初一数学练习:合并同类项练习题
- 格式:doc
- 大小:17.50 KB
- 文档页数:5
初一数学去括号合并同类型1.不是同类项的一对式子是()A. 与B. 与C. 与D. 与2.下列各式计算正确的是()A. 2a+3b=5abB. 3a2+2a3=5a5C. 6ab-ab=5abD. 5+a=5a3.下列运算正确的是()A. 3a-a=2B. -a2-a2=0C. 3a+a=4a2D. 2ab-ab=ab4.下列各组中的两个单项式,是同类项的是().A. B. C. D.5.计算2a-3a,结果正确的是()A. -1B. 1C. -aD. a6.下列运算正确的是()A. 3x+2x=5x2B. 3x-2x=xC. 3x·2.x=6.xD. 3.x÷2x=7.如果3ab2m-1与9ab m+1是同类项,那么m等于( )A. 2B. 1C. ﹣1D. 08.下列各式中,是同类项的是()A. B. C. D.9.下列计算正确的是()A. 6a-5a=1B. a+2a2=3aC. -(a-b)=-a+bD. 2(a+b)=2a+b10.下面各组数中,不相等的是()A. ﹣8 和﹣(﹣8)B. ﹣5 和﹣(+5)C. ﹣2 和+(﹣2)D. 0和11.下列各式中结果为负数的是( )A. B. C. D.12.去括号得()A. B. C. D.13.下列各式去括号正确的是()A. a-(b-c)=a-b-cB. a +(b-c)=a+b-cC. D.14.下列去括号正确的是().A. x2−(x−3y)=x2−x−3yB. x2−3(y2−2xy)=x2−3y2+2xyC. m2−4(m−1)=m2−4m+4D. a2−2(a−3)=a2+2a−615.下列变形中,不正确的是()A. a﹣(b﹣c+d)=a﹣b+c﹣dB. a﹣b﹣(c﹣d)=a﹣b﹣c﹣dC. a+b﹣(﹣c﹣d)=a+b+c+dD. a+(b+c﹣d)=a+b+c﹣d16.-(-a+b-1)去括号正确的结果是( )A. -a+b-1B. a+b+1C. a-b+1D. -a+b+1二、填空题(共5题;共5分)17.若与是同类项,则m= ________18.计算:7x-4x=________.19.合并同类项:________.20.若5a m b2n与-9a5b6是同类项,则m+n的值是________ 。
2018-2019 学年度苏科版数学合并同类项1.下列各组的两项中,不是同类项的是()A.2x2y3,﹣3y3x2B.23,32C.a2,b2D.﹣3ab,3ab2.下列各组整式中,是同类项的是()A.3a2b 与5ab2 B.5ay2 与2y2 C.4x2y 与5y2x D.nm2 与m2n3.若﹣2a m b4与5a2b2+n是同类项,则m n的值是()A.2 B.0 C.4 D.14.下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn 与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2 A.1组B.2 组C.3 组D.4 组5.计算x2y﹣3x2y 的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x7.下面是小林做的4 道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2 分,则他共得到()A.2分B.4 分C.6 分D.8 分8.若2b2n a m与﹣5ab6的和仍是一个单项式,则m、n 值分别为()A.6, B.1,2 C.1,3 D.2,39.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6 B.6 C.5 D.1410.合并同类项m﹣3m+5m﹣7m+…+2013m 的结果为()A.0 B.1007mC.m D.以上答案都不对11.若3x n y m 与x4﹣n y n﹣1 是同类项,则m+n= .12.若单项式2a x+1b 与﹣3a3b y+4是同类项,则x y= .13.任写一个与﹣a2b 是同类项的单项式.14.当k= 时,﹣3x2y3k与4x2y6是同类项.15.若单项式与﹣2x b y3的和仍为单项式,则其和为.16.计算:3a2b﹣a2b= .17.若单项式2x m y3与单项式﹣5xy n+1的和为﹣3xy3,则m+n= .18.把(x﹣y)看作一个整体,合并同类项:5(x﹣y)+2(x﹣y)﹣4(x﹣y)= .三.解答题(共4 小题)19.下列各题中的两项哪些是同类项?(1)﹣2m2n 与﹣m2n;(2)x2y3与﹣x3y2;(3)5a2b 与5a2bc;(4)23a2与32a2;(5)3p2q 与﹣qp2;(6)53与﹣33.20.合并同类项:(1)7a+3a2+2a﹣a2+3;(2)3a+2b﹣5a﹣b;(3)﹣4ab+8﹣2b2﹣9ab﹣8.21.已知﹣a2m b n+6与是同类项,求m、n 的值.22.如果﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,求(m﹣n)(2a﹣b)的值.参考答案一.选择题(共10 小题)1.C.2.D.3.C.4.C.5.B.6.C.7.C.8.C.9.B.10.B.二.填空题(共8 小题)11.3.12..13.a2b 14.2.15.﹣x2y3.16.2a2b.17.3.18.3(x﹣y).三.解答题(共4 小题)19.解:(1)是同类项;(2)相同的字母的指数不同;(3)所含的字母不同;(4)是同类项;(5)是同类项;(6)是同类项.答:(1)、(4)、(5)、(6)是同类项;(2)、(3)不是同类项.20.解:(1)原式=2a2+9a+3;(2)原式=﹣2a+b;(3)原式=﹣2b2﹣13ab.21.解:由﹣a2m b n+6与是同类项,得,解得.22.解:∵﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.§3.4 合并同类项第三份练习答案:参考答案1.B 2.C 3.C 4.A 5.B 6.D 7.-4xy2 -3m 9.24x 72 10.1 2 -3 11.0 12.n2xy 13.(1) 9a + x 1x2 y 8.1 3 6(2) -10a2 +14ab-2 (3)1721-b2 (4) 3x3 + 2x + 3 (5) 7(m + n)2+(m + n)a3 3 12+ ab2(6) 9a n-9a n+1 14.(1) -4a3-2a2 + 16a-3 7(2) x3-y3,-72 15.原式=(m-2)3 4 12x3+(3n—1) xy2+y,因为结果中不含有三次项,所以m=2,3n=1,因而2m+3n=2×2+1=5.16.由已知得m 1 =6,n2=4,即m-1=6 或m-1=-6,n=±2,∴m=7 或m=-5,n=±2.17.m=3,原式=-4.⎨⎨⎨⎨【基础巩固】1.计算:2x -3x =.7 上 3.4 合并同类项2. 当 m =时,-x 3b 2m与 1 x 3b 是同类项. 43. 写出-2x 3y 2的一个同类项 .4.若单项式 3x 2y n 与-2x m y 3是同类项,则 m +n = .1 a +ba -14 35. 单项式- x +y 3与 5x y 是同类项,则 a -b 的值为.6.下列各组中两个单项式为同类项的是 ( )A . 2 x 2-y 与-xy 2B .0.5a 2b 与 0.5a 2c3C .3b 与 3abcD .-0.1m 2n 与 1 nm 227.下列合并同类项正确的是 ( ) A .2x +4x=8x 2B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=01 a +2 33 2b -18. 如 果 x 3y 与-3x y 是同类项,那么 a 、b 的值分别是( )⎧a = 1 A . ⎩b = 2⎧a = 0 B . ⎩b = 2⎧a = 2 C . ⎩b = 1⎧a = 1 D . ⎩b = 19. 计算 a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 410.合并下列各式中的同类项:(1)-4x 2y -8xy 2+2x 2-y -3xy 2;(2) 3x 2 -1 - 2x - 5 + 3x - x 2 ;(3)-0.8a 2b -6ab -1.2a 2b +5ab +a 2b ;(4)5yx -3x 2y -7xy 2+6xy -12xy +7xy 2+8x 2y .11. 求下列多项式的值:(1) 2 a 2 - 8a - 1 + 6a - 2 a 2 + 1 ,其中 a = 1 .3 2 34 2(2) 3x2 y2 + 2xy - 7x2 y2 -3xy + 2 + 4x2 y2 ,其中 x=2,y=1.212.在 2x2y、-2xy2、3x2y、-xy 四个代数式中,找出两个同类项,并合并这两个同类项.【拓展提优】13.已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=.14.若-4xay+x2yb=-3x2y,则 a+b=.15.下面运算正确的是( )A.3a+2b=5ab B.3a2b-3ba2=0C.3x2+2x3=5x5D.3y2-2y2=116.已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1C.-13x-1 D.13x+117.合并同类项: (1)2(x-y)+3(x+y)2-5(x-y)-8(x+y)2-(x-y);(2)3a m-4a n+1-5a m+4a m+1-3;(3)2(a-2b)2-7(a-2b)3+3(2b-a)2+(2b-a)3;(4) 0.5a n - 0.4a n-1 - 0.1 +1a n-1 +1.2 518.已知 8x2y m与- x n+4 y39是同类项,求多项式 m3-3m2n+3mn2-n3的值.19.先化简,再求值:(1)3x2y2+3xy-7x2y2-5xy+2+4x2y2,其中 x=-2,y=-1.2 4(2)3ab2+0.5a3b-3ab2-5ab3-9a3b+5b3a,其中 a=1,b=11.2 2 220.用a 表示一个两位数十位上的数字,b 表示个位上的数字,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得的数与原数的和,这个和能被 11 整除吗?21.设 m 和n 均不为零,3x2y3和-5x2+2m+n y33m3 -m2 n + 3mn2 + 9n3是同类项,求的值.5m3 + 3m2 n - 6mn2 + 9n3【基础巩固】1.-x 2.12参考答案3.答案不唯一4.5 5.4 6.D 7.D 8.A 9.B10.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)5x2y-xy 11.(1)-54 (2)3 12.略【拓展提优】13.13 14.3 15.B 16.A 17.(1)-5(x+y)2-4(x-y) (2)-2a m-3(3)5(a-2b)2-8(a-2b)3(4)a n+0.1 18.125 19.(1)214 (2)-3420.原数为 10a+b.调换位置后的数为 10b+a,两数和为 11a+11b,所以能被 11 整除.c dc 21. 5597§3.4 合并同类项1. 当 n 等于 3 时,下列各组是同类项的是( )A. x n 与 x 3 y n -1B . 2x n y n -1 与 3x 6-n y 23C .5x 2 y n -2 与 5y 2x n -2D .-2x 3 y 与 2x n -6 y32. 下列计算正确的是 ( ) A .2a + b =2ab B .3x 2-x 2=2 C .7mn -7nm =0 D .a + a =a 23. 如果单项式-x a +1y 3 与 1y b x 2 是同类项,那么 a ,b 的值分别为2( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =24. 把 多 项 式 2x 2- 5x + 3- x 2- 5 + x 合 并 同 类 项 后 , 新 得 到 的 多 项 式 是 ( )A. 二次三项式 B .二次二项式 C .单项式 D .一次多项式5.若-3x 2m y 3 与 2x 4 y n 是同类项,则 m - n 的值是()A .0B .1C .7D .-1 6.若 n 为正整数,那么(-1) n a + (-1) n +1a 化简的结果是( )A .2a 与-2aB .2aC .-2aD .0 7.合并合类项:(1) 3xy 2-7xy 2=;(2) -m -m -m =;(3) x 2 y - 1 x 2 y - 1x 2y2 3= .8. 若两个单项式 2a 3 b 2m 与- 3a n b n - l 的和仍是一个单项式, 则 m = , n = .9. 三角形三边长分别为 6x ,8x ,10x ,则这个三角形的周长为 ;当 x =3 cm 时,周长为 cm ·10. 已知 3x a +1 y b - 2 与 mx 2 合并同类项的结果是 0, a = , b = , m = .11. 定义 a b 为二阶行列式,规定它的运算法则为 a b d =ad -bc ,那么当 x =1 时,二阶行列 式 x +1 1 的值为 . 0 x -1 12.通过阅读下列各式,你会发现一些规律:xy =12 xy ,xy + 3xy =22 xy ,xy + 3xy + 5xy =32xy ,xy+ 3xy + 5xy + 7xy =42 xy ,…,则运用你发现的规律,解答 xy + 3xy + 5xy + 7xy +…+(2n - 1)xy = 。
七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数①-xy ② ab-0.5xy④-3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.22222233222a211122222ab-5a-7b②-xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12 【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin22222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;22 1212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32 (2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项: (1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin2222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与22257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题 17.解:3235m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( )(6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)3332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。
七年级数学上册《第三章合并同类项与移项》练习题附带答案-人教版一、选择题1.下列移项中,不正确的是( )A.由x+2=5,得x=5-2B.由2y=y-3,得2y-y=-3C.由3m=2m+1,得2m-3m=1D.由-a=3a-1,得-a-3a=-12.解方程-2(x-5)+3(x-1)=0时,去括号正确的是( )A.-2x-10+3x-3=0B.-2x+10+3x-1=0C.-2x+10+3x-3=0D.-2x+5+3x-3=03.下列通过移项变形,错误的是( )A.由x+2=2x-7,得x-2x=-7-2B.由x+3=2-4x,得x+4x=2-3C.由2x-3+x=2x-4,得2x-x-2x=-4+3D.由1-2x=3,得2x=1-34.若x=-3是方程2(x-m)=6的解,则m的值为( )A.6B.-6C.12D.-125.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为( )A.9B.8C.5D.46.当x=4时,式子5(x+m)-10与式子mx+4x的值相等,则m=( )A.-2;B.2;C.4;D.6;7.解方程4(x-1)-x=2x+12的步骤如下:①去括号,得4x-4-x=2x+1;②移项,得4x+x-2x=1+4;③合并,得3x=5;④系数化为1,得x=5 3.经检验可知:x=53不是原方程的解,说明解题的四个步骤中有错,其中做错的一步是( )A.①B.②C.③D.④8.若关于x的方程(m2-1)x2-(m+1)x+8=0是一元一次方程,有四位学生求得m的值分别如下:①m=±1;②m=1;③m=-1;④m=0.其中错误的个数是( ).A.1B.2C.3D.49.若x=1是方程3-m+x=6x的解,则关于y的方程m(y-3)-2=m(2y-5)的解是( )A.y=-10B.y=3C.y=43D.y=410.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A.2B.3C.1或2D.2或3二、填空题11.若-x n+1与2x2n-1是同类项,则n= .12.如果2x+3的值与1-x的值互为相反数,那么x=________.13.解方程:3x﹣2(x﹣1)=8解:去括号,得:________;移项,得:________;合并同类型,得:________;系数化为1,得:________.14.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.15.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于________.16.在等式3×(1- )-2×( -1)=15的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格中的数是。
《合并同类项》练习一一、选择题1 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 2 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 3 .如果23321133a b x y x y +--与是同类项,那么a___、b ______4 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x 5 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定6.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题7.写出322x y -的一个同类项_______________________.8.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 9.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 10.某公司员工,月工资由m 元增长了10%后达到_______元。11.判断下列单项式是同类项的是 .(1) 3x 与5x (2) 3a 与2a 2 (3) 5xy 2与2xy 2(4) -1与6 (5) 3a 与2ab (6) x 与2三、用不同的标识分别标出下列多项式的同类项(1)3x-4y-2x+y (2)5ab -4a ²b ² +3ab ² -3ab -ab ² +6a ²b ²同类项练习二1填空:若 571b a m 与n b a 3109-是同类项,则m= ; n= . 如果23k x y x y -与是同类项,那么k = .如果3423x y a b a b -与是同类项,那么x = . y = .2、判断题:(对的画“√”,错的画“×”)(1)-41ab 与0.25ba 不是同类项;( )(2)y x 232与232xy -是同类项;( )(3)2mn 与2m 不是同类项;( ) (4)n n y y 3121与是同类项;( ) (5)23与32不是同类项;( ) (6)在多项式中,如果两项所含字母相同,并且次数也相同,那么这两项是同类项.( )3.单项式52a 2与5n a n 是同类项,则n 等于 ( )(A )2 (B )3 (C )2或3 (D )不确定4.已知4x 5y 2与-3x 3m y 2是同类项,则代数式12m -24的值是( )(A )-3 (B )-5 (C )-4 (D )-65、如果123237x y a b a b +-与是同类项,那么x = . y = . 如果232634k x y x y -与是同类项,那么k = .如果k y x 23与2x -是同类项,那么k = .如果-3x 2y 3k 与4x 2y 6是同类项,则k = .如果47b a x 和y b a 597-是同类项,则x y 53-的值是__________________. 6.在9)62(22++-+b ab k a 中,不含ab 项,则k=7.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=8. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.。
七上合并同类项练习(选择1)一.选择题(共60小题)1.下列计算正确的是()A.5x+2y=7xy B.3x2y﹣4yx2=﹣x2yC.x2+x5=x7D.3x﹣2x=12.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x63.下面计算正确的是()A.2x2﹣x2=1B.4a2+2a3=6a5C.5+m=5m D.﹣0.25ab+ab=04.计算2a2﹣a2的结果是()A.1B.a C.a2D.2a 5.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b6.计算7x﹣3x的结果是()A.4x B.4C.﹣4x D.﹣4 7.下列各式中运算正确的是()A.3a2b﹣4ba2=﹣a2b B.a2+a2=a4C.6a﹣5a=1D.3a2+2a3=5a58.下列计算中正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a3D.3ab+4ab=7ab9.计算﹣m2+4m2的结果为()A.3m2B.﹣3m2C.5m2D.﹣5m2 10.化简:2m﹣3m=()A.m B.﹣m C.5m D.﹣5m 11.下列各式中,合并同类项正确的是()A.2x+x=2x2B.2x+x=3x C.a2+a2=a4D.2x+3y=5xy 12.计算3a2bc﹣4a2bc的结果是()A.a2bc B.﹣a2bc C.7a2bc D.﹣1 13.计算3a2bc﹣4a2bc的结果是()A.a2bc B.﹣a2bc C.7a2b c D.﹣1 14.下列计算中,正确的是()A.4x﹣9x=5x B.x﹣x=0C.x3﹣x2=x D.x2+x=x3 15.下列计算正确的是()A.a2+2a2=3a4B.a2﹣b2=0C.5a2﹣a2=4a2D.2a2﹣a2=2 16.下列运算中,正确的是()A.a+2a=3a2B.2a﹣a=1C.2a+b=2ab D.3ab2﹣2b2a=ab217.下列计算正确的是()A.2a+3a=6a B.3a﹣a=3C.a3+2a3=3a3D.a3﹣a2=a 18.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x219.下列各式中,运算正确的是()A.a+b=ab B.3a2+2a2=5a4C.6a﹣5a=1D.3ab2﹣4b2a=﹣ab220.下列运算中,正确的是()A.3a+4b=7ab B.2a2+3a2=5a2C.4a2﹣a2=3D.6a2b﹣6ab2=021.计算:﹣a2b3+2b3a2=()A.0B.a2b3C.﹣2a2b3D.2a2b3 22.下列运算中,其中正确的是()A.3a3﹣a3=2B.3a2b﹣4ba2=﹣a2bC.3a+2b=5ab D.5ab2﹣2a2b=3ab223.下列计算结果正确的是()A.3x+2y=5xy B.5x2﹣2x2=3 C.2a+a=2a2D.4x2y﹣3x2y=x2y 24.下列计算正确的是()A.4a+a=5a2B.8y﹣6y=2 C.3x2y﹣8yx2=﹣5x2y D.4a+2b=6ab 25.下列计算结果正确的是()A.3x2﹣2x2=1B.3x2﹣2x3=5x5 C.3x2y﹣3yx2=0D.4x+y=4xy 26.下列计算正确的是()A.﹣y2﹣y2=0B.x3y﹣2xy3=﹣xy3 C.x3+x=2x4D.4ax﹣2ax=2ax 27.下列运算正确的是()A.a3+a2=a B.2x2﹣3x2=﹣x2 C.3a2+4a4=7a6D.5a2b﹣5b2a=0 28.下列各式运算结果正确的是()A.2x+2y=4xy B.﹣x+x=﹣2x C.7y2﹣4y2=3D.8ab2﹣8b2a=0 29.下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3 C.﹣a2b+2a2b=a2b D.2a3+3a2=5a2 30.下列计算正确的是()A.3a﹣a=3B.﹣2m+3m=﹣5m C.3x2+2x2=5x4D.2n﹣5n=﹣3n 31.下列计算中,结果正确的是()A.a+a=a2B.6a3﹣5a2=a C.3a2+2a3=5a5D.4a2b﹣4ba2=0 32.下列算式中正确的是()A.2x+3y=5xy B.3x2+2x3=5x5 C.4x﹣3y=1D.x2﹣3x2=﹣2x2 33.下列运算正确的是()A.12xy﹣20xy=﹣8B.3x+4y=7xyC.3xy2﹣4y2x=﹣xy2D.3x2y﹣2xy2=xy34.下列运算正确的是()A.3a+4a=7a2B.4a﹣a=4C.a3+2a2=3a5D.﹣ab+0.25ab=035.下列运算正确的是()A.2m2+3m3=5m5B.5c2+5d2=5c2d2C.5xy﹣4xy=xy D.2x2﹣x2=236.下列运算中正确的是()A.3a﹣a=2B.2ab+3ba=6abC.﹣6÷3=2D.37.下列计算正确的是()A.3a2﹣a2=2B.3m2﹣4m2=﹣m2C.2m2+m2=3m4D.﹣ab2+2ab2=﹣2ab238.下列运算中,正确的是()A.3a2﹣a=2a B.3a﹣4a=﹣a C.2a+3b=5ab D.﹣ab﹣ab=0 39.下列运算中,正确的是()A.2a﹣a=2B.a+a2=a3C.D.3a3﹣a2=2a 40.下列计算正确的是()A.3a﹣a=2a2B.2ab+3ba=5abC.4x﹣2x=2D.2a+b=2ab41.下列运算中正确的是()A.x2y+2yx2=3x2y B.3y2+4y3=7y5C.a+a=a2D.2x﹣x=242.下面运算正确的是()A.2a+5b=7ab B.6a3﹣3a2=3aC.D.3a2b﹣3ba2=043.下列计算正确的是()A.2a﹣a=1B.2a+3b=5abC.a+a2=a3D.2ab﹣3ab=﹣ab44.下列计算正确的是()A.﹣7﹣2=﹣5B.a+2b=3abC.3xy﹣4yx=﹣xy D.3a2﹣2a2=145.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣2yx2=x2yC.7a+a=7a2D.5y﹣3y=246.下列各式中运算正确的是()A.a2b﹣ab2=0B.x+x=x2C.2b3+2b2=4b5D.2a2﹣3a2=﹣a247.下列运算正确的是()A.﹣3mn+3mn=0B.3a﹣2a=1C.x2y﹣2xy2=﹣x2y D.2a2+3a3=5a548.计算:2a2b﹣3a2b=()A.﹣1B.5a2b C.a2b D.﹣a2b 49.下列各式中运算正确的是()A.4m﹣m=3B.2a3﹣3a3=a3C.a2b﹣ab2=0D.xy﹣2xy=﹣xy 50.下列合并同类项正确的是()A.15a﹣15a=15B.3a2﹣a2=2C.3x+5y=8xy D.7x2﹣6x2=x2 51.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab52.下列各式中,正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+4a=7a2D.2a2b3﹣3b3a2=﹣a2b353.下列运算正确的是()A.3a﹣2a=1B.2a+b=2ab C.a2b﹣ba2=0D.a+a2=a3 54.下列运算正确的是()A.3x2﹣x2=2B.2a+3a=5a2C.2ab﹣2a=b D.5x2y﹣3x2y=2x2y 55.下列计算正确的是()A.2m﹣m=2B.2m+n=2mn C.2m3+3m2=5m5D.m3n﹣nm3=0 56.下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a2+3a2=5a4D.﹣a2b+2a2b=a2b 57.下列计算正确的是()A.m+n=mn B.m2n﹣nm2=0 C.2m3+3m2=5m5D.2m3﹣3m2=﹣m 58.下列计算正确的是()A.2a+3b=5ab B.5a﹣3a=2C.2a2﹣3a=﹣a D.﹣2a2b+3a2b=a2b 59.下列各式的计算结果正确的是()A.3x+4y=7xy B.10ba2﹣4a2b=6a2b C.13y2﹣8y2=5D.3a2+5a2=8a4 60.下列计算正确的是()A.b﹣5b=﹣4B.m+m2=3m C.m2n﹣nm2=0D.﹣2a2b+5ab2=3a2b七上合并同类项练习(选择1)参考答案与试题解析一.选择题(共60小题)1.下列计算正确的是()A.5x+2y=7xy B.3x2y﹣4yx2=﹣x2yC.x2+x5=x7D.3x﹣2x=1【分析】根据合并同类项的法则判断各选项即可.【解答】解:A选项,5x和2y不是同类项,不能合并,故该选项计算错误;B选项,原式=3x2y﹣4x2y=﹣x2y,故该选项计算正确;C选项,x2和x5不是同类项,不能合并,故该选项计算错误;D选项,3x﹣2x=x,故该选项计算错误;故选:B.【点评】本题考查了合并同类项的法则,牢记合并同类项的法则是解题的关键,把同类项的系数相加,字母和字母的指数不变.2.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【分析】先判断两项是否是同类项,再根据合并同类项法则计算,据此逐一判断即可.【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.【点评】本题主要考查合并同类项,解题的关键是掌握同类项的概念和合并同类项的法则.3.下面计算正确的是()A.2x2﹣x2=1B.4a2+2a3=6a5C.5+m=5m D.﹣0.25ab+ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此逐一判断即可.【解答】解:A.2x2﹣x2=x2,故本选项不合题意;B.4a2与2a3不是同类项,所以不能合并,故本选项不合题意;C.5与m不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.4.计算2a2﹣a2的结果是()A.1B.a C.a2D.2a【分析】根据合并同类项的法则:系数相加作为系数,字母和字母的指数不变,即可求解.【解答】解:2a2﹣a2=(2﹣1)a2=a2.故选:C.【点评】本题考查了合并同类项的法则,理解法则是关键.5.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.5x﹣3x=2x,故本选项符合题意;C.7y2﹣5y2=2y2,故本选项不合题意;D.9a2b与﹣4ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.6.计算7x﹣3x的结果是()A.4x B.4C.﹣4x D.﹣4【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:7x﹣3x=(7﹣3)x=4x.故选:A.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.7.下列各式中运算正确的是()A.3a2b﹣4ba2=﹣a2b B.a2+a2=a4C.6a﹣5a=1D.3a2+2a3=5a5【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3a2b﹣4ba2=﹣a2b,故本选项符合题意;B、a2+a2=2a2,故本选项不符合题意;C、6a﹣5a=a,故本选项不符合题意;D、3a2与2a3不是同类项,所以不能合并,故本选项不符合题意;故选:A.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.8.下列计算中正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a3D.3ab+4ab=7ab【分析】首先判断是不是同类项,然后再看是否合并正确.【解答】解:A.不是同类项,不能合并,不符合题意;B.应该为8a,不符合题意;C.不是同类项,不能合并,不符合题意;D.合并同类项,系数相加,字母和字母的指数不变,符合题意.故选:D.【点评】本题考查了合并同类项,能够正确判断同类项是解题的关键.9.计算﹣m2+4m2的结果为()A.3m2B.﹣3m2C.5m2D.﹣5m2【分析】合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【解答】解:原式=(﹣1+4)m2=3m2,故选:A.【点评】本题考查了合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.正确运用合并同类项的法则是解题的关键.10.化简:2m﹣3m=()A.m B.﹣m C.5m D.﹣5m【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:2m﹣3m=(2﹣3)m=﹣m.故选:B.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.11.下列各式中,合并同类项正确的是()A.2x+x=2x2B.2x+x=3x C.a2+a2=a4D.2x+3y=5xy 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行各选项的判断即可.【解答】解:A、2x+x=3x,故本选项错误;B、2x+x=3x,故本选项正确;C、a2+a2=2a2,故本选项错误;D、2x与3y不是同类项,不能直接合并,故本选项错误.故选:B.【点评】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.12.计算3a2bc﹣4a2bc的结果是()A.a2bc B.﹣a2bc C.7a2bc D.﹣1【分析】根据合并同类项的法则计算解答即可.【解答】解:3a2bc﹣4a2bc=﹣a2bc,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则计算.13.计算3a2bc﹣4a2bc的结果是()A.a2bc B.﹣a2bc C.7a2b c D.﹣1【分析】根据合并同类项的法则计算解答即可.【解答】解:3a2bc﹣4a2bc=﹣a2bc.故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则计算.14.下列计算中,正确的是()A.4x﹣9x=5x B.x﹣x=0C.x3﹣x2=x D.x2+x=x3【分析】根据合并同类项的法则计算解答即可.【解答】解:A、4x﹣9x=﹣5x,故本选项不合题意;B、x﹣x=0,故本选项符合题意;C、x3与x2不是同类项,不能合并,故本选项不合题意;D、x2与x不是同类项,不能合并,故本选项不合题意;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则计算.15.下列计算正确的是()A.a2+2a2=3a4B.a2﹣b2=0C.5a2﹣a2=4a2D.2a2﹣a2=2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、a2+2a2=3a2,故本选项不合题意;B、a2与﹣b2不是同类项,所以不能合并,故本选项不合题意;C、5a2﹣a2=4a2,故本选项符合题意;D、2a2﹣a2=a2,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.16.下列运算中,正确的是()A.a+2a=3a2B.2a﹣a=1【分析】根据同类项的定义和合并同类项法则逐个判断即可.【解答】解:A.a+2a=3a,故本选项不符合题意;B.2a﹣a=a,故本选项不符合题意;C.2a和b不能合并,故本选项不符合题意;D.3ab2﹣2b2a=ab2,故本选项符合题意;故选:D.【点评】本题考查了同类项的定义和合并同类项法则,能熟记知识点是解此题的关键,注意:①所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,②把同类项的系数相加作为结果的系数,字母和字母的指数不变.17.下列计算正确的是()A.2a+3a=6a B.3a﹣a=3C.a3+2a3=3a3D.a3﹣a2=a【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、2a+3a=5a,故本选项不合题意;B、3a﹣a=2a,故本选项不合题意;C、a3+2a3=3a3,故本选项符合题意;D、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.18.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:2x2﹣3x2=(2﹣3)x2=﹣x2;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.19.下列各式中,运算正确的是()A.a+b=ab B.3a2+2a2=5a4【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、a与b不是同类项,所以不能合并,故本选项不合题意;B、3a2+2a2=5a2,故本选项不合题意;C、6a﹣5a=a,故本选项不合题意;D、3ab2﹣4b2a=﹣ab2,故本选项符合题意;故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.20.下列运算中,正确的是()A.3a+4b=7ab B.2a2+3a2=5a2C.4a2﹣a2=3D.6a2b﹣6ab2=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、3a与4b不是同类项,所以不能合并,故本选项不合题意;B、2a2+3a2=5a2,故本选项符合题意;C、4a2﹣a2=3a2,故本选项不合题意;D、6a2b与﹣6ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.21.计算:﹣a2b3+2b3a2=()A.0B.a2b3C.﹣2a2b3D.2a2b3【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:﹣a2b3+2b3a2=(﹣1+2)b3a2=a2b3,故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.22.下列运算中,其中正确的是()A.3a3﹣a3=2B.3a2b﹣4ba2=﹣a2bC.3a+2b=5ab D.5ab2﹣2a2b=3ab2【分析】根据合并同类项得法则计算即可.【解答】解、A、3a3﹣a3=2a3,故本选项计算错误;B、3a2b﹣4ba2=﹣a2b,故本选项计算正确;C、3a与2b不是同类项,不能合并,故本选项计算错误;D、5ab2与2a2b不是同类项,不能合并,故本选项计算错误;故选:B.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.23.下列计算结果正确的是()A.3x+2y=5xy B.5x2﹣2x2=3C.2a+a=2a2D.4x2y﹣3x2y=x2y【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3x与2y不是同类项,所以不能合并,故本选项不合题意;B、5x2﹣2x2=3x2,故本选项不合题意;C、2a+a=3a,故本选项不合题意;D、4x2y﹣3x2y=x2y,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项法则,熟记运算法则是解答本题的关键.24.下列计算正确的是()A.4a+a=5a2B.8y﹣6y=2C.3x2y﹣8yx2=﹣5x2y D.4a+2b=6ab【分析】根据合并同类项得法则计算即可.【解答】解、A、4a+a=5a,故本选项计算错误;B、8y与6y不是同类项,不能合并,故本选项计算错误;C、3x2y﹣8yx2=﹣5x2y,故本选项计算正确;D、4a与2b不是同类项,不能合并,故本选项计算错误;故选:C.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.25.下列计算结果正确的是()A.3x2﹣2x2=1B.3x2﹣2x3=5x5C.3x2y﹣3yx2=0D.4x+y=4xy【分析】根据合并同类项得法则计算即可.【解答】解、A、3x2﹣2x2=x2,故本选项计算错误;B、3x2与2x3不是同类项,不能合并,故本选项计算错误;C、3x2y﹣3yx2=0,故本选项计算正确;D、4x与y不是同类项,不能合并,故本选项计算错误;故选:C.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.26.下列计算正确的是()A.﹣y2﹣y2=0B.x3y﹣2xy3=﹣xy3C.x3+x=2x4D.4ax﹣2ax=2ax【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此判断即可.【解答】解:A、﹣y2﹣y2=﹣2y2,故本选项不合题意;B、x3y与﹣2xy3不是同类项,所以不能合并,故本选项不合题意;C、x3与x不是同类项,所以不能合并,故本选项不合题意;D、4ax﹣2ax=2ax,故本选项符合题意;故选:D.【点评】此题考查了合并同类项同类项,熟练掌握运算法则是解本题的关键.27.下列运算正确的是()A.a3+a2=a B.2x2﹣3x2=﹣x2C.3a2+4a4=7a6D.5a2b﹣5b2a=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、a3与a2不是同类项,所以不能合并,故本选项不合题意;B、2x2﹣3x2=﹣x2,故本选项符合题意;C、3a2与4a4不是同类项,所以不能合并,故本选项不合题意;D、5a2b与﹣5b2a不是同类项,所以不能合并,故本选项不合题意;故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.28.下列各式运算结果正确的是()A.2x+2y=4xy B.﹣x+x=﹣2xC.7y2﹣4y2=3D.8ab2﹣8b2a=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A、2x与2y不是同类项,所以不能合并,故本选项不合题意;B、﹣x+x=0,故本选项不合题意;C、7y2﹣4y2=3y2,故本选项不合题意;D、8ab2﹣8b2a=0,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.29.下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3C.﹣a2b+2a2b=a2b D.2a3+3a2=5a2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3a+2a=5a,故本选项不合题意;B、3a﹣a=2a,故本选项不合题意;C、﹣a2b+2a2b=a2b,故本选项符合题意;D、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.30.下列计算正确的是()A.3a﹣a=3B.﹣2m+3m=﹣5mC.3x2+2x2=5x4D.2n﹣5n=﹣3n【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3a﹣a=2a,故本选项不合题意;B、﹣2m+3m=m,故本选项不合题意;C、3x2+2x2=5x2,故本选项不合题意;D、2n﹣5n=﹣3n,故本选项符合题意;故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.31.下列计算中,结果正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.4a2b﹣4ba2=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、a+a=2a,故本选项不合题意;B、6a3与﹣5a2不是同类项,所以不能合并,故本选项不合题意;C、3a2与2a3不是同类项,所以不能合并,故本选项不合题意;D、4a2b﹣4ba2=0,故本选项符合题意;故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.32.下列算式中正确的是()A.2x+3y=5xy B.3x2+2x3=5x5C.4x﹣3y=1D.x2﹣3x2=﹣2x2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、2x与3y不是同类项,所以不能合并,故本选项不合题意;B、3x2与2x3不是同类项,所以不能合并,故本选项不合题意;C、4x与﹣3y不是同类项,所以不能合并,故本选项不合题意;D、x2﹣3x2=﹣2x2,故本选项符合题意;故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.33.下列运算正确的是()A.12xy﹣20xy=﹣8B.3x+4y=7xyC.3xy2﹣4y2x=﹣xy2D.3x2y﹣2xy2=xy【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A、12xy﹣20xy=﹣8xy,故本选项不合题意;B、3x与4y不是同类项,所以不能合并,故本选项不合题意;C、3xy2﹣4y2x=﹣xy2,故本选项符合题意;D、3x2y与﹣2xy2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.34.下列运算正确的是()A.3a+4a=7a2B.4a﹣a=4C.a3+2a2=3a5D.﹣ab+0.25ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3a+4a=7a,故本选项不合题意;B、4a﹣a=3a,故本选项不合题意;C、a3与2a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意;故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.35.下列运算正确的是()A.2m2+3m3=5m5B.5c2+5d2=5c2d2C.5xy﹣4xy=xy D.2x2﹣x2=2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A、2m2与3m3不是同类项,所以不能合并,故本选项不合题意;B、5c2与5d2不是同类项,所以不能合并,故本选项不合题意;C、5xy﹣4xy=xy,故本选项符合题意;D、2x2﹣x2=x2,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.36.下列运算中正确的是()A.3a﹣a=2B.2ab+3ba=6abC.﹣6÷3=2D.【分析】分别根据合并同类项法则,有理数的除法法则以及有理数的乘方的定义逐一判断即可.【解答】解:A、3a﹣a=2a,故本选项不合题意;B、2ab+3ba=5ab,故本选项不合题意;C、﹣6÷3=﹣2,故本选项不合题意;D、,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,有理数的除法以及有理数的乘方,熟记相关定义与运算法则是解答本题的关键.37.下列计算正确的是()A.3a2﹣a2=2B.3m2﹣4m2=﹣m2C.2m2+m2=3m4D.﹣ab2+2ab2=﹣2ab2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A、3a2﹣a2=2a2,故本选项不合题意;B、3m2﹣4m2=﹣m2,故本选项符合题意;C、2m2+m2=3m2,故本选项不合题意;D、﹣ab2+2ab2=ab2,故本选项不合题意.故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.38.下列运算中,正确的是()A.3a2﹣a=2a B.3a﹣4a=﹣a C.2a+3b=5ab D.﹣ab﹣ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A、3a2与﹣a不是同类项,所以不能合并,故本选项不合题意;B、3a﹣4a=﹣a,故本选项符合题意;C、2a与3b不是同类项,所以不能合并,故本选项不合题意;D、﹣ab﹣ab=﹣2ab,故本选项不合题意;故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.39.下列运算中,正确的是()A.2a﹣a=2B.a+a2=a3C.D.3a3﹣a2=2a 【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A、2a﹣a=a,故本选项不合题意;B、a与a2不是同类项,所以不能合并,故本选项不合题意;C、,故本选项符合题意;D、3a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点评】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.40.下列计算正确的是()A.3a﹣a=2a2B.2ab+3ba=5abC.4x﹣2x=2D.2a+b=2ab【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此逐一判断即可.【解答】解:A、3a﹣a=2a,故本选项不合题意;B、2ab+3ba=5ab,故本选项符合题意;C、4x﹣2x=2x,故本选项不合题意;D、2a与b不是同类项,所以不能合并,故本选项不合题意.故选:B.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.41.下列运算中正确的是()A.x2y+2yx2=3x2y B.3y2+4y3=7y5C.a+a=a2D.2x﹣x=2【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、x2y+2yx2=3x2y,故此选项正确;B、3y2+4y3无法计算,故此选项错误;C、a+a=2a,故此选项错误;D、2x﹣x=x,故此选项错误;故选:A.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.42.下面运算正确的是()A.2a+5b=7ab B.6a3﹣3a2=3aC.D.3a2b﹣3ba2=0【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+5b无法计算,故此选项错误;B、6a3﹣3a2无法计算,故此选项错误;C、a2﹣a2=a2,故此选项错误;D、3a2b﹣3ba2=0,故此选项正确;故选:D.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.43.下列计算正确的是()A.2a﹣a=1B.2a+3b=5abC.a+a2=a3D.2ab﹣3ab=﹣ab【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、2a﹣a=a,故此选项错误;B、2a+3b无法计算,故此选项错误;C、a+a2无法计算,故此选项错误;D、2ab﹣3ab=﹣ab,故此选项正确.故选:D.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.44.下列计算正确的是()A.﹣7﹣2=﹣5B.a+2b=3abC.3xy﹣4yx=﹣xy D.3a2﹣2a2=1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣9,错误,不符合题意;B、原式不能合并,错误,不符合题意;C、原式=﹣xy,正确,符合题意;D、原式=a2,错误,不符合题意.故选:C.【点评】此题考查了合并同类项,有理数的减法,熟练掌握运算法则是解本题的关键.45.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣2yx2=x2yC.7a+a=7a2D.5y﹣3y=2【分析】根据合并同类项的运算法则运算即可.【解答】解:A.3a与2b不是同类项,不能合并,故此选项错误;B.3x2y﹣2yx2=x2y,故此选项正确;C.7a+a=8a,故此选项错误;D.5y﹣3y=2y,故此选项错误;故选:B.【点评】本题主要考查了合并同类项的运算法则,熟练掌握运算法则是解答此题的关键.46.下列各式中运算正确的是()A.a2b﹣ab2=0B.x+x=x2C.2b3+2b2=4b5D.2a2﹣3a2=﹣a2【分析】分别根据合并同类项法则对各个选项逐一判断即可.【解答】解:A、a2b与ab2不是同类项,所以不能合并,故本选项不合题意;B、x+x=2x,合并同类项错误,故本选项不合题意;C、2b3与2b2不是同类项,所以不能合并,故本选项不合题意;D、2a2﹣3a2=﹣a2,合并同类项正确,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.合并同类项时,系数相加减,字母及其指数不变.47.下列运算正确的是()A.﹣3mn+3mn=0B.3a﹣2a=1C.x2y﹣2xy2=﹣x2y D.2a2+3a3=5a5【分析】根据同类项的定义和合并同类项法则解答.【解答】解:A、原式=0,运算正确,符合题意.B、原式=a,运算不正确,不符合题意.C、x2y与2xy2不是同类项,不能合并,运算不正确,不符合题意.D、2a2与3a3不是同类项,不能合并,运算不正确,不符合题意.故选:A.【点评】本题主要考查了合并同类项,注意:要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数.48.计算:2a2b﹣3a2b=()A.﹣1B.5a2b C.a2b D.﹣a2b【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此求解即可.【解答】解:2a2b﹣3a2b=(2﹣3)a2b=﹣a2b.故选:D.【点评】此题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.49.下列各式中运算正确的是()A.4m﹣m=3B.2a3﹣3a3=a3C.a2b﹣ab2=0D.xy﹣2xy=﹣xy 【分析】根据合并同类项得法则计算即可.【解答】解:A、4m﹣m=3m,故本选项计算错误;B、2a3﹣3a3=﹣a3,故本选项计算错误;C、a2b与ab2不是同类项,不能合并,故本选项计算错误;D、xy﹣2xy=﹣xy,故本选项计算正确.故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.50.下列合并同类项正确的是()A.15a﹣15a=15B.3a2﹣a2=2C.3x+5y=8xy D.7x2﹣6x2=x2【分析】根据合并同类项得法则计算即可.【解答】解:A、15a﹣15a=0,故本选项计算错误;B、3a2﹣a2=2a2,故本选项计算错误;C、3x与5y不是同类项,不能合并,故本选项计算错误;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.51.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab【分析】合并同类项是指同类项的系数相加,并把得到结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、5ab2与﹣5a2b不是同类项,所以不能合并,故本选项不合题意;C、7a+a=8a,故本选项不合题意;D、﹣ab+3ba=2ab,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.52.下列各式中,正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+4a=7a2D.2a2b3﹣3b3a2=﹣a2b3【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此判断即可.【解答】解:A、3a与4b不是同类项,所以不能合并,故本选项不合题意;B、7a﹣3a=4a,故本选项不合题意;C、3a+4a=7a,故本选项不合题意;D、2a2b3﹣3b3a2=﹣a2b3,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.53.下列运算正确的是()A.3a﹣2a=1B.2a+b=2ab C.a2b﹣ba2=0D.a+a2=a3【分析】根据合并同类项法则判断即可.【解答】解:A、3a﹣2a=a,故本选项计算错误;B、2a与b不是同类项,不能合并,故本选项计算错误;。
七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1.下列哪个代数表达式是整数3x,5xy+11121x、 x-7,x+.2x332、写出下列单项式的系数和次数①-xy②ab-0.5xy④-3.写出下列多项式的次数和项?a)知识平台1.同类项的意义.2.合并同类项的意义.3.合并同类项的方法.思维点击1.判断类似项目有两个标准:① 包含的字母是相同的;② 相同字母的索引也是相等的,?这两个标准都是不可或缺的。
例如,3xy和3xy包含相同的字母,但在这两个单项式中,X的指数不相等,Y的值的数量不相等,因此它们不是相似的项。
-2XY和3YX包含相同的字母,字母x,y?2.合并类似项目的要点是:① 字母索引和字母索引保持不变;② 将相似项的系数相加(合并)例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点理解相似项目的含义,并能够合并相似项目2二2222三3二二2A.2一千一百一十二万二千二百二十二ab-5a-7b②-xy+3x+2xy-2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________.33331k12【分析】xy和-xy是类似的术语。
在这两项中,X的指数必须相等,所以k=2;?要合并同质项,只需33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.答案是:20.三千三百三十三例1如果例2结合了下列多项式中的同类项。
(1) 4xy-8xy+7-4xy+10xy-4;(2) a-2ab+b+a+2ab+b。
【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)蒙城县新交友中心2二22二2二2二2二=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原始公式=(a+a)+(-2Ab+2Ab)+(B+B)=2A+2B。
初一数学合并同类项试题1.合并同类项:-x-3x=.【答案】-4x【解析】本题考查合并同类项的法则根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.-x-3x=(-1-3)x=-4x.思路拓展:解答本题的关键是掌握好合并同类项时把系数相加减,字母与字母的指数不变.2.代数式-2x+3y2+5x中,同类项是和 .【答案】-2x,5x【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,即可得出答案.根据同类项的定义:代数式-2x+3y2+5x中,同类项是-2x和5x.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。
3.下列各组代数式中,属于同类项的是()A.2x2y与2xy2B.x y与-x yC.2x与2xy D.2x2与2y2【答案】B【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,依次分析各项即可得出答案.A、2x2y与2xy2字母的指数不同,不是同类项;B、x y与-x y是同类项;C、2x与2xy字母不同,不是同类项;D、2x2与2y2字母不同,不是同类项;故选B.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。
4.下列各式中,合并同类项正确的是()A.-a+3a=2B.x2-2x2=-xC.2x+x=3x D.3a+2b=5ab【答案】C【解析】本题考查合并同类项的法则根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,依次判断各项即可.A、-a+3a=2a,故本选项错误;B、x2-2x2=-x2,故本选项错误;C、2x+x=3x,本选项正确;D、3a与2b不是同类项,无法合并,故本选项错误;故选C.思路拓展:解答本题的关键是掌握好合并同类项时把系数相加减,字母与字母的指数不变.5.当a=-,b=4时,多项式2a2b-3a-3a2b+2a的值为()A.2B.-2C.D.-【答案】D【解析】本题考查的是合并同类项,代数式求值先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,再代入求值即可。
初一上册数学合并同类项与移项练习题1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).参考答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B 原有盐(克)50 45 现有盐(克)50-x 45+x 设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=- [点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=- [点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).。
初一数学练习:合并同类项练习题
2019浙教版初一数学同步练习七上数学合并同类项(3)练习题(附答案)
同步练习
A组
1、什么叫做同类项?怎样合并同类项?
2、以下各题中的两个项是不是同类项?
(1)3x2y与-3x2y; (2)0.2a2b与0.2ab2;
(3)11abc与9bc; (4)3m2n3与-n3m2;
(5)4xy2z与4x2yz; (6)62与x2;
3、以下各题合并同类项的结果对不对?不对的,指出错在哪里。
(1)3a+2b=5ab; (2)5y2-2y2=3;
(3)4x2y-5y2x=-x2y; (4)a+a=2a;
(5)7ab-7ba=0; (6)3x2+2x3=5x5;
4、合并以下各式中的同类项:
(1)15x+4x-10x; (2)-6ab+ba+8ab;
(3)-p2-p2-p2; (4)m-n2+m-n2;
(5) x3- x3+ x3; (6) x-0.3y- x+0.3y;
5、求以下各式的值:
(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;
(2)3y4-6x3y-4y4+2yx3,其中x=-2,y=3;
6、解方程:
(1)3x-5-2x=1; (2) - x+ +4x+3=0
B组
1、把(a+b)、(x-y)各当作一个因式,合并以下各式中的同类项:
(1)4(a+b)+2(a+b)-7(a+b);
(2)3(x-y)2-7(x-y) +8(x-y)2+6(x-y);
2、有这样一道题:当a=0.35,b=-0.28时,求多项式
7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值。
有一位同学指出,题目中给出的条件a=0.35,b=-0.28是多余的,他的说法有没有道理?
3、解方程:
(1)4x+3-3x-2=0; (2)12x- -4x+ =0;
(3)3x-2x=0; (4)-x+1-x+1=0;
同步练习(答案)
A组
1、(1)所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。
(2)同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)单项式和多项式统称整式。
2、(1)是; (2)不是同类项,因为相同字母的指数不同;
(3)不是;因为字母不相同;(4)是;
(5)不是,因为x的指数不同,y的指数也不同;
(6)不是,因为字母不相同。
3、(1)不对,因为3a与2b不是同类项,不能合并;
(2)不对,因为合并同类项时,丢掉了字母及字母的指数y2;
(3)不对,因为4x2y与-5y2x不是同类项,不能合并;
(4)对;
(5)对;
(6)不对,3x2与3x3不是同类项,不能合并。
4、(1)15x+4x-10x=(15+4-10)x=9x
(2)-6ab+ba+8ab=(-6+1+8)ab=3ab
(3)-p2-p2-p2=(-1-1-1)p2=-3p2
(4)m-n2+m-n2=(1+1)m+(-1-1)n2=2m-2n2
(5) x3- x3+ x3=( - + )x3=0
(6) x-0.3y- x+0.3y=( - )x+(-0.3+0.3)y=- x
5、(1)3c2-8c+2c3-13c2+2c-2c3+3
=(3-13)c2+(-8+2)c+(2-2)c3+3
=-10c2-6c+3
当c=-4时
原式=-10(-4)2-6(-4)+3
=-160+24+3
=-133
(2)3y4-6x3y-4y4+2yx3=(3-4)y4+(-6+2)x3y=-y4-4x3y 当x=-2,y=3时
原式=-34-4(-2)33=-81+96=15
6、(1)3x-5-2x=1
解:方程两边都加上5得:3x-2x=6
合并同类项得:x=6
(2)- x+ +4x+3=0
解:合并同类项得: x+ =0
方程两边都减去得: x=- B组
方程两边都乘以得:x=-1
1、(1)4(a+b)+2(a+b)-7(a+b)=(4+2-7)(a+b)=-(a+b)
(2)3(x-y)2-7(x-y)+8(x-y)2+6(x-y)
=(3+8)(x-y)2+(-7+6)(x-y)
=11(x-y)2-(x-y)
2、解:7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3
=(7+3-10)a3+(-6+6)a3b+(3-3)a2b
=0
无论a,b取任何值,多项式的值都等于0
这位同学的说法有道理。
3、(1)4x+3-3x-2=0
解:合并同类项:得:x+1=0
方程两边都减去1,得:x=-1
(2)12x- -4x+ =0
解:合并同类项,得:8x-1=0 方程两边都加上1,得:8x=1 方程两边都除以8,得:x= (3)3x-2x=0
解:合并同类项,得:x=0 (4)-x+1-x+1=0
解:合并同类项,得:-2x+2=0 方程两边都减去2,得:-2x=-2
方程两边都除以-2,得:x=1。