风力发电系统的控制原理
- 格式:docx
- 大小:13.20 KB
- 文档页数:3
风力发电机的工作原理风力发电机是一种利用风能进行发电的装置,其工作原理主要可以分为风能转化和电能转化两个过程。
下面我将详细介绍风力发电机的工作原理,以及其中涉及的一些关键技术和装置。
一、风能转化过程风力发电机首先需要将自然界中的风能转化为机械能,这一过程需要通过如风轮、转轴和变速机构等装置完成。
1. 风轮:风轮是风力发电机中最关键的部件之一,它的作用是将空气中的风能转化为旋转动能。
风轮通常由数片叶片组成,叶片的形状和数量会直接影响到风轮的转速和效率。
一般来说,叶片越大、旋转速度越快,风能转化效率就越高。
此外,风轮上还配备了定位装置,可以根据风的方向调整叶片的角度,以便尽可能地捕捉到更多的风能。
2. 转轴和传动系统:叶片转动时,它们会带动转轴一起旋转。
转轴是将叶片旋转动能传递给发电机的关键部件,它通常由钢材制成,具有足够的强度和刚度。
除了转轴外,风力发电机还配备了传动系统,用于调整风轮和发电机之间的转速差异。
传动系统的设计主要有两个目的:一是使风轮的旋转速度能够匹配发电机的工作要求,二是提高发电机的转速并输出更高的电能。
二、电能转化过程风力发电机将机械能转化为电能的过程,需要通过发电机和变流器等装置完成。
1. 发电机:风力发电机选用的是特殊的发电机,称为风力发电机或风能发电机。
这种发电机的工作原理和普通的发电机基本相同,都是通过旋转运动来驱动转子产生磁场,然后通过磁场和线圈之间的电磁感应产生电能。
与普通发电机不同的是,风力发电机需要具有更高的转速、功率因数和效率。
2. 变流器:由于风力发电机产生的电能是交流电,需要将其转换为适应电网输送的直流电。
这一过程需要通过变流器完成,变流器主要功能是将交流电转化为直流电,并通过电压和频率控制,将发电机输出的电能以适合的形式输送到电网中。
总结:风力发电机的工作原理主要包括风能转化和电能转化两个过程,通过风轮、转轴、变速机构、发电机和变流器等装置的协同工作,将自然界中的风能转化为电能。
风力发电机组的工作原理详解随着对可再生能源的需求不断增长,风力发电作为一种清洁、可持续的能源形式,受到越来越多的关注。
风力发电机组作为风能转化为电能的关键设备,其工作原理是如何实现的呢?本文将详细解析风力发电机组的工作原理。
一、风力发电机组的组成风力发电机组主要由风轮、发电机、塔架和控制系统等组成。
1. 风轮:风轮是风力发电机组的核心部件,它负责将风能转化为机械能。
风轮通常由三个或更多的叶片组成,叶片的形状和材料选择对风力发电机组的性能有重要影响。
2. 发电机:发电机是将机械能转化为电能的关键部件。
风力发电机组通常采用的是同步发电机,通过风轮带动转子旋转,转子上的线圈与固定的磁场之间产生电磁感应,从而产生电能。
3. 塔架:塔架是支撑风力发电机组的结构,通常由钢材制成。
塔架的高度决定了风轮的受风面积,从而影响风力发电机组的发电效率。
4. 控制系统:控制系统是风力发电机组的大脑,负责监测风速、控制转速、保护设备安全等。
控制系统可以根据风速的变化调节风轮的转速,以保证风力发电机组在不同风速下都能正常工作。
二、风力发电机组的工作原理风力发电机组的工作原理可以简单概括为:风轮受到风的作用而旋转,带动发电机产生电能。
具体来说,风力发电机组的工作原理可分为以下几个步骤:1. 风轮转动:当风吹过风轮时,风轮受到风的作用而开始旋转。
风轮的叶片形状设计得非常巧妙,能够利用风的动能将其转化为机械能。
2. 发电机发电:风轮带动发电机转子旋转,转子上的线圈与固定的磁场之间产生电磁感应。
通过电磁感应原理,发电机将机械能转化为电能。
3. 控制系统调节:控制系统通过监测风速和发电机的转速,根据预设的工作参数调节风力发电机组的运行状态。
当风速较低时,控制系统会提高风轮的转速,以提高发电效率;当风速过高时,控制系统会减小风轮的转速,以保护设备安全。
4. 输送电能:发电机产生的电能经过变压器进行升压处理,然后通过电缆输送到电网中,供人们使用。
风力发电构造及原理
风力发电是一种利用风能将风轮转动,进而驱动发电机产生电能的方法。
风力发电主要由以下几个构造组成:
1. 风轮:也称风能转换装置,是将风能转化为机械能的装置。
风轮通常由多个叶片组成,具有较大的面积,可以更好地捕获风能。
风轮形状一般为高度弯曲的螺旋状,以提高风能转换效率。
2. 风轮轴:连接风轮和发电机的轴道,负责传递风能转换的机械能。
3. 发电机:将机械能转化为电能的装置。
当风轮转动时,风轮轴会带动发电机转动,发电机中的磁场和线圈之间的相对运动产生电流,从而产生电能。
4. 控制系统:用于监测和调节风力发电机组的运行状态。
控制系统能够根据风速和发电机负荷情况,自动调整风轮的转速和方向,以确保风力发电机组的安全运行和发电效率。
风力发电的原理是通过将风能转化为机械能,再将机械能转化为电能。
当风流通过风轮时,风轮会受到风力的作用而旋转。
风轮上的叶片被风力推动,使得整个风轮转动。
风轮转动的机械能通过风轮轴传递给发电机,发电机将机械能转化为电能。
发电机通过磁场和线圈之间的相对运动产生交流电,经过整流等处理后,最终输出为可用的电能。
风力发电机的工作科学原理是什么风力发电机是一种利用风能将其转化为电能的设备。
它是利用风的动能来带动发电机转子旋转,使机械能转化为电能的装置。
风力发电机作为可再生能源的代表之一,已经广泛应用于各地的发电场和风电场。
风力发电机的工作原理可以简洁地概括为将风能转化为电能的过程。
其实质是通过利用空气流动与高速转动发电机转子之间的相互作用来转化。
风力发电机由风轮、发电机组成。
下面主要从以下几个方面来介绍风力发电机的工作原理。
首先,风力发电机的工作原理之一是空气流动的能量转化为机械能。
当风力吹向风轮时,风轮的叶片受到风力的推动而旋转。
风轮直径较大,叶片数较多,可以牵引更多的空气,使其产生剧烈的旋转。
在风轮旋转的过程中,风轮的叶片与风之间的相互作用犹如一台叶片带动的轮转动,相对于风的方向,将风的动能转化为叶片的动能。
接下来,风力发电机的工作原理之二是机械能转化为电能。
风力发电机的风轮通过轴连接到发电机上,风轮的旋转使得发电机内的转子也开始旋转。
发电机的转子是由电磁铁组成的,当转子旋转到一定速度时,通过磁力线的感应作用,将机械能转化为电能。
简单来说,就是转子旋转时,导线在磁场中产生电动势,从而在导线电流的作用下产生电能,并通过导线输出。
此外,风力发电机的工作原理还涉及到发电机和电网之间的连接。
发电机通过输电线路将电能输送到电网,向用户提供电力供应。
传统的风力发电机是直流发电机,因此需要通过变流器将直流电转化为交流电以适应电网的工作要求。
随着科技的进步,目前已经出现了直接输出交流电的风力发电机,使得发电的效率更高,减小了能量的损失。
总的来说,风力发电机是通过将风能转化为电能的过程来实现发电的。
它的工作原理包括了空气流动的能量转化为机械能,机械能转化为电能以及电能与电网的连接。
风力发电机作为一种可再生能源的代表,具有环保、高效、可持续等优势,被广泛应用于各地的发电场和风电场,为人们提供了清洁能源,并且减少了对传统能源的依赖。
风力发电什么原理
风力发电是一种利用风能将其转化为电能的发电方式。
其原理是基于风能转化为机械能的动力学原理。
当风经过风力发电机组时,风力将会使风轮旋转。
风轮连接到一个发电机,这个发电机将会将机械能转化为电能。
具体地说,风力作用下,风轮旋转时,风轮内的发电机会运转起来,通过磁铁和线圈之间的作用,相对运动产生感应电流,从而将机械能转化为电能。
风力发电需要一定的风速才能够有效工作。
通常情况下,风速需要达到一定的最低值,才能让风力发电机组开始工作。
此外,过大的风速也会对风力发电机组产生负面影响,因此还需要设定一个最大风速值,以保护设备的安全运行。
在选择风力发电站的位置时,也需要考虑到地理、气候等因素,以确保能够获得充足的风能资源。
因此,通常选择在具有较高的海拔、沿海地区或者开阔地带设置风力发电站,以获得更强的风速。
总的来说,风力发电利用风能的动力学原理,将风能转化为机械能,再转化为电能。
它是一种环保可再生的能源形式,因此在全球范围内得到了广泛应用和发展。
风力发电机结构原理杜容熠太阳辐射到地球的热能中有约2%被转变成风能,全球大气中总的风能量约为1014MW(10亿亿千瓦)。
其中可被开发利用的风能理论值约有3.5×109MW(3.5万亿千瓦),比世界上可利用的水能大10倍。
把风能转变为电能是风能利用中最基本的一种方式。
风力发电机一般有叶轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
风力发电机的工作原理比较简单,叶轮在风力的作用下旋转,它把风的动能转变为叶轮轴的机械能,发电机在叶轮轴的带动下旋转发电。
1.风力发电原理:1.1 风能的概念:风能:空气因为太阳能辐射,造成压力差,而发生运动的动能称为“风能”,风能的计算公式为:E=0.5ρsV³式中: E-风能(W)ρ-空气密度(kg/m3)S-气流截面积(m2)V-风速(m/s)风能密度(W):单位时间内通过单位面积的风能,W=0.5ρV³。
有效风能密度:指风机可利用的风速范围内的风能密度(对应的风速范围大约是3~25m/s)。
1.2 风能发电的动力学原理风力发电采用空气动力学原理,并非风推动叶轮叶片,而是风吹过叶片形成叶片正反面的压力差,这种压力差会产升力,令叶轮旋转并不断横切风流。
该原理类似于飞机上升时的原理,空气通过机翼,产生向上的升力和向前的阻力。
如果将一块薄板放在气流中,则在沿气流方向将产生一正面阻力F D和一垂直于气流方向的升力F L其值分别由下式确定L:F D=0.5CdρSV2F L=0.5C LρSV2式中:CD-阻力系数C-升力系数L S-薄板的面积ρ-空气的密度阻力型叶轮V -气流速度如果把薄片当作叶片,将其装在轮毂上组成叶轮,那么风的作用力旋转中心线就会使叶轮转动。
由作用于叶片上的阻力FD而使其转动的叶轮,称为阻力型叶轮;而由升力FL而使其转动的叶轮,称为升力型叶轮。
目前为止现代风力机绝大多数采用升力型叶轮。
2.风力发电机的组成部分及特点:2.1 叶轮叶轮是将风能转化为动能的机构,风力带动风车叶片旋转,再通过齿轮箱将旋转的速度提升,来促使发电机发电。
风力发电机原理与机组控制
风力发电机是一种将风能转换为电能的设备,其基本原理是利用风力驱动风轮旋转,通过传动系统将旋转的机械能传递给发电机,最终产生电能。
风力发电机主要由叶片、轮毂、传动系统、发电机、控制系统等组成。
叶片是风力发电机的关键部件,其形状和材料会影响到风力发电机的效率和性能。
轮毂是连接叶片和传动系统的部件,传动系统包括齿轮箱和联轴器等,用于将叶片旋转的机械能传递给发电机。
发电机则是将机械能转换为电能的核心部件。
风力发电机组的控制主要包括对风轮转速、发电机输出功率和机组运行状态的控制。
控制系统的核心是控制器,其通过传感器和执行器等部件,对风轮转速、发电机输出功率和机组运行状态进行实时监测和控制。
控制风力发电机组的目的是在保证发电机组安全运行的前提下,实现对发电机组输出功率的优化控制,从而提高发电效率和可靠性。
为此,控制器需要对风速、风向、叶片角度、发电机转速和输出功率等参数进行实时监测和控制。
总之,风力发电机组的控制是一项复杂的技术,需要对风力发电机的工作原理和控制系统有深入的了解和掌握。
风力发电系统的控制原理
风力涡轮机特性:
1,风能利用系数Cp
风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:
P---风力涡轮实际获得的轴功率
r---空气密度
S---风轮的扫风面积
V---上游风速
根据贝兹〔Betz〕理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。
2,叶尖速比l
为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。
n---风轮的转速
w---风轮叫角频率
R---风轮半径
V---上游风速
在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。
从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。
如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。
涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。
图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。
在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。
每条曲线都有一个上升段和下降段,其中下降段是稳定工作段〔若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。
〕它是工作区段。
在工作区段中,倾角越大,l和Cp越小。
3,变速发电的控制
变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确〔机组惯量大〕。
三段控制要求:
低风速段N<Nn,按输出功率最大功率要求进行变速控制。
联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f〔n〕关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。
图3是风速变化时的调速过程示意图。
设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得与变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。
中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。
倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。
高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制〔限制PTARGET值〕。
4,双馈异步风力发电控制系统
双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。
转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频〔50HZ〕的转差功率,送至电网。
由此可知:
P=PS-PR;PR=SPS;P=〔1-S〕PS
P是送至电网总功率;PS和PR分别是定子和转子功率
转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,经变频器流入转子,电网收到的功率为定、转子输出功率之差,小于定子功率。
5,双馈异步控制系统的运行过程
系统的运行分为两个阶段:
同步阶段:在此过程中风机已经开始转动,当其转速大于启动转速后,充电回路先闭合,使变频器直流电容电压升高,当电压大于80%额定值后,转子回路主接触器闭合,并且同时断开充电回路接触器。
母线电压不断升高至额定值,这时变频器逆变器开始工作,电机转子中有电流,所以在定子中有电压产生,变频器检测电网电压和电机定子电压,通过调节住转子的电压电流,使这两个电压同步,并且闭合定子主接触器,系统便完成了同步切入。
运行阶段:同步切入结束后便进入正常运行阶段,这个时候通过上述的三阶段控制方法使风力发电机输出最大的额定功率。
在实际运行中,变频器接收主控制传输过来的两个主要控制信号:功率因数和电机力矩。
功率因数信号使变频器输入端的输入功率因数始终为1,电机力矩使风力发电系统始终随着风速变化而输出最大的额定功率。
主要的控制方式可以通过矢量控制和直接力矩控制都可以实现上述功能,在这里就不多讲了。
双馈系统在变频器中仅流过转差功率,其容量小,通常按发电总功率的25%左右选取,投资和损耗小,发电效率高,谐波吸收方便。
由于要求双向功率流过变频器,它必须是四象限双PWM变频器,由两套IGBT变换器构成,价格是同容量单象限变频器的一倍。
而且只能使用双馈电机,效率较低,而且有滑环和碳刷,维护工作量较大。
6,永磁同步全馈风力发电控制系统
永磁同步全馈风力发电控制系统采用采用永磁同步电动机作为发电机,同步电动机输出的频率和电压随转速变化的交流电,经一台双象限IGBT电压型交-直-交变频器接至恒压、恒频电网。
目前,永磁同步全馈风力发电系统的最大功率可至5MW,而且采用低速永磁同步电动机,并且取消了中间的齿轮变速箱,变频器采用双PWM型的中压变频器,主要应用在离岸的风力发电场中。
永磁同步全馈风力发电控制系统的运行和双馈系统基本类似,也通过同步切入过程,和正常运行阶段,控制方式也采用上述的三段式控制。
永磁同步全馈风力发电控制系统发电机发出的全部电功率都通过变频器,变频器容量需按100%功率选取,比双馈系统容量大,投资和损耗大,使用永磁同步发电机,电机轻,取消变速齿轮结构减轻了整机重量,变换器增加的投资可以从机械结构的节约中得到补偿。
7,风力发电系统中的辅助控制系统
这些辅助控制系统由风力发电系统的主控制器控制,主要包括:
桨叶倾角控制系统:桨叶倾角控制通过液压执行机构来实现,在转速随风速增加升至额定转速后,通过加大倾角来维持转速不变,目前工程上使用线性PID控制器来进行控制。
偏航控制系统:偏航系统有两个主要目的:一是使风轮跟踪变化稳定的风向,二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
偏航系统一般通过控制电机实现。
风机制动系统:风叶的制动系统采用液压的盘式刹车系统,一般安排在高速轴上。
具有三种刹车方式:正常停机方式;安全停车方式;紧急停车方式。
其他安全保护系统:其他安全保护系统主要有:超速保护、电网失电保护、电气保护〔过压,过流〕、雷击保护、机舱机械保护、桨叶保护、紧急安全链保护等等。