合并同类项经典提高练习题
- 格式:docx
- 大小:15.22 KB
- 文档页数:1
合并同类项经典练习题1.1.单项式单项式113a b a x y +--与345y x 是同类项是同类项,,求a b -的值2.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;3.x 3-x +1-x 2,其中x =-3;4.4.已知已知622x y 和313m n x y -是同类项是同类项,,求29517m mn --的值5.5.若若22+k k y x与n y x23的和为5n y x 2,则k= k= ,,n= 6..求5xy -8x 2+y 2-1的值,其中x =21,y =4;7..若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.的值.8.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。
的值。
9.求3y 4-6x 3y -4y 4+2yx 3的值,其中x =-2,y =3。
10.10.已知已知213-+b a y x与252x 是同类项,求b a b a b a 2222132-+的值。
的值。
11.求多项式13243222--++-+x x x x x x 的值,其中x =-2.12. 求多项式322223b ab b a ab b a a +-++-的值,其中a =-3,b=2.13.有理数a,b,c在数轴上的位置如图所示化简aa+bbcc----14已知:多项式6-2x2-my-12+3y-nx2合并同类项后不含有x、y,的值。
求:2m+3n-mn的值。
15.有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算,,正确的结果应该是多少?结果得到2 x2-x+3,正确的结果应该是多少?。
初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。
为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。
一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。
2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。
3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。
4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。
5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。
6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。
7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。
8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。
二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。
2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。
20道合并同类项题并带答案一. 认认真真,沉着应战!(每小题3分,共18分)1.x的与y的和用代数式可以表示为()A.(x+y)B.x++y C.x+ y D.x+y2.下列结论中正确的是( )A.整式是多项式B.不是多项式就不是整式C.多项式是整式D.整式是等式3.对单项式-xy2,下列说法正确的是( )A.系数是0,次数是2B.系数是1,次数是2C.系数是-1,次数是2D.系数是-1,次数是34.如果一个多项式的次数是3次,那么这个多项式中任何一项的次数( )A.都等于3B.都小于3C.都不小于3D.都不大于35.下列各组式子中不是同类项的是( )A.3x2y与-3yx2B.3x2y与-2y2xC.-2004与2005D.5xy与3yx6.若P是三次多项式,Q也是三次多项式,则P+Q一定是( )A.三次多项式B.六次多项式C.不高于三次的多项式或单项式D.单项式7.下面合并结果正确的是( )A.4xy-3xy=xyB.-5a2b+5ab2=0C.-3a2+2a3=-a5D.a2-2a2b=-2b8.在计算如图所示图形的面积时,下面哪一个式子是不正确的结果()A.ab+de B.af+cd C.af+ed D.fe-bc二.仔仔细细,记录自信!(每空3分,共39分)1.单项式的系数为________,次数为________.2.多项式3x4-2x3y2-4y2+x-y+7是___次___项式,常数项是______,最高次项为_____,最高次项的系数为____.3.下列代数式①②3a2+b ③-4 ④⑤⑥2a ⑦x ⑧⑨150-m 其中是单项式的为_ ___________,是多项式的为___________,是整式的为____________.4.多项式xy2-9xy+5x2y-25的二次项系数是____。
5.已知x3m-1y3与x5y2n-1是同类项,则5m+3n=________.6.如果A=x3-2x2+1,B=2x2-3x-1,则B+A=_________.7. 下列式子2a+3,4a+6,8a+12,16a+24……后面将出现哪一个式子_________8.若a<0,ab<0,则+的值是_______.三.平心静气,展示智慧!(共28分.第1题8分,2、3题各式各10分)1.当x=时,求-5+x2-5x-x2+3x+4的值.2.已知+(y+2)2=0,求x3y2-xy+x3y2-xy-x3y-5的值.3.小红和父母三人准备参加旅行团外出旅游,甲旅行社告示知:“父母全票,女儿按5折优惠”;乙旅行社告知:“家庭旅游可按团体票计价,即每人均按全价的8折收费”.若这两家旅行社每人的原票价相同,服务质量也相同,你认为他们应该选哪家旅行社才使票价较为便宜?并请你说明理由..四.拓广探索,游刃有余!(本题15分)观察下列单项式:-x,2x2,-3x3,4x4,…,-19x19,20x20,…,你能写出第n个单项式吗?并写出第2001个单项式。
合并同类项专项练习 50 题(一)下列式子中正确的是 ( )+2b =5ab B.3x 2 5x 5 8x 7C. 4x 2y 5xy 2x 2y =0, 不是同类项的是A 、3 和0 B 、2 R 2与2R 2 C 、 xy 与 2pxy D 、 x n 1 y n 1与 3y n 1x n 1, 不是同类项的是 ( )122与B.3x n 2y m 与 2y m xn2 C.13x 2y 与 25yx 2D. 0.4a b 与 0.3ab3如果13x a 2y 3与 3x 3y 2b 1 是同类项 , 那么 a 、 b 的值分别是 ( )a1 a A. B.b2 b 0 a2C. D. 2 b1A. 3m 2n 3和 m 2n 3B. xy 和 5xy5下列合并同类项正确的是2 22 (C) 3a 2b 2ab 2 a 2b ; (D) x 2y 的值是 3, 则代数式 2x 4y 1 的值是C. 7D.不能确定x 是一个两位数, y 是一个一位数 , 如果把 y 放在 x 的左边 , 那么所成的三位数表示为A. yxB. y xyxyx某班共有 x 名学生 , 其中男生占51%,则女生人数为 ()A 、 49%xB 、 51%xC 、 xD 、 x 49% 51%123456789(A) 8a 2a 6 ;(B )2355x 2x 7x ;1和 D. a 和 x 4( )2225x y 3x y 8x y10 一个两位数是a , 还有一个三位数是 b , 如果把这个两位数放在这个三位数的前面,组成一个五位数, 则这个五位数的表示方法是10a b B. 100a b C. 1000a b D. a b二、填空题11写出2x3y2的一个同类项_____________________ .112单项式-x a b y a 1与5x4y3是同类项,则a b的值为 ?313若4x a y x2y b3x2y , 则a b ________ .14合并同类项____________________________________ : 3a2b 3ab 2a2b 2ab . 15已知 2x6y2和1 x3m y n是同类项 , 则 9m2 5mn 17 的值是 ___________316某公司员工, 月工资由m元增长了_____ 10%后达到元 ?三、解答题3517先化简 , 再求值 : m ( m 1) 3(4 m) , 其中m 3 .2218 化简: 7a2b ( 4a2b 5ab2) (2a2b 3ab2).19 化简求值: 5(3a2b ab2) (ab2 3a2b) , 其中a 1 ,b 123请你选择其中两个进行加法或减法运算 , 并化简后求值 :其中 x 1,y 2 .221, 再求值:5xy 8x 12x 4xy , 其中 x , y 2 .20.先化简 ,后求值 : 2(mn 3m 2) [m 2 5(mn m 2) 2mn] , 其中 m 1, n 221.化简求值 : 5a 2 [3a 2(2a 3) 4a 2] , 其中 a22.给出三个多项式 : 1 x2 2 12 x ,x121, x 3y ; 2 23.先化简224.先化简 , 再求值 ?(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中 a=-1 b=125.化简求值(-3 x 2-4 y )-(2 x 2-5y +6)+( x 2-5 y -1) 其中 x =-3 , y =-126.先化简再求值 :(ab-3a 2)-2b 2-5ab-(a 2-2ab), 其中 a=1,b=-2 ?27.有这样一道题: “计算 (2x 3 3x 2y 2xy 2) (x 32xy 211 其中 x , y 1 ? ”甲同学把“ x ”错抄成了“ x22是正确的 , 请你通过计算说明为什么3 323y ) ( x 3x y y ) 的1”但2 1 22 2 228.已知: (x 2)2 |y | 0, 求2(xy2 x2y) [2xy2 3(1 x2y)] 2的值 ?2一、选择题1 D2 C3 D4 A5 D6 D7 C8 D9 A10 C二、填空题32112x y (答案不唯一)124;13 3216 1.1m145a b ab ;151⑶ 2a2bc与 -2 ab2c ( )m 3时 ,4m 13 4 ( 3) 13 25 (2a 2b 3ab 2)=7a 2b 4a 2b 5ab 2 2a 2b 3ab 22222=(7 4 2)a 2b (5 3)ab 2( )= a 2b 8ab 219.解 :2原式 = 2320.原式 mn , 当 m 1, n 2 时 , 原式 1 ( 2) 2 ;221 .原式 =9a a 6 ;-2;1212 222 .(1) ( x 2 x )+( x 2 3y )= x 2 x 3y ( 去括号 2分 )22当 x 1,y 2, 原式 =( 1)2( 1) 3 2 612 12(2)( x x )-( x 3y ) = x 3y ( 去括号 2 分 )22x 1,y 2, 原式 =( 1) 3 27三、解答题17. 解 :3m 2 5 (5m 1) 3(4 2 m)=3m 25 m 1 12 3m ( )= 2 4m 1318. 7a2b ( 4a 2b 5ab 2) 12 x 212 x2 12 x 2 x )+( 1 x 21 )= 5x 2x 1 36 12 12x )-( x 1 )= x x 13612 523y )+( x 1 )= x 3y11 47 3123.解 : 原式 5xy 8x 2 12x 24xy5xy 4xy2212x 2 8x 22xy 4x21 11x ,y 2时 , 原式 = 2 4 =02 2224.解: 原式=5a2-3b 2+a2+b2-5a 2-3b 2 =-5b 2 +a2当 a=-1 b=1 原式 =- 5×1 +(-1) =-5+1=-425. 33.26 . -827.解: ∵原式= 2x3 3x2y 2xy2x32xy2y3x33x2y y3(2 1 1)x3 ( 3 3)x2y ( 2 2)xy2 ( 1 1)y3 2y3∴此题的结果与x的取值无关?28 .解 : 原式 = 2xy2 2x2y [2 xy2 3 x2y] 2 = 2xy2 2x2y 2xy2 3 x2y=(2 2)xy2 (2 1)x2y (3 2) =x2y 12 1 21 1∵ (x 2)2 0, |y 12| 0又∵ (x 2)2|y 12| 0∴ x 2, y 1221∴原式 =( 2)2 1 1=32合并同类项专项练习50 题(二)⑶ 2a2bc与 -2 ab2c ( )1.判断下列各题中的两个项是不是同类项,是打√,错打1⑴ x y 与 -3y x ( )3⑵ ab2与a2b ( )4) 4xy 与 25yx(5)24 与 -24 ( )22(6)x2与22( )2.判断下列各题中的合并同类项是否正确,对打√,错打( 1 ) 2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )51 (3)8x 3y 9xy3x3y( ) (4) m3 2m3( )2232 5(5)5ab+4c=9abc ( ) (6) 3x3 2x2 5x5( )22 2 2 2(7)4x2x2 5x2( ) (8) 3a2b 7ab2 4ab ( )3.与1 x2 y 不仅所含字母相同,而且相同字母的指数也相同的是( )212 1 2 2A. x zB. xyC. yxD. x y224.下列各组式子中,两个单项式是同类项的是( )与a2a2b 与a2b C. xy 与x2 y D. n2与y25.下列计算正确的是( )22 2+b=2a b x x 2 C. 7mn-7nm=0 +a= a6.代数式 -4a b2与 3ab2都含字母,并且都是一次,都是二次,因此 -4a b2与 3ab2是7.所含相同,并且也相同的项叫同类项。
秋季周末班是学习的大好时机, 可以在这学期里, 学习新知识, 总结旧知识, 查漏补缺, 巩固提高。
在这个收获的季节, 祝你学习轻松愉快.秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。
在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、典型例题代数式求值例1 当时, 求代数式的值。
例2 已知是最大的负整数, 是绝对值最小的有理数, 求代数式的值。
例3已知, 求代数式的值。
合并同类项例1.合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解: (1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号, 中括号, 大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (与时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2. 已知: A=3x2-4xy+2y2, B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0, 求C。
解: (1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号, 注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3. 计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简: (x-y)2-(x-y)2-[(x-y)2-(x-y)2]解: (1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值, 其中x=2。
合并同类项50题(有答案)题目1:合并同类项:3x + 2x - 5x解答:3x + 2x - 5x = (3 + 2 - 5)x = 0x = 0题目2:合并同类项:4y + 7y - 2y解答:4y + 7y - 2y = (4 + 7 - 2)y = 9y题目3:合并同类项:2a^2 + 5a^2 - 3a^2解答:2a^2 + 5a^2 - 3a^2 = (2 + 5 - 3)a^2 = 4a^2题目4:合并同类项:6x^2y - 3x^2y + 2x^2y解答:6x^2y - 3x^2y + 2x^2y = (6 - 3 + 2)x^2y = 5x^2y题目5:合并同类项:8xy^2 - 2xy^2 + 3xy^2解答:8xy^2 - 2xy^2 + 3xy^2 = (8 - 2 + 3)xy^2 = 9xy^2题目6:合并同类项:-5a^3b + 2a^3b - 4a^3b解答:-5a^3b + 2a^3b - 4a^3b = (-5 + 2 - 4)a^3b = -7a^3b 题目7:合并同类项:3x^2 - 2x^2 + 6x^2解答:3x^2 - 2x^2 + 6x^2 = (3 - 2 + 6)x^2 = 7x^2题目8:合并同类项:4xy - 3xy + 5xy解答:4xy - 3xy + 5xy = (4 - 3 + 5)xy = 6xy题目9:合并同类项:7a^2b^2 - 2a^2b^2 + 3a^2b^2解答:7a^2b^2 - 2a^2b^2 + 3a^2b^2 = (7 - 2 + 3)a^2b^2 =8a^2b^2题目10:合并同类项:-6x^3y^2 + 4x^3y^2 - 2x^3y^2解答:-6x^3y^2 + 4x^3y^2 - 2x^3y^2 = (-6 + 4 - 2)x^3y^2 = -4x^3y^2题目11:合并同类项:3a + 2a - 4a + 5a解答:3a + 2a - 4a + 5a = (3 + 2 - 4 + 5)a = 6a题目12:合并同类项:-2b - 3b + 7b - 4b解答:-2b - 3b + 7b - 4b = (-2 - 3 + 7 - 4)b = -2b题目13:合并同类项:5x^2 + 6x^2 - 3x^2 + 2x^2解答:5x^2 + 6x^2 - 3x^2 + 2x^2 = (5 + 6 - 3 + 2)x^2 =10x^2题目14:合并同类项:8xy - 2xy + 3xy - 6xy解答:8xy - 2xy + 3xy - 6xy = (8 - 2 + 3 - 6)xy = 3xy题目15:合并同类项:-3a^2b + 2a^2b - 4a^2b + 6a^2b解答:-3a^2b + 2a^2b - 4a^2b + 6a^2b = (-3 + 2 - 4 + 6)a^2b = 1a^2b = ab解答:5x^3 - 3x^3 + 2x^3 - 6x^3 = (5 - 3 + 2 - 6)x^3 = -2x^3题目17:合并同类项:4y^2 - 2y^2 + 7y^2 - 3y^2解答:4y^2 - 2y^2 + 7y^2 - 3y^2 = (4 - 2 + 7 - 3)y^2 = 6y^2题目18:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目19:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目20:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目21:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5 + 2 - 4 + 3)a^2b = -4a^2b题目22:合并同类项:3x^3 - 2x^3 + 6x^3 - 4x^3解答:3x^3 - 2x^3 + 6x^3 - 4x^3 = (3 - 2 + 6 - 4)x^3 = 3x^3解答:4y^2 - 3y^2 + 7y^2 - 2y^2 = (4 - 3 + 7 - 2)y^2 = 6y^2题目24:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目25:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目26:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目27:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5。
合并同类项练习题及答案练习题1:合并下列各组数的同类项:1) 5x + 2x + 7x2) 3y + 4y + 6y3) 10a + 12a + 15a4) 2m + 5m + 8m答案1:1) 5x + 2x + 7x = 14x2) 3y + 4y + 6y = 13y3) 10a + 12a + 15a = 37a4) 2m + 5m + 8m = 15m练习题2:合并下列各组数的同类项:1) 2x^2 + 3x^2 + 5x^22) 4y^3 + 2y^3 + 6y^33) 7a^2b + 9a^2b + 12a^2b4) 2m^2n + 5m^2n + 8m^2n答案2:1) 2x^2 + 3x^2 + 5x^2 = 10x^22) 4y^3 + 2y^3 + 6y^3 = 12y^33) 7a^2b + 9a^2b + 12a^2b = 28a^2b4) 2m^2n + 5m^2n + 8m^2n = 15m^2n练习题3:合并下列各组数的同类项:1) 3x^2y + 2xy + 4xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c3) 8m^2n^3 + 5m^2n^4 + 6m^2n^34) 2x^3y^2z + 3xy^2z^2 + x^3yz^2答案3:1) 3x^2y + 2xy + 4xy = 3x^2y + 6xy = 3x^2y + 6xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c = 5a^2b^2c + ab^2c + 3ab^2c^23) 8m^2n^3 + 5m^2n^4 + 6m^2n^3 = 14m^2n^3 + 5m^2n^44) 2x^3y^2z + 3xy^2z^2 + x^3yz^2 = 2x^3y^2z + x^3yz^2 + 3xy^2z^2练习题4:合并下列各组式子的同类项:1) (2x + 5y) + (3x + 4y)2) (4a^2b - 3ab^2) + (ab - 2a^2b)3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3)4) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2)答案4:1) (2x + 5y) + (3x + 4y) = 5x + 9y2) (4a^2b - 3ab^2) + (ab - 2a^2b) = ab + 2a^2b - 3ab^2 + 4a^2b3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3) = 5mn^2 + m^2n^34) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2) = 3x^2 - 2xy练习题5:合并下列各组式子的同类项:1) 2(3x + 2y) + 3(4x + 3y)2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b)3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2)4) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2)答案5:1) 2(3x + 2y) + 3(4x + 3y) = 6x + 4y + 12x + 9y = 18x + 13y2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b) = 8a^2 - 4ab + 2ab^2 + 6a^2b = 14a^2 + 2ab^2 + 6a^2b3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2) = 15mn^2 + 20m^2n^3 + 6m^2n^3 + 3mn^2 = 18mn^2 + 26m^2n^34) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2) = 4x^2 + 2xy - 2y^2 + 3x^2 - 6xy + 3y^2 = 7x^2 - 4xy + y^2练习题6:合并下列各组式子的同类项:1) 2x(3x + 2y) + 3y(4x + 3y)2) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b)3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2)4) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2)答案6:1) 2x(3x + 2y) + 3y(4x + 3y) = 6x^2 + 4xy + 12xy + 9y^2 = 6x^2 +16xy + 9y^22) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b) = 8a^3 - 4a^2b + 2ab^3 + 6a^3b = 14a^3 + 2ab^3 + 2a^3b - 4a^2b3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2) = 15m^2n^3 +20m^3n^4 + 6m^2n^4 + 3mn^3 = 15m^2n^3 + 26m^3n^4 + 3mn^34) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2) = 4x^3 + 2x^2y - 2xy^2 + 3x^2y - 6xy^2 + 3y^3 = 4x^3 + 5x^2y - 8xy^2 + 3y^3练习题7:合并下列各组式子的同类项:1) 2x^2(3x + 2y) + 3xy(4x + 3y)2) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b)3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2)4) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2)答案7:1) 2x^2(3x + 2y) + 3xy(4x + 3y) = 6x^3 + 4x^2y + 12x^2y + 9xy^2 = 6x^3 + 16x^2y + 9xy^22) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 2a^3b^2 + 6a^4b = 14a^4 + 2a^3b^2 - 4a^3b + 6a^4b3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2) = 15m^2n^4 + 20m^3n^5 + 6m^3n^4 + 3m^2n^3 = 15m^2n^4 + 26m^3n^5 + 3m^2n^34) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2) = 4x^5 + 2x^3y - 2x^2y^2 + 3x^2y^2 - 6xy^3 + 3y^4 = 4x^5 + 2x^3y + x^2y^2 - 6xy^3 + 3y^4练习题8:合并下列各组式子的同类项:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y)2) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b)3) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2)4) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2)答案8:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y) = 6x^2 - 4xy + 9xy - 6y^2 + 12x^2 + 9xy + 16y^2 = 18x^2 + 24y^22) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 6a^3b^2 - 3a^2b^2 - 2a^3b^2 + a^2b^3 + 3a^4b^2 - 6a^3b^2 = 11a^4 -3a^2b^2 + a^2b^33) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2) = 6m^3n^5 + 2m^2n^4 + 12m^3n^5 +4m^2n^4 + 16mn^4 - 4m^3n^5 + 4m^2n^4 - 8mn^4 = 30m^3n^5 +14m^2n^4 + 8mn^44) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2) = 2x^4 - 4x^3y + 2x^2y^2 + 3x^3y - 6x^2y^2 + 3xy^3 - x^2y^2 +2xy^3 - y^4 + x^2 - 2xy + y^2 = 2x^4 - x^3y - 2x^2y^2 + 5xy^3 + x^2 +y^2。
合并同类项专项练习 50题选择题下列式子中正确的是()A.3a+2b =5abB. 3x 2 5x 5 8x 7C. 4x 2y 5xy 2下列各组中,不是同类项的是A 3 和 0B 、2 R2与 2R 2C 、xy 与 2pxy DF 列各对单项式中,不是同类项的是()1 2 2A.0 与B.3x n 2y m 与 2y m x n 2 C. 13x 2y 与 25yx 2 D. 0.4a b 与 0.3ab3如果-x a 2 y 3与 3x 3y 2b 1是同类项,那么a 、b 的值分别是()3卜列各组中的两项不属于冋类项的疋()2 3工门 2 3A. 3m n 和 m nB.空和 515xy C.-1和一4D.a 2 和 x 3下列合并同类项正确的是( )(A) 8a 2a 6;(B)5x 2 2x 3 7x 5J (C) 3a 2b 2ab 2a 2b ; (D) 2 25x y 3x y 28x y已知代数式x 2y 的值是3,则代数式2x 4y 1的值是A.1B.4C. 7D.不能确定x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A. yxB. y xC.10 y xD.100 y x某班共有x 名学生,其中男生占 51%,则女生人数为() A 、49%x B 、51%xx r xC 、 D、一49% 51% 一个两位数是a ,还有一个三位数是 b ,如果把这个两位数放在这个三位数的前面 ,组成一个五位数,则这个五位数的表示方法是10a b B. 100a b C. 1000a b填空题1 .2 .3 .4 .5 .6 .7 .8 .9 .10.2x y D.5 xy- 5yx =01x n1a 1 a A.B. b 2b0 a 2 a CD.2 b 1bD.1 n 1y11. _________________________________________________ 写出2x3y2的一个同类项.112•单项式一—x ab v a1与5X4V3是同类项,则a b的值为?313. 若4x a y x2y b__________ 3x2y ,贝U a b .14. ______________________________________________________ 合并同类项:3a2b 3ab 2a2b 2ab ____________________________________________ .115 .已知2x6y2和—x3m v n是同类项,贝U 9m2 5mn 17的值是316. _________________________________________________ 某公司员工,月工资由m元增长了10%后达到 _______________________________________ 元?三、解答题3 517. 先化简,再求值:-m (-m 1) 3(4 m),其中m 3.19.化简求值:5(沁ab2) (ab2沁),其中a i-b18•化简:7a b ( 4a b 2 2 25ab ) (2 a b 3ab ).2(mn 3m 2) [m 2 5(mn m 2) 2mn],其中 m 1,n21•化简求值:5a 2 [3a 2(2a 3) 4a 2],其中 a1222.给出三个多项式:】x 2 x , 1x 2 1,1x 2 3y ;2 3 2请你选择其中两个进行加法或减法运算,并化简后求值:其中x 1,y 2.2 2 123.先化简,再求值:5xy 8x 12x 4xy ,其中x , y 2 .224. 先化简,再求值?2 2 2 2 2 220.先化简,后求值:(5a -3b )+(a +b )-(5a +3b )其中a=-1 b=125. 化简求值2 2 2(-3 x -4 y)-(2 x -5 y+6)+( x-5 y-1) 其中x=-3 , y=-126. 先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2 ?27.有这样一道题:“计算(2x3 3x2y 2xy2) (x3 2xy2 y3)1 1其中x -, y 1?”甲同学把“ x —”错抄成了“ x2 2正确的,请你通过计算说明为什么?128.已知:(x 2)2 |y -1 0,求2(xy2 x2y) [2 xy2 3(12(x3 3x2y y3)的值,1―”但他计算的结果也是2x2y)] 2 的值?选择题 1 . D 2 . C 3 . D 4 . A 5 . D 6 . D 7 . C 8 . D 9 . A 10. C 、填空题3 211. 2x y (答案不唯一) 12. 4; 13. 314. 5a 2b ab ; 15. 1 16. 1.1m三、解答题17.3 解:一m 2(m 21) 3(4 m): 3 =m 2 5 m2 1 12 3m ()=4m 13当m3时, 4m 134 (3) 13 252 2 2 2=(7 4 2)a b (5 3)ab ( )= a b 8ab19.解:5(%夯—ab 2)-畅+加旬丁 =L5a 2fr-- ab* —3a^b= l2a 2b-6ab 22原式=-320.原式 mn ,当m 1,n2时,原式 1 ( 2) 2;21 .原式=9a 2 a 6 ;-2;1 o 1 2222. (1) (x x )+( x 3y )=x x 3y (去括号 2 分)2 22 2 218. 7a b ( 4a b 5ab )(2a 2b2 2 2 2 23ab ) = 7a b 4a b 5ab 2a b3ab 2参考答案当x 1,y 2,原式=(1)2( 1) 3 2 6(2)( 1x2 x)-( !x2 3y) = x 3y (去括号2 分)2 2当x 1,y 2,原式=(1) 3 2 7f 1 2 1 2 彳5 2 5(x X)+(二X 1)= x 1 —2 3 6 6#1 2 1 2 1 2 11(x x)-( x 1)= x x 1 ——2 3 6 6c 1 2 ‘ 5 2 ‘ 47(x23y)+( 1)= x 3y 12 3 6 61 2 1 2 1 2 31(x 3y)-( -x 1)= x 3y 1 —2 3 6 623.解:原式 25xy 8x 212x 4xy 5xy 4xy 12x28x2xy 4x2当x 1 亠,y 2 时, 原式=—2 4 1=02 2 22 2 2 2 2 2 2 224.解:原式=5a -3b +a +b -5a -3b =-5b +a2当a=-1 b=1 原式=-5X1 +(-1) 2=-5+1=-4 25. 33. 26 . -827.解:•••原式=2x32 23x y 2xy 3 2 3 3x 2xy y x 3x2y y3(2 1 1)x3( 3 3)x2y ( 2 2)xy2( 1 1)y32y3•此题的结果与x的取值无关?28 .解:原式=2xy2 2x2 2y [2xy 3 x2y]2=2 2 2 2=2xy2 2x2y 2xy2 3 x2y 2=(2 2)xy2(2 1)x2y (3 2)= 2x y 12 1 0 又T (x 2 1 1 v(x 2) 0, |y | 2) |y | 0 • x 2, y2 2 2 •••原式=(2)2 11=32合并同类项专项练习50题(二)1.判断下列各题中的两个项是不是同类项,是打",错打1 2 2⑴一 x y 与-3y x 2 ()32 2⑵ab 与a b ()⑶ 2a 2bc 与-2 ab 2c () (4) 4xy 与 25yx () (5)24 与-24() ⑹x 2与22()1 2 1 A. x z B. xy C. 2 24.下列各组式子中,两个单项式是同类项的是(5. 下列计算正确的是( x 2 x 2 2 C. 7mn-7nm=0 D.a+a=6. ________________________________ 代数式-4a b 2与3ab 2都含字母 ,并且 都是一次, 都是二次,因此-4a b 2 与3 ab 2是 _______7. 所含 ___ 相同,并且 _________ 也相同的项叫同类项。
合并同类项专项练习 50 题(一)一、选择题1 . 下列式子中正确的是( )A.3 a+2b =5abB.3x 25x 58x 7222xy-yxC. 4x y 5xyxyD.55 =02 . 下列各组中 , 不是同类项的是A 、 3 和 0 B、 2 R 2与 2 R 2C 、 xy 与 2pxyD 、x n 1 y n 1与3y n 1x n 13 .下列各对单项式中, 不是同类项的是 ( )A.0 与1B.3x n 2 y m 与 2 y m x n 2 C. 13x 2 y 与 25yx 2 D. 0.4a 2 b 与 0.3ab234 .如果1x a 2 y 3与 3x 3 y2b 1是同类项 , 那么 a 、 b 的值分别是 ( )3a 1 a 0a 2 a 1A.2B.C.bD.b 1bb 215 .下列各组中的两项不属于同类项的是( )A. 3m 2 n 3 和 m 2 n3B.xy5和 5xyC.-1和1D.a 2 和 x 346 .下列合并同类项正确的是( )(A) 8a 2a 6 ;(B)5x 22x 3 7x 5 ;(C) 3a 2 b2ab 2a 2b ; (D)5x 2 y 3x 2 y8x 2 y7 .已知代数式x 2 y 的值是 3, 则代数式 2x4y1的值是A.1B.4C. 7D. 不能确定8 . x 是一个两位数 ,y 是一个一位数 , 如果把 y 放在 x 的左边 , 那么所成的三位数表示为A. yxB. y xC.10 y xD.100 y x9 . 某班共有 x 名学生 , 其中男生占 51%,则女生人数为()A 、 49%xB、 51%xC、xD、x49%51%10. 一个两位数是 a , 还有一个三位数是 b , 如果把这个两位数放在这个三位数的前面, 组成一个五位数 , 则这个五位数的表示方法是 ( )10a b B. 100a b C. 1000a bD.a b二、填空题11.写出2x3 y2的一个同类项_______________________.12.单项式-1 xa b y a 1与5x4 y3是同类项, 则a b 的值为_________?313.若4x a y x2 y b 3x2 y , 则a b __________.14.合并同类项:3a2b 3ab 2a 2b 2ab _______________ .15 .已知2x6 y2和1 x3m y n是同类项, 则 9m2 5mn 17 的值是_____________. 316.某公司员工, 月工资由m元增长了10%后达到_______元 ?三、解答题17.先化简,再求值: 3 m2(5 m21) 3( 4 m) ,其中m 3 .18.化简 : 7 2 ( 4 2 5ab 2 ) (22 3 2).a b a b a b ab19.化简求值 : 5(32 b ab 2 ) ( a b 2 3 2 b ) 1 1a a , 其中 a ,b.2 320.先化简 , 后求值 :2(mn 3m2 ) [m 25( mn m 2 ) 2mn] ,其中 m 1, n 2 21.化简求值 : 5a2 [3a 2(2a 3) 4a 2 ] ,其中 a 1222.给出三个多项式 : 1x2 x , 1 x2 1 , 1 x2 3y ;2 3 2请你选择其中两个进行加法或减法运算, 并化简后求值 : 其中x1,y 2 . 23.先化简 , 再求值 : 5xy 8x2 12x2 4xy ,其中x 1 , y 2 .224.先化简 , 再求值 ?(5a 2-3b 2)+(a 2+b2)-(5a 2+3b2) 其中 a=-1 b=125.化简求值(-3 x2-4 y)-(2 x2-5 y+6)+( x2-5 y-1)其中x=-3 , y=-126.先化简再求值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2 ?27.有这样一道题 : “计算(2 x3 3x2 y 2xy 2 ) (x3 2xy 2 y3 ) ( x3 3x2 y y3 ) 的值,1x 1 1其中 x, y1?”甲同学把“”错抄成了“ x ”但他计算的结果也是2 2 2正确的 , 请你通过计算说明为什么?28.已知 : (x 2)2 | y 1| 0 ,求 2( xy2 x2 y) [2 xy 2 3(1 x2 y)] 2 的值? 2参考答案一、选择题1. D2. C3. D4. A5. D6. D7. C8. D9. A10.C二、填空题11.2x3y2(答案不唯一)12.4;13.314.5a2b ab ;15. 116.11.m三、解答题3m 51) 3(43m51 12 3m ( )= 4m 1317.解: ( m m) = m2 2 2 2当 m 3时, 4m 13 4 ( 3) 13 2518.7a2b ( 4a2 b 5ab 2 ) (2a 2b 3ab2 ) = 7a 2b 4a2 b 5ab 2 2a 2b 3ab2 =( 7 4 2)a 2b (5 3)ab 2 ( )= a 2b 8ab 219.解 :原式 = 2320.原式mn ,当 m 1, n2 时,原式 1 ( 2)2 ;21.原式 = 9a 2 a 6 ;-2;22. (1) ( 1 x2 x )+( 1 x2 3 y )= x2 x 3y2 2当 x 1, y 2 ,原式=( 1)2 ( 1) 3 2 6( 去括号 2 分 )(2)( 1x 2 x )-( 1 x 2 3y ) = x 3y ( 去括号 2 分 )22当 x 1, y 2 , 原式 = ( 1) 3 27 ( 1 x 2x )+( 1 x 2 1)= 5 x 2x1 523 66( 1x 2x )-( 1 x 2 1)= 1 x 2 x 1 1123 6 6 ( 1 x 23 y )+( 1 x 2 1)=5 x 2 3y 1 4723 66 ( 1 x 2 3 y )-( 1x 21)= 1 x 2 3y 1 312 3 6623.解 : 原式 5xy 8x 212 x 2 4xy5xy 4xy12x 2 8x 2 xy 4x 2当 x12 时 , 原式 =1 1 , y22 4222222222224.解 : 原式 =5a -3b +a +b -5a -3b=-5b +a当 a=-1 b=122=-5+1=-4原式 =- 5×1+(-1) 2=025. 33. 26 . -827.解 : ∵原式 = 2x 3 3x 2 y 2xy 2x 3 2xy 2y 3 x 3 3x 2 y y 3(2 1 1)x 3( 3 3) x 2 y ( 2 2) xy 2( 1 1) y 32 y 3∴此题的结果与 x 的取值无关 ?28 . 解 : 原 式 = 2xy 22x 2 y [2 xy 2 3 x 2 y] 2 = 2xy 2 2x 2 y 2xy 2 3 x 2 y 2=(2 2) xy 2 (2 1)x 2 y (3 2) = x 2 y 1∵ ( x 2)20 , | y1| 0 又∵ ( x 2) 2 | y 1 | 0 ∴ x2 , y11 2 22∴原式 = (2)2 1=32合并同类项专项练习 50 题(二)1. 判断下列各题中的两个项是不是同类项,是打√,错打 ⑴1x 2 y 与-3y x 2( )3⑵ ab 2 与 a 2b ( ) ⑶ 2a 2 bc 与 -2 ab 2 c( ) ( 4) 4xy 与 25yx ( ) (5)24 与-24 ( ) (6) x 2 与 22( )2. 判断下列各题中的合并同类项是否正确,对打√,错打(1) 2x+5y=7y ( ) ( 2.)6ab-ab=6( )(3)8x3y9xy 3x 3 y ()(4)5 m 3 2m 31()22(5)5ab+4c=9abc ( ) (6)3x 3 2x 25x 5()(7) 4x 2 x 2 5x 2( )(8)3a 2b 7ab 24ab() 3. 与1x 2 y 不仅所含字母相同,而且相同字母的指数也相同的是()21 x2 z1xyA. B.C.yx 2 D. xy 24.22下列各组式子中,两个单项式是同类项的是()A.2a 与 a2B.5a 2b 与 a 2 bC. xy与 x 2 yD. 0.3mn 2 与 0.3x y 25. 下列计算正确的是()A.2a+b=2abB.3x 2 x 22C. 7mn-7nm=0D.a+a= a 26. 代数式 -4a b 2 与 3 ab 2都含字母,并且都是一次,都是二次,因此 -4a b 2与 3 ab 2 是7. 所含 相同,并且也相同的项叫同类项。
合并相似问题常见小题训练(50题)以下是合并相似问题的常见小题训练,共包括50个问题。
希望对您的研究和练有所帮助。
1. 如何合并相似的问题?2. 合并相似问题是否可以提高效率?3. 为什么要合并相似问题?4. 合并相似问题的具体步骤是什么?5. 在合并相似问题时应注意哪些问题?6. 如何确定哪些问题适合合并?7. 如何处理合并后的问题?8. 在合并相似问题时,有哪些常见错误需要避免?9. 什么是问题合并的最佳实践?10. 问题合并对于团队协作有哪些好处?11. 如何在写作时合并相似问题?12. 为什么要在写作时合并相似问题?13. 写作时合并相似问题有哪些技巧?14. 如何处理合并后的问题的解答内容?15. 合并相似问题的写作流程是什么?16. 写作时合并相似问题的注意事项有哪些?17. 是否应该在合并相似问题时提供多个解答?18. 如何判断哪些问题可以合并?19. 如何进行问题合并的排练和实践?20. 问题合并对于写作风格有什么影响?21. 如何在演讲中合并相似问题?22. 为什么要在演讲中合并相似问题?23. 演讲中合并相似问题有哪些技巧?24. 如何处理合并后的问题的回答内容?25. 演讲时合并相似问题的流程是什么?26. 演讲时合并相似问题的注意事项有哪些?27. 是否应该在合并相似问题时提供多个回答?28. 如何判断哪些问题适合合并?29. 如何进行问题合并的练和实践?30. 问题合并对演讲效果有什么影响?31. 如何在讲座中合并相似问题?32. 为什么要在讲座中合并相似问题?33. 讲座中合并相似问题有哪些技巧?34. 如何处理合并后的问题的回答内容?35. 讲座时合并相似问题的流程是什么?36. 讲座时合并相似问题的注意事项有哪些?37. 是否应该在合并相似问题时提供多个回答?38. 如何判断哪些问题能够合并?39. 如何进行问题合并的练和实践?40. 问题合并对讲座效果有什么影响?41. 如何在会议中合并相似问题?42. 为什么要在会议中合并相似问题?43. 会议中合并相似问题有哪些技巧?44. 如何处理合并后的问题的回答内容?45. 会议时合并相似问题的流程是什么?46. 会议时合并相似问题的注意事项有哪些?47. 是否应该在合并相似问题时提供多个回答?48. 如何判断哪些问题适合合并?49. 如何进行问题合并的练和实践?50. 问题合并对会议效果有什么影响?希望以上问题能够提供参考和练,通过合并相似问题的训练,您将能够更好地应对各种情况,并提高问题解决和回答的效率。
合并同类项常见大题训练(50题)一、填空题1.-2xy的一个同类项是2xy。
2.a-b的值为-8.3.a+b的值为-3.4.合并同类项后为4ab。
5.月工资增长后为1.1m元。
6.4x和-7x是4x+4xy-8y-3x+1-5x+6-7x中的同类项,6是独立的常数项。
二、解答题7.先化简:m- (m-1) + 3(4-m) = m - m + 1 + 12 - 3m = -2m + 13.然后代入m=-3,得到答案为19.8.7ab + (-4ab + 5ab) - (2ab - 3ab) = 7ab - ab = 6ab。
9.5(3ab - ab) - (ab + 3ab) = 10ab - 4ab = 6ab。
10.先化简:-2(mn - 3m) - [m - 5(mn - m) + 2mn] = -2mn + 6m - m + 5mn - 5m + 2mn = 4mn - 4m。
然后代入m=1,n=-2,得到答案为-4.11.先化简:-12x + 4xy / (2x) = -6 + 2y。
然后代入x=-2,y=2,得到答案为-2.12.先化简:5a - [3a - 2(2a - 3) - 4a] = 5a - (3a - 4a - 4) = 5a - (-1a + 4) = 6a - 4.然后代入a=-1,得到答案为-10.13.先化简:222(5a-3b)+(a+b)-(5a+3b) = 222a - 222b。
然后代入a=-1,b=1,得到答案为-444.14.先化简:222(-3x-4y)-(2x-5y+6)+(x-5y-1) = -666.然后代入x=-3,y=-1,得到答案为-666.15.先化简:(ab - 3a) - 2b - 5ab - (a - 2ab) = -4ab - 2a - 2b。
然后代入a=1,b=-2,得到答案为-10.16.(2x-3xy-2xy)-(x-2xy+y)+(-x+3xy-y) = 0,因为括号内的各项可以两两抵消。
第1篇一、题目1. 计算:3a - 2a + 4b - 5b + 6c - 7c2. 计算:2(x + 3) - 5(x - 2) + 4x3. 计算:3(2x - 4y + 5z) - 4(3x + 2y - z)4. 计算:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z)5. 计算:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^26. 计算:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x7. 计算:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2)8. 计算:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2)9. 计算:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2)10. 计算:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2)二、解答1. 首先合并同类项,即合并含有相同字母的项:3a - 2a + 4b - 5b + 6c - 7c = (3 - 2)a + (4 - 5)b + (6 - 7)c = a - b - c所以,计算结果为:a - b - c2. 首先去括号,然后合并同类项:2(x + 3) - 5(x - 2) + 4x = 2x + 6 - 5x + 10 + 4x= (2x - 5x + 4x) + (6 + 10)= x + 16所以,计算结果为:x + 163. 首先去括号,然后合并同类项:3(2x - 4y + 5z) - 4(3x + 2y - z) = 6x - 12y + 15z - 12x - 8y + 4z= (6x - 12x) + (-12y - 8y) + (15z + 4z)= -6x - 20y + 19z所以,计算结果为:-6x - 20y + 19z4. 首先去括号,然后合并同类项:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z) = -5x + 10y - 15z + 6x + 24y - 12z - 2x + 6y - 10z= (-5x + 6x - 2x) + (10y + 24y + 6y) + (-15z - 12z - 10z)= -x + 40y - 37z所以,计算结果为:-x + 40y - 37z5. 首先合并同类项:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^2 = (2a^2 + 4a^2) + (3ab - 2ab) + (-5b^2 + b^2)= 6a^2 + ab - 4b^2所以,计算结果为:6a^2 + ab - 4b^26. 首先合并同类项:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x = (-3x^2 + 4x^2) + (2x - 2x) + (-5y^2 + 3y)= x^2 + 3y - 5y^2所以,计算结果为:x^2 + 3y - 5y^27. 首先去括号,然后合并同类项:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2) = 4x^2 - 12xy + 8y^2 - 3x^2 - 6xy + 3y^2= (4x^2 - 3x^2) + (-12xy - 6xy) + (8y^2 + 3y^2)= x^2 - 18xy + 11y^2所以,计算结果为:x^2 - 18xy + 11y^28. 首先去括号,然后合并同类项:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2) = -2a^2 + 6ab - 4b^2 + 5a^2 + 20ab - 5b^2= (-2a^2 + 5a^2) + (6ab + 20ab) + (-4b^2 - 5b^2)= 3a^2 + 26ab - 9b^2所以,计算结果为:3a^2 + 26ab - 9b^29. 首先去括号,然后合并同类项:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2) = 6x^2 - 15xy + 9y^2 -12x^2 - 8xy + 8y^2= (6x^2 - 12x^2) + (-15xy - 8xy) + (9y^2 + 8y^2)= -6x^2 - 23xy + 17y^2所以,计算结果为:-6x^2 - 23xy + 17y^210. 首先去括号,然后合并同类项:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2) = -4a^2 + 8ab - 12b^2 + 3a^2 + 15ab - 12b^2= (-4a^2 + 3a^2) + (8ab + 15ab) + (-12b^2 - 12b^2)= -a^2 + 23ab - 24b^2所以,计算结果为:-a^2 + 23ab - 24b^2通过以上解答,我们可以看到合并同类项的计算方法。
合并同类问题常见小题训练(50题)
本文档包含50个常见的合并同类问题的训练题。
以下是每个
问题及其解答:
1. 问题:什么是合并同类问题?
答案:合并同类问题是指将具有相似特征或属性的事物或概念
合并在一起的过程。
2. 问题:合并同类问题的优点是什么?
答案:合并同类问题可以简化信息,提高效率,减少重复工作,并促进整体理解。
3. 问题:列举几个常见的合并同类问题的例子。
答案:常见的合并同类问题包括合并相似的产品类别、整合销
售数据、合并相似的任务或工作流程等。
4. 问题:合并同类问题的步骤是什么?
答案:合并同类问题的步骤包括识别相似之处,创建一个合并
计划,整合相关信息,执行合并,评估合并的效果。
5. 问题:为什么合并同类问题需要注意事项?
答案:合并同类问题可能涉及到数据丢失、相关关系的破坏以及工作流程的混乱等问题,需要谨慎处理。
......
50. 问题:合并同类问题对于企业有什么影响?
答案:合并同类问题可以帮助企业优化运营流程,提高效率,降低成本并增强竞争力。
以上是合并同类问题常见小题训练的50个题目及其解答。
希望对您有所帮助!。
合并同类项分类练习一、常规合并1、3ab-4ab+8ab-7ab+ab.2、7x-(5x-5y)-y.3、a3bc2-15ab2c+8abc-24a3bc2-8abc.4、-7x2+6x+13x2-4x-5x2.5、2y+(-2y+5)-(3y+2).6、(2x2-3xy+4y2)+(x2+2xy-3y2).7、2a-(3a-2b+2)+(3a-4b-1).8、-6x2-7x2+15x2-2x2.9、2x-(x+3y)-(-x-y)-(x-y).10.2x+2y-[3x-2(x-y)].11.5-(1-x)-1-(x-1).12.(-y+6+3y4-y3)-(2y2-3y3+y4-7)13.4x2-[7x2-5x-3(1-2x+x2)] 14. -(2x2-y2)-[2y2-(x2+2xy)]二、补充括号类型(和差类型)1.( )+(4xy+7x2-y2)=10x2-xy.2.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.3. 2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).4. [5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.5. 减去-3m等于5m2-3m-5的代数式是( )6. 若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为____ __.7. 已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.8. 一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.三、绝对值的化简1. 若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.2. 已知2<x<5,化简|2-x|-|x-5|+|x-8|= .3.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.4.已知x≤y,x+y-|x-y|=______.5.已知x<0,y<0,化简|x+y|-|5-x-y|=______.6. 已知x<-4,化简|-x|+|x+4|-|x-4|四、化简求值问题:1、5a2-(3b2+7ab)+(2b2-5a2),其中a=0.1,b= -0.5;2、(3x2-4)- (2x2-5x+6)+(x2-5x),其中x= -2;3、已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.4、已知|a+2|+(b+1.5)2=0,求3ab2-5b3a+0.5a3b-3b2a+5ab3-4.5a3b的值五、同类项的概念理解1、如果2a2b n+1与-4a m b3是同类项,则m= ,n= .2、如果5x2y与x m y n是同类项,那么m =____,n =____.3、已知单项式2a m-2b3与-8a4的次数相同,求m的值。
100道合并同类项数学题1、合并同类项得7ab。
2、展开括号得6x-4y。
3、合并同类项得-16a3bc2-15ab2c。
4、合并同类项得2x2+2x。
5、合并同类项得-3y+3.6、展开括号并合并同类项得3x2-xy-y2.7、合并同类项得5a-2b-1.8、合并同类项得-4x2.9、展开括号并合并同类项得3x+4y。
10、展开括号并合并同类项得-x+2y。
11、合并同类项得-x+3.12、合并同类项得-2x2y。
13、A+B=3x3-2x2+4x-1.14、A-B=-x3-2x2+x-7.15、代入a和b的值得0.14.16、该多项式为-m4-m3-2m2+2m+4.17、展开括号并合并同类项得-x2-4xy-3y2.18、x=1/3,y=2/5.19、合并同类项得3y4-4y3-2y2+6.20、化简得-3x2+5x+3.21、展开括号并合并同类项得4a-5b。
22、展开括号并合并同类项得2x。
23、填入空格得(5a+1)(a-7)+(a-1)(a-1)=a2+2a+1.24、展开括号得2x+y。
25、根据绝对值的性质化简得2x-2y+1.26、根据绝对值的性质化简得2y。
27、根据绝对值的性质化简得4.28、化简得3a2n-3an。
29、化简得x2y+3xy2+3xy。
30、合并同类项得-2xm。
31、化简得-1.32、化简得-7.33、化简:-2(3x+z)+6x-5y+3z34、化简:-5an-an+1+7an-1+3an35、化简:5a-2a+4b+8c+6c-6b36、化简:9a2+8a2+2a37、化简:5(x-2y)2+3(2y-x)-10038、化简:-3(x+y)39、化简:4a+10b40、化简:-7a2-7ab41、化简:-1042、化简:043、化简:-344、化简:-145、化简:-3an46、化简:2a-3b-a247、化简:-x3+4x2-8x+348、化简:0.8x3+0.3xy2-y349、化简:-a2b+3abc-4ab2+2a2b50、化简:6a2b+5ab251、化简:7x2+2y252、化简:3a6+2a5-2a4-3a3-353、化简:-6a-9b+2c54、化简:2m+6n55、化简:-2a2-5ab+3b256、化简:2xy-7z57、化简:-x3+3x2-11x-458、化简:-2x+4y-6z59、化简:2x4-x3-2x-160、化简:4a2-2ab+b261、化简:6a2-4ab+5b262、化简:-n63、化简:7mn2-m2n64、4x-2y+9z65、-2x2-266、11a2-8ab+2b267、-10x+2768、-2569、6(a2+b2+c2)70、-871、4P72、-4473、-6274、x3+15x2-12x75、a-b76、-2x77、-2x3+18x2-14x+2778、-14y2-2y79、-x3-3x2+3x+3y2-2y380、-1081、5x-1.2z-5.8-4.1y82、8m2n-mn-mn283、(m+n+1)。
合并同类项经典提高练习题
1
合并同类项经典练习题
1. 单项式—3x ab y a ‘与5x 4y 3是同类项,求a —b 的值
2. x 5— y 3+ 4x 2y — 4x + 5,其中 x =— 1, y =— 2;
3. x 3— x + 1 — x 2,其中 x = — 3;
k k 2 2 n
2 n 5.若2x y 与3x y 的和为5x y ,则k= ______________ , n=
6.. 求 5xy — 8x 2 + y 2— 1 的值,其中 x = - , y = 4;
2
7.. 若2|2x — 11+ 3l y-4匸0,试求多项式1-xy 的值.
8. 若 | x - 4「(2y - x )2 = 0,求代数式 X 2 - 2x^ y 2 的值。
9. 求 3y 4— 6x 3y — 4y 4+2yx 3 的值,其中 x=— 2, y=3。
a “1
b -‘2 2 2 2 2 1 2
10. 已知3x y 与 X 是同类项,求2ab ?3ab-;ab 的值。
5 2 11. 求多项式3x 2 ■ 4x - 2x 2 x 2 - 3x- 1 的值,其中 x = — 2.
12. 求多项式 a 3 - a 2b ' ab 2 a 2^ ab 2
' b 3的值,其中 a = — 3,b=2. 13. 有理数a ,b ,c 在数轴上的位置如图所示化简 a-b-b-c-c+a
1 I ■ 11
14已知:多项式 6 — 2x 2 — my —
12+3y — nx 2合并同类项后不含有x 、y ,求:2m+3n-mn 的值。
15.有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算, 6 2 _ 4.已知2x y 和- 3m n -x y 3
是同类项,求9m 2 -5mn - 17 的值
结果得到2 x^x+3,正确的结果应该是多少?
1。