·上海市南洋模范中学高二开学考试)若数列{}n a 的前n 项和为()*N 33n n S a n =+∈,则数列{}n a 的通项公式是n a =___________.所以{}n a 是首项为1,公比为2-的等比数列,故1(2)n n a -=-.故答案为:1(2)n --【例3】已知数列{}n a 的前n 项和为n S ,0n a >,212n n a S +⎛⎫= ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)求数列{}2na n a ⋅的前n 项和.【例4】数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()*21N n n S n a n =+∈.(1)求证:数列{}n a 是等差数列,并求出其通项公式;(2)求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例5】(2022·辽宁沈阳·高三阶段练习)从条件①()21,0n n n S n a a =+>;②22,0n n n n a a S a +=>;()2n a n ≥中任选一个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,1=1a ,_____________.(1)求{}n a 的通项公式;(2)[]x 表示不超过x 的最大整数,记[]lg n n b a =,求{}n b 的前100项和100T .则【题型专练】1.(2022·陕西·安康市教学研究室高三阶段练习(理))设数列{}n a 的前n 项和为n S ,已知21n n S a =-.(1)求数列{}n a 的通项公式;2.已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥.求n a 和n S .3.已知正项数列{}n a 的前n 项和为n S ,且n a 和n S 满足:()11,2,3,n a n =+=⋅⋅⋅.求{}n a 的通项公式.4.已知等比数列{}n a 的前n 项和为n S ,且()1*21N n n a S n +=+∈.(1)求数列{}n a 的通项公式;(2)证明:11132a a a +++<L .5.已知数列{}n a 的前n 项和为n S ,313S =,121n n a S +=+.(1)证明:数列{}n a 是等比数列;(2)若12log n b a =,求数列{}1n n b b +的前n 项和n T .6.已知数列{}n a 中,11a =,其前n 项和为n S ,131n n S S +=+.(1)求数列{}n a 的通项公式;(2)设31log n n b a +=,若数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:34n T <.。
高中数学:《递推数列》 经典题型全面分析种类 1an 1a nf (n)解法:把原递推公式转变为( ),利用累加法 (逐差相加法 )求解。
a n 1 a n fn例 :已知数列 a n 知足 a 11 , a n 1a n 1 ,求 a n 。
2n2n种类 2a n 1 f ( n)a n解法:把原递推公式转变为a n 1f (n) ,利用累乘法 (逐商相乘法 )求解。
a n例 :已知数列a n 知足 a 1 2 , a n 1n a n ,求 a n 。
3 n 1例 :已知 a 13 , a n 13n 1a n (n 1) ,求 a n 。
3n 2种类 3a n 1 pa n q (此中 p , q 均为常数, ( pq( p 1) 0) )。
例 :已知数列a n 中, a 11 , a n 1 2a n 3,求 a n .变式 :递推式: a n 1 pa n f n 。
解法:只要结构数列 b n ,消去 f n 带来的差别.类 型 4an 1pa n q n ( 其 中 p , q 均 为 常 数 , ( pq( p 1)( q 1) 0) )。
( a n 1pa nrq n ,此中 p , q, r 均为常数)。
例 :已知数列a n 中, a 1 5 , a n11a n( 1 ) n 1 ,求 a n 。
632种类 5 递推公式为a n 2pa n 1 qa n (此中 p , q 均为常数) 。
解法一(待定系数——迭加法):数列a n :3a n 2 5a n 1 2a n 0( n 0, n N ) ,a 1a, a 2 b ,求数列 a n的通项公式。
解法二 (特点根法) :数列a n: 3a n 25a n 12a n0(n0, nN ), a 1a, a 2b的特点方程是:3x 25x20 。
x1 1, x22, a n Ax1n 1Bx 2n 1 A B (2)n 1。
一.选择题(共10小题)1.(2006•重庆)在等差数列{a n }中,若a 4+a 6=12,S n 是数列{a n }的前n 项和,则S 9的值为( )BA . 48B . 54C . 60D . 662.(2006•广东)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )CA . 5B . 4C . 3D . 23.设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数,则a n 为( )BA . 2kn+k+1B . 2kn ﹣k+1C . 2kn ﹣k ﹣1D . 2kn ﹣k4.(2009•安徽)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )BA . 21B . 20C . 19D . 185.在各项都为正数的等比数列{a n }中,若a 5•a 6=9,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 10等于( )BA . 8B . 10C . 12D . 2+log 356.已知等比数列{a n }满足a 1=3,且4a 1,2a 2,a 3成等差数列,则此数列的公比等于( )DA . 1B . ﹣1C . ﹣2D . 27.(2009•广东)已知等比数列{a n }满足a n >0,n=1,2,…,且a 5•a 2n ﹣5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n ﹣1=( )BA . (n ﹣1)2B . n 2C . (n+1)2D . n 2﹣18.数列{a n }满足a 1=1,a n+1=2a n +1,则数列{a n }的通项公式为( )CA . a n =2n ﹣1B .C .D .9.(2007•福建)数列{a n }的前n 项和为s n ,若,则s 5等于( )B A . 1 B . C . D .10.(2011•闸北区)数列{a n }中,a 1=20,a n+1=a n +4n ,则a 6=( )CA . 120B . 100C . 80D . 6011.已知{}n a 是等差数列,9321=++a a a ,24654=++a a a ,则69S S -=____________12.已知{}n a 是等比数列,6321=++a a a ,18654=++a a a ,则69S S -=____________13.若等差数列{}n a 中,24121n n a n a n -=-,则 2n nS S = 基础练习:已知等差数列{}n a 的首项21=a ,145=a ,求通项公式及前n 项和已知等比数列的首项为2,544=a ,求通项公式及前n 项和求通项公式n a 的方法1.1+n a =n a +)(n f 型(累加法)n a =(n a -1-n a )+(1-n a -2-n a )+…+(2a -1a )+1a已知数列{n a }满足1a =1,1+n a =n a +n 2(n ∈N +),求n a . n a =n 2-1 (n ∈N +)对应练习:已知数列{n a }满足1a =1,1+n a =n a +n 2(n ∈N +),求n a2.)(1n g a a n n =+型 (累乘法)n a =1-n n a a .21--n n a a (1)2a a ·1a 已知数列{n a }满足n a a n n =+1(n ∈N +),1a =1,求n a . n a =(n -1)!对应练习:已知数列{n a }满足n nn a a 21=+(n ∈N +),1a =1,求n a .3.1+n a =p n a +q 型(p 、q 为常数) 令1+n a -n a =)(1--n n a a p ,构造等比数列已知{n a }的首项1a =a (a 为常数),n a =21-n a +1(n ∈N +,n ≥2),求n a . n a =(a+1)·12-n -1已知{n a }的首项1a =2,n a =21-n a +1(n ∈N +,n ≥2),求n a .4.1+n a =p n a +)(n f 型(p 为常数) 变形得11++n n p a =n n p a +1)(+n p n f ,则{n n p a }可用累加法求出,由此求n a .已知{n a }满足1a =2,1+n a =2n a +12+n .求n a n a =n ·n 2对应练习:已知{n a }满足1a =3,1+n a =3n a +13+n .求n a已知{n a }满足1a =3,1+n a =3n a +n 3.求n a (变形后错位相减求和)5.“已知n S ,求n a ”型 n a =n S -1-n S (注意1a 是否符合) n S 为{n a }的前n 项和,n S =23(n a -1),求n a (n ∈N +) n a =n 3(n ∈N +)对应练习:n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +)6.倒数变形法,重新重成等差或等比数列已知数列{a n }中,,21,111nn n a a a a +==+求这个数列的第n 项n a总结:对于特殊的数列关系式,求通项公式n a 的核心思想是变形构造成等差或等比数列数列求和的方法1. 分组求和法例:)12()1(7531--+⋯++-+-=n S n n练习:(2011·安徽高考)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15答案:A例:求数列1,2+21,3+41,4+81+…+121-+n n练习:已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和Sn .答案:n n n a 213+-= 22)13(211-++=+n n n n S总结:1、数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和2、n n n c b a +=,{}n a 、{}n b 是等差或等比数列,则采用分组求和法裂项相消求和法若数列)1(1,,431,321,211+⨯⋯⨯⨯⨯n n ,则此数列的前n 项和为____________若数列)(1,,)3(31,)2(21,)1(11k n n k k k +⨯⋯+⨯+⨯+⨯,则此数列的前n 项和为____________若数列的通项公式为)12()12(1+⨯-=n n b n ,则此数列的前n 项和为______________若数列11,,321,211++⋯++n n ,则此数列的前n 项和为_______________若数列k n n k k ++⋯++++1,,221,111,则此数列的前n 项和为_______________错位相减法(乘以式中的公比q ,然后再进行相减)化简:21123(0)n n S x x nx x -=++++≠ (将分为1=x 和1≠x 两种情况考虑)化简:n n n S 2222121⨯+⋯+⨯+⨯=化简:S n = n+(n -1)×2+(n -2)×2 2+…+2×2 n -2+2 n -1求数列1,(1+2),(1+2+22),…,(1+2+2 2+…+2 n -1)前n 项的和数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n (n ∈N*).(1)求数列{a n }的通项公式a n ;(2)求数列{na n }的前n 项和T n . (注意分n=1及n 1≠讨论)一.选择题(共10小题)1.(2006•重庆)在等差数列{a n}中,若a4+a6=12,S n是数列{a n}的前n项和,则S9的值为()A.48 B.54 C.60 D.66考点:等差数列的通项公式.分析:等差数列的等差中项的特点,由第四项和第六项可以求出第五项,而要求的结果前九项的和可以用第五项求出,两次应用等差中项的意义.解答:解:在等差数列{a n}中,若a4+a6=12,则a5=6,S n是数列的{a n}的前n项和,∴=9a5=54故选B.点评:观察具体的等差数列,认识等差数列的特征,更加理解等差数列的概念,对本问题应用等差中项要总结,更好培养学生由具体到抽象、由特殊到一般的认知能力.2.(2006•广东)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.2考点:等差数列的通项公式.分析:写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.解答:解:,故选C.点评:等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.3.设S n为数列{a n}的前n项和,S n=kn2+n,n∈N*,其中k是常数,则a n为()A.2kn+k+1 B.2kn﹣k+1 C.2kn﹣k﹣1 D.2kn﹣k考点:等差数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:题目给出了数列{a n}的前项和,除a1直接求出外,由a n=S n﹣S n﹣1(n>1)求通项.解答:解:当n=1时,a n=S1=k+1,当n>1时,aa n=S n﹣S n﹣1=kn2+n﹣[k(n﹣1)2+(n﹣1)]=2kn﹣k+1,该式对于n=1成立,所以a n=2kn﹣k+1.故选B.点评:本题考查的是知道数列的前n项和求通项问题,解答的关键是分类,区分n=1和n>1两种情况,若当n>1时适合n=1,则通项公式整体写,否则分写.4.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使得S n达到最大值的n是()A.21 B.20 C.19 D.18考点:等差数列的前n项和.专题:计算题.分析:写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件.解答:解:设{a n}的公差为d,由题意得a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②由①②联立得a1=39,d=﹣2,∴s n=39n+×(﹣2)=﹣n2+40n=﹣(n﹣20)2+400,故当n=20时,S n达到最大值400.故选B.点评:求等差数列前n项和的最值问题可以转化为利用二次函数的性质求最值问题,但注意n取正整数这一条件.5.在各项都为正数的等比数列{a n}中,若a5•a6=9,则log3a1+log3a2+log3a3+…+log3a10等于()A.8B.10 C.12 D.2+log35考点:等比数列;等比数列的性质.分析:根据等比数列的性质:a5•a6=a2•a9=a3•a8=a4•a6,再由对数运算法则求解.解答:解:∵log3a1+log3a2+log3a3+…+log3a10=log3a1•a2…a10=log3(a5•a6)5=10故选B点评:本题主要考查等比数列的性质及对数的运算法则.6.已知等比数列{a n}满足a1=3,且4a1,2a2,a3成等差数列,则此数列的公比等于()A.1B.﹣1 C.﹣2 D.2考点:等比数列;等差数列的性质.专题:计算题.分析:由已知4a1,2a2,a3成等差数列可得4a2=4a1+a3,结合等比数列的通项公式可求公比q的值.解答:解:∵4a1,2a2,a3成等差数列,∴4a2=4a1+a3,设数列{a n}的公比为q,则a2=a1q,a3=a1q2,∴4a1q=4a1+a1q2.∵a1≠0,∴4q﹣q2﹣4=0,∴q=2.故选D.点评:本题主要考查了等比数列的性质、通项公式及等差数列的性质,以及运算能力.属基础题.7.(2009•广东)已知等比数列{a n}满足a n>0,n=1,2,…,且a5•a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n =()﹣1A.(n﹣1)2B.n2C.(n+1)2D.n2﹣1考点:等比数列的通项公式;对数的运算性质.专题:计算题.分析:先根据a5•a2n﹣5=22n,求得数列{a n}的通项公式,再利用对数的性质求得答案.解答:解:∵a5•a2n﹣5=22n=a n2,a n>0,∴a n=2n,∴log2a1+log2a3+…+log2a2n﹣1=log2(a1a3…a2n﹣1)=log221+3+…+(2n﹣1)=log2=n2.故选B.点评:本题主要考查了等比数列的通项公式.属基础题.8.数列{a n}满足a1=1,a n+1=2a n+1,则数列{a n}的通项公式为()A.a n=2n﹣1 B.C.D.考点:等比关系的确定.专题:计算题.分析:由a n+1=2a n+1,可得a n+1+1=2(a n+1),a1+1=2,从而可得{a n+1}是以2为首项,以2为公比的等比数列,根据等比数列的通项公式可求所求.解答:解:∵a n+1=2a n+1,∴a n+1+1=2(a n+1),a1+1=2∴{a n+1}是以2为首项,以2为公比的等比数列根据等比数列的通项公式可得,a n+1=2•2n﹣1=2n即a n=2n﹣1故选C.点评:本题主要考查由递推公式推导数列的通项公式,其中渗透了构造法,同时考查了计算能力,属于基础题.9.(2007•福建)数列{a n}的前n项和为s n,若,则s5等于()A.1B.C.D.考点:数列的求和.专题:计算题.分析:根据通项公式的特点,拆成的形式求s5.解答:解:∵=,∴S5=a1+a2+a3+a4+a5=,故选B点评:本题所用的方法在求和中常用,称为裂项相消法.10.(2011•闸北区)数列{a n}中,a1=20,a n+1=a n+4n,则a6=()A.120 B.100 C.80 D.60考点:数列递推式.专题:计算题.分析:数列{a n}中,由a1=20,a n+1=a n+4n,分别令n=1,2,3,4,5,能够依次求出a2,a3,a4,a5,a6.解答:解:数列{a n}中,∵a1=20,a n+1=a n+4n,∴a2=20+4×1=24,a3=24+4×2=32,a4=32+4×3=44,a5=44+4×4=60,a6=60+4×5=80,故选C.点评:本题考查数列的递推公式的应用,解题时要认真审题,仔细解答,注意递推思想的合理运用.。
1 / 22.6.3复习:数列常考题型归纳学习目标通过典型例题总结归纳数列的常考题型 重点难点重点:等差、等比数列的性质 难点:等差等比综合运用学习过程 一.课前准备n 项和公式及其性质.二.新课导学题型一:等差数列的基本量运算例1(1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6例2(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.题型二 等差、等比数列的性质及应用 例3(1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 016=________.例4(1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________. (2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.题型三 等差、等比数列的判定与证明 例5已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列;例6已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.2 / 2题型四 等差数列、等比数列的综合问题 例7 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .题型五 数列的通项与求和例2 已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n .(1)证明:数列{a nn }是等比数列;(2)求通项a n 与前n 项的和S n .当堂检测1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .152.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( ) A .16 B .24 C .36 D .483.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( ) A.12B .1C .2D .3 4.已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A.3312 B .31 C.314 D .以上都不正确 5.(2014·天津)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.6.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3=________.7.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________.8.设数列{a n }、{b n }都是正项等比数列,S n 、T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n2n +1,则log b 5a 5=________. 9.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n10.设数列{a n }的前n 项和为S n ,已知a 1=1,S n+1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.已知等差数列{a n }的前n 项和为S n ,n ∈N *,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =22n an +,求数列{b n }的前n 项和T n .自我评价你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差。
高中数学《数列》常见、常考题型总结题型一 数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。
2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。
3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。
2.形如)(1n f a a n n =-+型(累加法)(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法.例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.2. 已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.3.形如)(1n f a a nn =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
高中数列精选大题50题(带详细答案)1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值.3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由. 8 .已知数列),3,2(1335,}{11 =-+==-n a a a a n n n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
1.(2010、山东)(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 2. (2010、天津)(本小题满分14分) 在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列,其公差为k d 。
(Ⅰ)若k d =2k ,证明21222,,k k k a a a -+成等比数列(*k N ∈); (Ⅱ)若对任意*k N ∈,21222,,k k k a a a -+成等比数列,其公比为k q . (i )设1q ≠1.证明11k q ⎧⎫⎨⎬-⎩⎭是等差数列; (ii)若22a =,证明22322(2)2k nkk n n a ∑-<-≤≥3、(2009浙江)设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.4.(2009北京)设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11,23p q ==-,求3b ; (Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.5.(2009山东)等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T 6.(2009全国卷Ⅱ)已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s . 7.(2009安徽)已知数列{} 的前n 项和,数列{}的前n 项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n ≥3时,<8.(2009江西)数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S . (1) 求n S ; (2) 3,4nn nS b n =⋅求数列{n b }的前n 项和n T . 9、 (2009天津)已知等差数列}{n a 的公差d 不为0,设121-+++=n n n q a q a a S*1121,0,)1(N n q q a q a a T n n n n ∈≠-++-=--(Ⅰ)若15,1,131===S a q ,求数列}{n a 的通项公式; (Ⅱ)若3211,,,S S S d a 且=成等比数列,求q 的值。
数列经典题目集锦一一、构造法证明等差、等比 类型一:按已有目标构造1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *.(1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列,求证:数列{a n }从第二项起为等差数列;(3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论.类型二: 整体构造2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立.(1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列.二、两次作差法证明等差数列3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a ,且*1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数).(1)求A 与B 的值;(2)求数列{}n a 为通项公式;三、数列的单调性4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,()11131n n n n n na S S a a λ+++=+⋅+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式;(2)若112n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围.5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,nn b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,求λ的取值范围.四、隔项(分段)数列问题6. 已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n (n 为奇数),a n -3n (n 为偶数).(1) 是否存在实数λ,使数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由;(2) 若S n 是数列{a n }的前n 项的和,求满足S n >0的所有正整数n .7.若{}n b 满足:对于N n *∈,都有2n n b b d +-=(d 为常数),则称数列{}n b 是公差为d 的“隔项等差”数列. (Ⅰ)若17,321==c c ,{}n c 是公差为8的“隔项等差”数列,求{}n c 的前15项之和; (Ⅱ)设数列{}n a 满足:1a a =,对于N n *∈,都有12n n a a n ++=. ①求证:数列{}n a 为“隔项等差”数列,并求其通项公式;②设数列{}n a 的前n 项和为n S ,试研究:是否存在实数a ,使得22122++k k k S S S 、、成等比数列(*N k ∈)?若存在,请求出a 的值;若不存在,请说明理由.五、数阵问题8.已知等差数列{a n }、等比数列{b n }满足a 1+a 2=a 3,b 1b 2=b 3,且a 3,a 2+b 1,a 1+b 2成等差数列,a 1,a 2,b 2成等比数列.(1) 求数列{a n }和数列{b n }的通项公式;(2) 按如下方法从数列{a n }和数列{b n }中取项: 第1次从数列{a n }中取a 1, 第2次从数列{b n }中取b 1,b 2, 第3次从数列{a n }中取a 2,a 3,a 4, 第4次从数列{b n }中取b 3,b 4,b 5,b 6, ……第2n -1次从数列{a n }中继续依次取2n -1个项, 第2n 次从数列{b n }中继续依次取2n 个项, ……由此构造数列{c n }:a 1,b 1,b 2,a 2,a 3,a 4,b 3,b 4,b 5,b 6,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10, b 11,b 12,…,记数列{c n }的前n 项和为S n .求满足S n <22 014的最大正整数n .数列经典题目集锦答案1.证明:(1) 设数列{a n }的公差为d ,∵ b n =a n -2a n +1,∴ b n +1-b n =(a n +1-2a n +2)-(a n -2a n +1)=(a n +1-a n )-2(a n +2-a n +1)=d -2d =-d , ∴ 数列{b n }是公差为-d 的等差数列. (4分) (2) 当n ≥2时,c n -1=a n +2a n +1-2,∵ b n =a n -2a n +1,∴ a n =b n +c n -12+1,∴ a n +1=b n +1+c n2+1,∴ a n +1-a n =b n +1+c n 2-b n +c n -12=b n +1-b n 2+c n -c n -12.∵ 数列{b n },{c n }都是等差数列,∴b n +1-b n 2+c n -c n -12为常数, ∴ 数列{a n }从第二项起为等差数列. (10分)(3) 结论:数列{a n }成等差数列.证明如下: (证法1)设数列{b n }的公差为d ′, ∵ b n =a n -2a n +1,∴ 2n b n =2n a n -2n +1a n +1,∴ 2n -1b n -1=2n -1a n -1-2n a n ,…,2b 1=2a 1-22a 2,∴ 2n b n +2n -1b n -1+…+2b 1=2a 1-2n +1a n +1,设T n =2b 1+22b 2+…+2n -1b n -1+2n b n ,∴ 2T n =22b 1+…+2n b n -1+2n +1b n ,两式相减得:-T n =2b 1+(22+…+2n -1+2n )d ′-2n +1b n ,即T n =-2b 1-4(2n -1-1)d ′+2n +1b n , ∴ -2b 1-4(2n -1-1)d ′+2n +1b n =2a 1-2n +1a n +1,∴ 2n +1a n +1=2a 1+2b 1+4(2n -1-1)d ′-2n +1b n =2a 1+2b 1-4d ′-2n +1(b n -d ′), ∴ a n +1=2a 1+2b 1-4d′2n +1-(b n -d ′). (12分) 令n =2,得a 3=2a 1+2b 1-4d′23-(b 2-d ′)=2a 1+2b 1-4d′23-b 1, ∵ b 1+a 3=0,∴2a 1+2b 1-4d′23=b 1+a 3=0,∴ 2a 1+2b 1-4d ′=0,∴ a n +1=-(b n -d ′),∴ a n +2-a n +1=-(b n +1-d ′)+(b n -d ′)=-d ′,∴ 数列{a n }(n ≥2)是公差为-d ′的等差数列. (14分) ∵ b n =a n -2a n +1,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,∴ 数列{a n }是公差为-d ′的等差数列. (16分)(证法2)∵ b n =a n -2a n +1,b 1+a 3=0,令n =1,a 1-2a 2=-a 3,即a 1-2a 2+a 3=0,(12分) ∴ b n +1=a n +1-2a n +2,b n +2=a n +2-2a n +3,∴ 2b n +1-b n -b n +2=(2a n +1-a n -a n +2)-2(2a n +2-a n +1-a n +3). ∵ 数列{b n }是等差数列,∴ 2b n +1-b n -b n +2=0, ∴ 2a n +1-a n -a n +2=2(2a n +2-a n +1-a n +3).(14分) ∵ a 1-2a 2+a 3=0,∴ 2a n +1-a n -a n +2=0, ∴ 数列{a n }是等差数列.(16分)2.解析:(1) 若λ=1,则(S n +1+1)a n =(S n +1)a n +1,a 1=S 1=1.∵ a n >0,S n >0,∴ S n +1+1S n +1=a n +1a n ,(2分) ∴S 2+1S 1+1·S 3+1S 2+1·…·S n +1+1S n +1=a 2a 1·a 3a 2·…·a n +1a n ,化简,得S n +1+1=2a n +1. ①(4分) ∴ 当n ≥2时,S n +1=2a n . ② ①-②,得a n +1=2a n ,∴a n +1a n=2(n ≥2).(6分) ∵ 当n =1时,a 2=2,∴ n =1时上式也成立,∴ 数列{a n }是首项为1,公比为2的等比数列,a n =2n -1(n ∈N *).(8分) (2) 令n =1,得a 2=λ+1.令n =2,得a 3=(λ+1)2.(10分) 要使数列{a n }是等差数列,必须有2a 2=a 1+a 3,解得λ=0.(11分) 当λ=0时,S n +1a n =(S n +1)a n +1,且a 2=a 1=1. 当n ≥2时,S n +1(S n -S n -1)=(S n +1)(S n +1-S n ),整理,得S 2n +S n =S n +1S n -1+S n +1,S n +1S n -1+1=S n +1S n ,(13分) 从而S 2+1S 1+1·S 3+1S 2+1·…·S n +1S n -1+1=S 3S 2·S 4S 3·…·S n +1S n ,化简,得S n +1=S n +1,∴ a n +1=1.(15分) 综上所述,a n =1(n ∈N *),∴ λ=0时,数列{a n }是等差数列.(16分)3.解析:(1)由11,6,1321===a a a ,得18,7,1321===S S S .把2,1=n 分别代入*1,)25()85(N n B An S n S n n n ∈+=+--+,得⎩⎨⎧-=+-=+48228B A B A , 解得,8,20-=-=B A .(2)由(1)知,82028)(511--=---++n S S S S n n n n n ,即82028511--=--++n S S na n n n ,① 又8)1(2028)1(5122-+-=--++++n S S a n n n n . ②②-①得,20285)1(51212-=---+++++n n n n a a na a n ,即20)25()35(12-=+--++n n a n a n . ③ 又20)75()25(23-=+-+++n n a n a n .④④-③得,0)2)(25(123=+-++++n n n a a a n ,520n +≠,∴02123=+-+++n n n a a a ,又32215a a a a -=-=,所以32120a a a -+=, 因此,数列{}n a 是首项为1,公差为5的等差数列. 故45)1(51-=-+=n n a n .4.解析:(1) 0λ=时,111n n n n naS S a a +++=+∴1n n n na S S a +=∵0n a >,∴0n S > ∴ 1n n a a +=,∵11a =,∴1n a =(2) ∵()11131n n n n n n a S S a a λ+++=+⋅+ 0n a > ,∴1131nn n n nS S a a λ++-=⋅+ 则212131S S a a λ-=⋅+,2323231S S a a λ-=⋅+, ,11131n n n n n S S a a λ----=⋅+()2n ≥ 相加,得()2113331n nnS n a λ--=+++-则()3322n n n S n a n λ⎛⎫-=+⋅≥ ⎪⎝⎭,该式对1n =也成立, ∴()*332n n n S n a n N λ⎛⎫-=+⋅≥ ⎪⎝⎭. ③ ∴()1*13312n n n S n a n N λ++⎛⎫-=++⋅≥ ⎪⎝⎭. ④ ④-③,得1113333122n n n n n a n a n a λλ+++⎛⎫⎛⎫--=++⋅-+⋅ ⎪ ⎪⎝⎭⎝⎭ 即11333322n n n n n a n a λλ++⎛⎫⎛⎫--+⋅=+⋅ ⎪ ⎪⎝⎭⎝⎭∵0λ≥,∴133330,022n n n n λλ+--+>+> . ∵112n n a a +<对一切*n ∈N 恒成立, ∴332nn λ-+1133()22n n λ+-<+对一切*n ∈N 恒成立. 即233nnλ>+对一切*n ∈N 恒成立. 记233n n nb =+,则()()()111423622233333333n n n n n n n n n n b b +++-⋅-+-=-=++++ 当1n =时,10n n b b +-=; 当2n ≥时,10n n b b +->∴ 1213b b ==是{}n b 中的最大项.综上所述,λ的取值范围是13λ>. 5. 解析:(1)数列{}n a 是各项均为正数的等比数列,∴215364a a a ==,38a ∴=,又5348S S -=,2458848a a q q ∴+=+=,2q ∴=,3822n n n a -∴=⋅=; ……4分(2)(ⅰ)必要性:设5,,k m l a a a 这三项经适当排序后能构成等差数列,①若25k m l a a a ⋅=+,则10222k m l ⋅=+,1022m k l k --∴=+,11522m k l k ----∴=+,1121,24m k l k ----⎧=⎪∴⎨=⎪⎩ 13m k l k =+⎧∴⎨=+⎩. ………… 6分②若25m k l a a a =+,则22522m k l ⋅=⋅+,1225m k l k +--∴-=,左边为偶数,等式不成立, ③若25l k m a a a =+,同理也不成立,综合①②③,得1,3m k l k =+=+,所以必要性成立. …………8分 (ⅱ)充分性:设1m k =+,3l k =+,则5,,k m l a a a 这三项为135,,k k k a a a ++,即5,2,8k k k a a a ,调整顺序后易知2,5,8k k k a a a 成等差数列,所以充分性也成立. 综合(ⅰ)(ⅱ),原命题成立. …………10分(3)因为11213213246n n n n n a b a b a b a b n +--++++=⋅--, 即123112122223246n n n n n b b b b n +--++++=⋅--,(*)∴当2n ≥时,1231123122223242n n n n n b b b b n ----++++=⋅--,(**)则(**)式两边同乘以2,得2341123122223284n n n n n b b b b n +---++++=⋅--,(***)∴(*)-(***),得242n b n =-,即21(2)n b n n =-≥,又当1n =时,21232102b =⋅-=,即11b =,适合21(2)n b n n =-≥,21n b n ∴=-.………14分 212n n n b n a -∴=,111212352222n n n n nn n b b n n n a a ------∴-=-=, 2n ∴=时,110n n n n b b a a --->,即2121b b a a >;3n ∴≥时,110n n n n b b a a ---<,此时n n b a ⎧⎫⎨⎬⎩⎭单调递减, 又1112b a =,2234b a =,3358b a =,44716b a =, 71162λ∴<≤. ……………16分 6. 解析:(1) 设b n =a 2n -λ,因为b n +1b n =a 2n +2-λa 2n -λ=13a 2n +1+(2n +1)-λa 2n -λ=13(a 2n -6n )+(2n +1)-λa 2n -λ=13a 2n +1-λa 2n -λ.(2分)若数列{a 2n -λ}是等比数列,则必须有13a 2n+1-λa 2n -λ=q (常数),即⎝⎛⎭⎫13-q a 2n +(q -1)λ+1=0,即⎩⎪⎨⎪⎧13-q =0(q -1)λ+1=0⎩⎨⎧q =13,λ=32,(5分) 此时b 1=a 2-32=13a 1+1-32=-16≠0,所以存在实数λ=32,使数列{a 2n -λ}是等比数列.(6分)(注:利用前几项,求出λ的值,并证明不扣分) (2) 由(1)得{b n }是以-16为首项,13为公比的等比数列,故b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32.(8分)由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,(10分)所以a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2[13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n ]-6(1+2+…+n )+9n=-2·13[1-⎝⎛⎭⎫13n ]1-13-6·n (n +1)2+9n =⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n-3(n -1)2+2,(12分)显然当n ∈N *时,{S 2n }单调递减.又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n , 同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 7.解析:(Ⅰ)易得数列⎩⎨⎧+-=.9414为偶数时,当为奇数时;,当n n n n c n前15项之和53527)6517(28)593(=⨯++⨯+=……………………………4分 (Ⅱ)①n a a n n 21=++ (*∈N n )(1) , )1(221+=+++n a a n n (2)(1)-(2)得22=-+n n a a (*∈N n ).所以,{}n a 为公差为2的“隔项等差”数列. ……………………………6分当n 为偶数时,a n n a a n -=⨯⎪⎭⎫⎝⎛-+-=2122, 当n 为奇数时,()[]11)1(2)1(21-+=----=--=-a n a n n a n a n n ; …8分②当n 为偶数时,()2212212222221222n n n n a n n n a S n =⨯⎪⎭⎫ ⎝⎛-+⋅-+⨯⎪⎭⎫ ⎝⎛-+⋅=;当n 为奇数时,()2212121212221212121⨯⎪⎭⎫⎝⎛---+-⋅-+⨯⎪⎭⎫ ⎝⎛-++++⋅=n n n a n n n a S n 21212-+=a n . ……………………………12分 故当k n 2=时,222k S k =,a k k S k ++=+22212,222)1(2+=+k S k ,由()222212++⋅=k k k S S S ,则2222)1(22)22(+⋅=++k k a k k ,解得0=a .所以存在实数0a =,使得22122++k k k S S S 、、成等比数列(*N k ∈)……………………………16分8. 解析:(1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意,得⎩⎪⎨⎪⎧a 1+(a 1+d )=a 1+2d ,b 1(b 1q )=b 1q 2,(a 1+2d )+(a 1+b 1q )=2[(a 1+d )+b 1],(a 1+d )2=a 1(b 1q ),解得a 1=d =1,b 1=q =2.故a n =n ,b n =2n .(6分)(2) 将a 1,b 1,b 2记为第1组,a 2,a 3,a 4,b 3,b 4,b 5,b 6记为第2组,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10,b 11,b 12记为第3组,……以此类推,则第n 组中,有2n -1项选取于数列{a n },有2n 项选取于数列{b n },前n 组共有n 2项选取于数列{a n },有n 2+n 项选取于数列{b n },记它们的总和为P n ,并且有()22211222nn n n n P +++=+-.(11分)P 45-22 014=452(452+1)2+22 071-22 014-2>0,P 44-22 014=442(442+1)2-21 981(233-1)-2<0.当S n =452(452+1)2+(2+22+…+22 012)时,S n -22 014=-22 013-2+452(452+1)2<0.(13分)当S n =452(452+1)2+(2+22+…+22 013)时,S n -22 014=-2+452(452+1)2>0.可得到符合S n <22 014的最大的n =452+2 012=4 037.(16分)。
高二数学数列经典例题1. 数列的魅力说到数学,很多人脑海中浮现的画面可能是公式、定理,还有那些让人抓狂的题目。
可是,你知道吗?其实,数列就像一位神秘的魔法师,它能让你在平凡中发现不平凡的美。
没错,数列就是数学的调味剂,让我们这一道数学大餐变得更加美味可口!想象一下,每个数列都像是一个小故事,有开头、发展和高兴,你准备好一起探险了吗?1.1 数列的定义首先,咱们得弄明白什么是数列。
简单来说,数列就是一串有规律的数字,就像你每天都能看到的日历,第一天、第二天、第三天……数不胜数!数列可以是有限的,也可以是无限的,形形色色,样样都有。
有些数列像是老朋友,熟悉得不得了;有些数列则像是初见的陌生人,让你捉摸不透。
比如,最经典的自然数列:1,2,3,4……有没有觉得它们就像在排队等着你呢?1.2 数列的类型说到数列,我们常见的有等差数列和等比数列。
等差数列就像是骑单车,速度保持不变,每次都加上同样的距离,比如说,2,4,6,8……你一眼就能看出来它们的规律。
而等比数列呢,就像是在攀爬高峰,每次都翻倍,像是2,4,8,16……每一步都让你惊喜不已!这样的数列组合,真的是让人欲罢不能。
2. 数列的实际应用在现实生活中,数列其实无处不在!你有没有注意到,每个月的房租都是在固定的基础上逐渐增加的?那就是一个等差数列的应用。
而等比数列呢,举个例子,想想你存钱的计划,如果每个月的存款都是之前的两倍,那你的存款数列可就飞速上涨了!这些看似枯燥的数字,背后藏着的是我们生活的真实写照。
2.1 数列的求和接下来,我们要聊聊数列的求和。
很多同学在遇到这个问题时,常常是一脸懵逼,心里想:“求和有什么难的?”其实,求和就像是为每道菜加上调味料,没了这些,菜就少了灵魂。
比如,对于一个等差数列,求和公式可简单得让你大吃一惊。
只要知道首项、末项和项数,就能轻松求得总和,简直是数学界的小妙招!2.2 经典题目解析说到经典题目,不得不提一下“求前n项和”的问题。
求通项公式 a 的方法 n一.选择题(共 10 小题)1. (2006•重庆)在等差数列{a n }中,若 a 4+a 6=12, S n 是数列{a n }的前 n 项和, 则 S 9 的值为 ( ) B A . 48 B . 54 C . 60 D . 662. (2006•广东)已知某等差数列共有 10 项,其奇数项之和为 15,偶数项之和为 30,则其公差为( ) C A . 5 B . 4 C . 3 D . 2 3.设 S n 为数列{a n }的前 n 项和, S n =kn 2+n , n ∈N * ,其中 k 是常数,则 a n 为( ) BA . 2kn+k+1B . 2kn ﹣ k+1C . 2kn ﹣ k ﹣ 1D . 2kn ﹣ k4. (2009•安徽)已知{a n }为等差数列, a 1+a 3+a 5=105, a 2+a 4+a 6=99, 以 S n 表示{a n }的前 n 项和,则使得 S n 达到最 大值的 n 是 ( ) BA . 21B . 20C . 19D . 185.在各项都为正数的等比数列 {a n }中,若 a 5•a 6=9, 则 log 3a 1+log 3a 2+log 3a 3+ …+log 3a 10 等于( ) B A . 8 B . 10 C . 12 D . 2+log 356.已知等比数列{a n }满足 a 1=3, 且 4a 1, 2a 2, a 3 成等差数列,则此数列的公比等于( ) D A . 1 B . ﹣ 1 C . ﹣ 2 D . 27.(2009•广东)已知等比数列{a n }满足 a n >0,n=1,2,…,且 a 5•a 2n ﹣5=22n (n≥3),则当 n≥1 时,log 2a 1+log 2a 3+ …+log 2a 2n﹣ 1= ( ) BA . (n ﹣ 1) 2B . n 2C . (n+1) 2D . n 2 ﹣ 1 8.数列{a n }满足 a 1=1, a n+1=2a n +1,则数列{a n }的通项公式为( ) CA . a n =2n ﹣ 1B .C .D .9. (2007•福建)数列{a n }的前 n 项和为 s n , 若 ,则 s 5 等于( ) B A . 1 B . C . D .10. (2011•闸北区) 数列{a n }中, a 1=20, a n+1=a n +4n ,则 a 6= ( ) CA . 120B . 100C . 80D . 6011.已知a n }是等差数列, a 1 + a 2 + a 3 = 9 , a 4 + a 5 + a 6 = 24 ,则 S 9 - S 6 =____________ 12.已知a n }是等比数列, a 1 + a 2 + a 3 = 6, a 4 + a 5 + a 6 = 18 ,则 S 9 - S 6 =____________ a 4n - 1 S13.若等差数列a n } 中,,则 2 nS = n n基础练习:已知等差数列 a n } 的首项a 1 = 2, a 5 = 14 ,求通项公式及前 n 项和已知等比数列的首项为 2, a 4 = 54 ,求通项公式及前 n 项和1. a n+1 = a n + f (n) 型(累加法) a n = ( a n -a n 一1 ) + ( a n 一1 -a n 一2 ) +…+ ( a 2 -a 1 ) + a 1 已知数列{a n }满足a 1 =1, a n+1 = a n + 2n (n∈N + ),求 a n . a n = 2n -1 (n∈N + )对应练习: 已知数列{a n }满足a 1 =1, a n+1 = a n + 2n (n∈N + ),求 a n2.a n+1 = g (n) 型 a已知数列{a n }满足 = n (n∈N + ), a 1 =1,求 a n .a n = (n -1)!对应练习: 已知数列{a n }满足n+1 = 2n (n∈N + ), a 1 =1,求 a n .3. a n+1 =p a n +q 型(p 、q 为常数)令 a n+1 - a n = p(a n 一 a n 一1 ) ,构造等比数列已知{a n }的首项 a 1 =a (a 为常数), a n =2 a n 一1 +1 ( n ∈ N +, n≥2), 求 a n .a = (a+1) · 2n 一1-1 已知{a n }的首项 a 1 =2, a n =2 a n 一1 +1 (n∈N +, n ≥2),求 a n .4. a n+1 =p a n + f (n) 型(p 为常数)变形得a n+1=a n+f (n),则{a n}可用累加法求出,由此求 a p n+1 p n p n+1 pn n.(累乘法) a = n na n 一1 · n 一1 … 2 a n 一2 a 1a a · a 1a n n已知{ a n }满足a 1 =2, a n+1 =2 a n + 2n+1.求 a na =n · 2n对应练习:已知{a n }满足a 1 =3, a n+1 =3 a n + 3n+1 .求 a n已知{a n }满足a 1 =3, a n+1 =3 a n + 3n .求 a n (变形后错位相减求和)5. “已知 S ,求 a ”型 32a = S - S (注意 a 是否符合) ( a n -1),求 a n (n∈N + ) a n =3n ( n ∈ N + )对应练习: S n 为{a n }的前 n 项和, S n =3 ( a n -1),求 a n (n∈N + )6.倒数变形法,重新重成等差或等比数列 已知数列{a n }中, a 1 = 1, a n+1 =, 求这个数列的第 n 项a n总结:对于特殊的数列关系式,求通项公式 a 的核心思想是变形构造成等差或等比数列 数列求和的方法 1. 分组求和法S n 为{a n }的前 n 项和, S n = n n n 一1 1n nn n例: S n = 1 + 3 5 + 7 + … + (1)n (2n 1)练习:(2011·安徽高考)若数列{a n }的通项公式是 a n =(-1)n ·(3n-2),则 a 1+a 2 +…+a 10 =( ) A . 15 B . 12 C . -12 D .-15 答案: A1 1 1 1例:求数列 1, 2+ , 3+, 4+ +…+n +2 4 8 2n 1练习:已知数列{a n }是 3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前 n 项和 Sn. 答案: a n = 3n 1+ 2nS n = 2n(3n +1) + 2n+1 2总结: 1、数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和2、 a n = b n + c n , a n } 、 b n }是等差或等比数列,则采用分组求和法裂项相消求和法1若数列112,123,134, … , ,则此数列的前 n 项和为____________若数列,, , … ,,则此数列的前 n 项和为____________若数列的通项公式为 b n =,则此数列的前 n 项和为______________,则此数列的前 n 项和为_______________ n + n + 11 1 1若数列 , , … , ,则此数列的前 n 项和为_______________1 + 1 + k2 + 2 + k n + n + k错位相减法(乘以式中的公比 q ,然后再进行相减), … , 3 1 2 + 1 1 + 若数列2 1 ,+ nx n一1 (x 0)化简:S = 1+ 2x + 3x2 +(将分为x = 1和x 1 两种情况考虑) n化简:S = 1 21 + 2 22 + … + n 2nn化简: S n = n+(n-1)×2+(n-2)×2 2+…+2×2 n-2+2 n-1求数列 1,(1+2),(1+2+22),…, (1+2+2 2+…+2 n-1)前 n 项的和数列{a n }的前 n 项和为 S n, a1=1, a n+1=2S n(n∈N*).(1)求数列{a n }的通项公式 a n;(2)求数列{na n }的前 n 项和 T n. (注意分 n=1 及 n1讨论)一.选择题(共 10 小题)1. (2006•重庆)在等差数列{a n }中,若 a 4+a 6=12, S n 是数列{a n }的前 n 项和, 则 S 9 的值为 ( ) A . 48 B . 54 C . 60 D . 66考点: 等差数列的通项公式.分析: 等差数列的等差中项的特点,由第四项和第六项可以求出第五项,而要求的结果前九项的和可以用第五项求出,两次应用等差中项的意义.解答: 解:在等差数列{a n }中,若 a 4+a 6=12,则 a 5=6, S n 是数列的{a n }的前 n 项和, =9a 5 =54故选 B .点评: 观察具体的等差数列,认识等差数列的特征,更加理解等差数列的概念,对本问题应用等差中项要总结,更好培养学生由具体到抽象、由特殊到一般的认知能力.2. (2006•广东)已知某等差数列共有 10 项,其奇数项之和为 15,偶数项之和为 30,则其公差为( ) A . 5 B . 4 C . 3 D . 2考点: 等差数列的通项公式.分析: 写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.故选 C .点评: 等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.3.设 S n 为数列{a n }的前 n 项和, S n =kn 2+n , n∈N * ,其中 k 是常数,则 a n 为( )A . 2kn+k+1B . 2kn ﹣ k+1C . 2kn ﹣ k ﹣ 1D . 2kn ﹣ k 考点: 等差数列的通项公式;数列的求和. 专题: 等差数列与等比数列.分析: 题目给出了数列{a n }的前项和,除 a 1 直接求出外,由 a n =S n ﹣ S n ﹣ 1 (n >1)求通项.解答: 解:当 n=1 时, a n =S 1=k+1,当 n >1 时, aa n =S n ﹣ S n ﹣ 1=kn 2+n ﹣ [k (n ﹣ 1) 2+ (n ﹣ 1) ]=2kn ﹣ k+1,该式对于 n=1 成立,所以 a n =2kn ﹣ k+1. 故选 B .点评: 本题考查的是知道数列的前 n 项和求通项问题, 解答的关键是分类, 区分n=1 和 n >1 两种情况, 若当 n >1时适合 n=1 ,则通项公式整体写,否则分写.4. (2009•安徽)已知{a n }为等差数列, a 1+a 3+a 5=105, a 2+a 4+a 6=99, 以 S n 表示{a n }的前 n 项和,则使得 S n 达到最 大值的 n 是 ( )A . 21B . 20C . 19D . 18 考点: 等差数列的前 n 项和.解答:,∴ 解:专题: 计算题.分析: 写出前 n 项和的函数解析式,再求此式的最值是最直观的思路,但注意 n 取正整数这一条件. 解答: 解:设{a n }的公差为 d ,由题意得a 1+a 3+a 5=a 1+a 1+2d+a 1+4d=105, 即 a 1+2d=35, ① a 2+a 4+a 6=a 1+d+a 1+3d+a 1+5d=99,即 a 1+3d=33, ② 由①②联立得 a 1=39, d= ﹣ 2,故当 n=20 时, S n 达到最大值 400. 故选 B .点评: 求等差数列前 n 项和的最值问题可以转化为利用二次函数的性质求最值问题, 但注意 n 取正整数这一条件.5.在各项都为正数的等比数列 {a n }中,若 a 5 .a 6=9, 则 log 3a 1+log 3a 2+log 3a 3+ …+log 3a 10 等于( ) A . 8 B . 10 C . 12 D . 2+log 35考点: 等比数列;等比数列的性质.分析: 根据等比数列的性质: a 5 .a 6=a 2 .a 9=a 3 .a 8=a 4 .a 6 ,再由对数运算法则求解. 解答: 解: ∵ log 3a 1+log 3a 2+log 3a 3+ …+log 3a 10=log3a1.a2 …a10=log3 (a5.a6) 5=10 故选 B点评: 本题主要考查等比数列的性质及对数的运算法则.6.已知等比数列{a n }满足 a 1=3, 且 4a 1, 2a 2, a 3 成等差数列,则此数列的公比等于( ) A . 1 B . ﹣ 1 C . ﹣ 2 D . 2考点: 等比数列;等差数列的性质. 专题: 计算题.分析: 由已知 4a 1, 2a 2, a 3 成等差数列可得 4a 2=4a 1+a 3 ,结合等比数列的通项公式可求公比 q 的值. 解答: 解: ∵ 4a 1, 2a 2, a 3 成等差数列,∴ 4a 2=4a 1+a 3,设数列{a n }的公比为 q , 则 a 2=a 1q , a 3=a 1q 2, ∴ 4a 1q=4a 1+a 1q 2. ∵ a 1 ≠0, ∴ 4q ﹣ q 2 ﹣ 4=0, ∴ q=2. 故选 D .点评: 本题主要考查了等比数列的性质、通项公式及等差数列的性质,以及运算能力.属基础题.7.(2009.广东)已知等比数列{a n }满足 a n >0,n=1,2,…,且 a 5 .a 2n ﹣5=22n (n≥3),则当 n≥1 时,log 2a 1+log 2a 3+ …+log 2a 2n﹣ 1= ( )A . (n ﹣ 1) 2B . n 2C . (n+1) 2D . n 2 ﹣ 1 考点: 等比数列的通项公式;对数的运算性质. 专题: 计算题.分析: 先根据 a 5 .a 2n ﹣5=22n ,求得数列{a n }的通项公式,再利用对数的性质求得答案. 解答: 解: ∵ a .a 52n ﹣5=22n =a n 2, a n >0,∴ a n =2n ,故选 B .点评: 本题主要考查了等比数列的通项公式.属基础题.∴ log 2a 1+log 2a 3+ …+log 2a 2n ﹣ 1=log 2 (a 1a 3 …a 2n ﹣1) =log 221+3+ …+ (2n ﹣ 1) =log 2 =n .2∴ s n =39n+ × ( ﹣ 2) = ﹣ n 2+40n= ﹣(n ﹣ 20) 2+400,8.数列{a n }满足 a 1=1, a n+1=2a n +1,则数列{a n }的通项公式为( )A . a n =2n ﹣ 1B .C .D .考点: 等比关系的确定. 专题: 计算题.分析: 由 a n+1=2a n +1,可得 a n+1+1=2 (a n +1), a 1+1=2,从而可得{a n +1}是以 2 为首项, 以 2 为公比的等比数列,根据等比数列的通项公式可求所求. 解答: 解: ∵ a n+1=2a n +1,∴ a n+1+1=2 (a n +1), a 1+1=2∴ {a n +1}是以 2 为首项, 以 2 为公比的等比数列 根据等比数列的通项公式可得, a n +1=2•2n ﹣ 1=2n 即 a n =2n ﹣ 1 故选 C .点评: 本题主要考查由递推公式推导数列的通项公式,其中渗透了构造法,同时考查了计算能力,属于基础题.9. (2007•福建)数列{a n }的前 n 项和为 s n , 若 ,则 s 5 等于( ) A . 1 B . C . D .考点: 数列的求和.专题: 计算题. 分析:解答:,故选 B点评: 本题所用的方法在求和中常用,称为裂项相消法.10. (2011•闸北区) 数列{a n }中, a 1=20, a n+1=a n +4n ,则 a 6= ( )A . 120B . 100C . 80D . 60考点: 数列递推式. 专题: 计算题.分析: 数列{a n }中,由 a 1=20, a n+1=a n +4n ,分别令 n=1, 2, 3, 4, 5,能够依次求出 a 2, a 3, a 4, a 5, a 6. 解答: 解:数列{a n }中,∵ a 1=20, a n+1=a n +4n ,∴ a 2=20+4×1=24, a 3=24+4×2=32, a 4=32+4×3=44, a 5=44+4×4=60, a 6=60+4×5=80, 故选 C .点评: 本题考查数列的递推公式的应用,解题时要认真审题,仔细解答,注意递推思想的合理运用.根据通项公式的特点,拆成 的形式求s 5. 解: ∵ = , ∴ S 5=a 1+a 2+a 3+a 4+a 5=。