物联网感知层的组成
- 格式:docx
- 大小:20.66 KB
- 文档页数:3
物联网感知层在当今科技飞速发展的时代,物联网(Internet of Things,简称IoT)正逐渐融入我们生活的方方面面,从智能家居到智能交通,从工业自动化到医疗健康。
而在物联网的架构中,感知层作为数据采集的源头,发挥着至关重要的作用。
那么,什么是物联网感知层呢?简单来说,感知层就像是物联网的“触角”,负责感知和收集物理世界中的各种信息。
它是由大量的传感器、执行器、智能终端等设备组成,这些设备能够实时监测和获取环境中的温度、湿度、光照、压力、位置等各种数据,并将其转化为数字信号,以便后续的传输和处理。
传感器是感知层的核心组件之一。
它们种类繁多,功能各异。
比如,温度传感器可以精确测量环境温度的变化,湿度传感器能够感知空气中的湿度水平,光照传感器能够检测光线的强度,压力传感器则用于测量物体所受到的压力。
这些传感器就像是我们的“眼睛”和“耳朵”,让物联网系统能够“看到”和“听到”物理世界的各种信息。
除了传感器,执行器在感知层中也扮演着重要的角色。
执行器与传感器相反,它能够根据接收到的控制信号,对物理世界进行操作和控制。
例如,智能门锁中的电动执行器可以根据指令实现开锁和关锁的动作,智能路灯中的执行器可以根据光照和时间自动调节路灯的亮度。
智能终端也是感知层的重要组成部分。
智能手机、平板电脑、智能手表等设备都可以作为物联网的感知终端。
它们不仅能够收集用户的个人信息和行为数据,还可以通过与其他设备的连接,实现更广泛的感知和控制功能。
感知层的工作原理其实并不复杂。
传感器首先对物理世界中的各种信息进行感知和测量,然后将这些模拟信号通过模数转换(A/D 转换)电路转换为数字信号。
这些数字信号经过预处理和编码后,通过通信模块传输到网络层。
在传输过程中,为了保证数据的准确性和可靠性,通常会采用一些纠错和加密技术。
在实际应用中,感知层面临着许多挑战。
首先是数据质量的问题。
由于传感器的精度、环境干扰等因素的影响,采集到的数据可能存在误差和噪声,这就需要在数据处理过程中进行有效的滤波和校准。
物联网核心技术感知层:RFID、GPS、传感器和MEMS射频识别(RFID)技术射频识别(Radio Frequency Identification,简称RFID)是通过无线电信号识别特定目标并读写相关数据的无线通讯技术。
在国内,RFID已经在身份证件、电子收费系统和物流管理等领域有了广泛的应用。
RFID技术市场应用成熟,标签成本低廉,但RFID一般不具备数据采集功能,多用来进行物品的身份甄别和属性的存储,且在金属和液体环境下应用受限,RFID技术属于物联网的信息采集层技术。
GPS技术GPS又称为全球定位系统(Global Positioning SystemGPS),是具有海、陆、空全方位实时三维导航与定位能力的新一代卫星导航与定位系统。
GPS是由空间星座、地面控制和用户设备等三部分构成的。
GPS测量技术能够快速、高效、准确地提供点、线、面要素的精确三维坐标以及其他相关信息,具有全天候、高精度、自动化、高效益等显著特点,广泛应用于军事、民用交通(船舶、飞机、汽车等)导航、大地测量、摄影测量、野外考察探险、土地利用调查、精确农业以及日常生活(人员跟踪、休闲娱乐)等不同领域。
GPS作为移动感知技术,是物联网延伸到移动物体采集移动物体信息的重要技术,更是物流智能化、可视化重要技术,是智能交通重要技术。
传感器技术传感技术同计算机技术与通信技术一起被称为信息技术的三大支柱。
从仿生学观点,如果把计算机看成处理和识别信息的大脑,把通信系统看成传递信息的神经系统的话,那么传感器就是感觉器官。
传感技术是关于从自然信源获取信息,并对之进行处理(变换)和识别的一门多学科交叉的现代科学与工程技术,它涉及传感器(又称换能器)、信息处理和识别的规划设计、开发、制/建造、测试、应用及评价改进等活动。
获取信息靠各类传感器,它们有各种物理量、化学量或生物量的传感器。
按照信息论的凸性定理,传感器的功能与品质决定了传感系统获取自然信息的信息量和信息质量,是高品质传感技术系统的构造第一个关键。
物联网感知层⒈简介⑴背景⑵目的⑶范围⒉定义和术语⑴物联网⑵感知层⑶传感器⑷数据采集⑸数据传输⒊架构概述⑴感知层的作用⑵感知层的组成部分⒊⑴传感器接口⒊⑵传感器节点⒊⑶数据采集和处理⒊⑷数据传输⑶数据安全性考虑⒋传感器选择与部署⑴传感器选择准则⑵传感器分类与特点⒋⑴温度传感器⒋⑵湿度传感器⒋⑶光照传感器⒋⑷压力传感器⒋⑸加速度传感器⑶传感器部署策略⒋⑴位置选择⒋⑵网络拓扑⒋⑶传感器密度⒌数据采集与处理⑴数据采集方法⒌⑴主动采集⒌⑵被动采集⑵数据预处理⒌⑴数据滤波⒌⑵数据校准⒌⑶数据聚合⒍数据传输与通信⑴传输协议选择⒍⑴有线传输⒍⑵无线传输⑵网络通信技术⒍⑴ Wi-Fi⒍⑵ ZigBee⒍⑶ LoRaWAN⒍⑷ NB-IoT⑶数据传输安全性考虑⒎数据存储与分析⑴存储方式选择⒎⑴云存储⒎⑵边缘存储⑵数据分析方法⒎⑴实时分析⒎⑵批处理分析⒎⑶机器学习算法⒏节能考虑⑴节能技术选择⒏⑴睡眠模式⒏⑵按需采样⒏⑶能量回收⑵电池寿命计算与管理⒐故障检测与维护⑴故障检测方法⒐⑴自检⒐⑵异常数据检测⑵维护策略⒐⑴定期维护⒐⑵预测维护⒑附件⑴附加文档⑵示例代码⑶数据格式定义附件:⒈数据传输示例图⒉传感器数据采集实验报告法律名词及注释:⒈物联网:指将日常用品、工业设备等物体与互联网连接,实现信息的物理对象之间的互联互通的网络。
⒉传感器:一种能够感知环境、收集相关数据并将其转化为可用信号的装置或设备。
⒊数据采集:将传感器感知到的数据进行采集、记录和存储的过程。
⒋数据传输:将采集到的数据通过网络进行传输和交换的过程。
物联网感知层1-引言●目的和范围●定义缩写词和术语●本文档的读者和相关方2-物联网感知层概述●感知层的定义和功能●感知层的架构和组成●感知层的主要特征和要求3-感知节点设计●节点硬件设计要求和规范●节点软件设计要求和规范●对节点的能耗管理和优化4-传感器选择和配置●传感器的种类和功能●传感器的性能指标和选择要求●传感器的配置和调试方法5-网络连接和通信●网络连接的实现方式和技术●通信协议的选择和配置●数据传输和安全性的考虑6-数据采集和处理●数据采集的方法和流程●数据处理和分析的算法和技术●数据质量和准确性的保证7-资源管理和优化●能源管理的策略和技术●节点资源的分配和利用●故障检测和修复机制8-安全和隐私保护●感知数据的安全性和隐私性需求●安全措施的设计和实施●数据传输和存储的加密和认证9-测试和验证●感知节点的测试方法和标准●网络连接和通信的测试方法和标准●数据采集和处理的测试方法和标准10-部署和维护●感知节点的部署策略和方法●网络的规模和拓扑设计●系统的运维和维护流程11-附件●参考文献列表●图表和示意图●代码和配置文件样例法律名词及注释:●物联网:指通过互联网连接智能设备,实现设备间的信息传递和协同工作的网络系统。
●感知层:物联网中最底层的部分,负责采集环境信息和设备状态,并将其传输到上层。
●节点:物联网感知层中的单个设备,包括传感器、处理器、通信模块等组件。
●传感器:感知层中用于感知和检测环境的设备,例如温度传感器、光敏传感器等。
●通信协议:节点之间进行通信时采用的协议,例如WiFi、蓝牙、LoRa等。
●资源管理:对感知节点的能量、计算、存储等资源进行有效分配和利用的管理手段。
●隐私保护:在物联网中对感知数据和个人信息进行保护和管理的措施。
物联网感知层的关键技术感知层是物联网的基础,是联系物理世界与信息世界的重要纽带。
感知层是由大量的具有感知、通信、识别(或执行)能力的智能物体与感知网络组成。
其主要技术有:传感器技术、RFID技术、二维码技术、Zig-Bee和蓝牙技术。
1.传感器技术传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
人是通过视觉、嗅觉、听觉及触觉等感官来感知外界的信息,感知的信息输入大脑进行分析判断(即人的思维)和处理,再指挥人作出相应的动作,这是人类认识世界和改造世界具有的最基本的本能。
但是通过人的五官感知外界的信息非常有限,例如,人总不能利用触觉来感知超过几十甚至上千度的温度吧,而且也不可能辨别温度的微小变化,这就需要电子设备的帮助。
同样,利用电子计算机特别象计算机控制的自动化装置来代替人的劳动,那么计算机类似于人的大脑,而仅有大脑而没有感知外界信息的“五官”显然是不足够的,中央处理系统也还需要它们的“五官”——即传感器。
基于传感器的传感器技术是对感知节点的不同定义与探索。
比如一个温度传感器可以实时地传输它所测量到得环境温度,这是基于温度利用汞的液态与温差变化而形成的;声控灯安装在楼道之间,有人路过就亮,这是基于人走路时声音的分贝大小来进行控制;高速路上的收费站人们开车经过时,在地面的称重传感器会将车辆重量反馈给电脑,以便确认其是否超重,这是基于弹簧弹性收缩变化的张力长度来进行测量。
未来传感器技术可能是温度、湿度、声音、压力等物理参数,亦可以是氧气、二氧化碳等化学成分的含量等化学参数。
把这些物理与化学集合而成的传感器是现在人们追求的技术,及机器人得目标。
2.RFID技术RFID(射频识别技术)是一门独立的将不同的跨学科的专业技术综合在一起,如高频技术、微波与天线技术、电磁兼容技术、半导体技术、数据与密码学、制造技术和应用技术等。
物联网感知层
感知层是物联网系统中的基础层,负责物理环境中的数据采集和感知。
本文档将详细介绍物联网感知层的相关内容,包括感知技术、感知设备、感知数据的处理与传输等。
感知技术
1、RFID技术
1.1 原理与工作方式
1.2 应用场景
1.3 优势与局限性
2、传感器技术
2.1 分类与原理
2.2 常见传感器类型及其应用
2.3 传感器数据处理与校准
感知设备
1、RFID读写器
1.1 功能与特点
1.2 工作原理
1.3 应用案例
2、传感器节点
2.1 硬件组成
2.2 系统架构
2.3 能耗管理
感知数据的处理与传输1、数据处理
1.1 数据预处理
1.2 数据清洗与过滤 1.3 数据压缩与降维
1.4 数据聚合与分析
2、数据传输
2.1 传输协议介绍 2.2 传输安全与加密 2.3 数据存储与管理附件
本文档附有以下附件:
1、RFID技术相关论文
2、传感器节点原理图
法律名词及注释
1、物联网:指将各种物理设备通过互联网连接起来,实现信息的交互和共享的技术系统。
2、RFID技术:Radio Frequency Identification,通过射频信号进行识别和追踪物体的技术。
3、传感器:能够感知环境物理量并将其转化为可用输出信号的装置。
4、数据预处理:对原始数据进行清洗、去噪等操作,以提高数据质量和可用性。
5、数据聚合:将来自多个传感器节点的数据进行合并和汇总,以得到更全面的环境信息。
物联网的结构一、物联网的概述物联网(Internet of Things,简称IoT)是指通过互联网络将各种物理设备、传感器、软件等连接起来,实现信息的传递和共享。
它可以使各种设备互相通信,并通过云计算平台进行数据处理和分析,从而实现智能化的管理和控制。
物联网的结构是物联网系统的基础,本文将从物联网的组成和架构两个方面来探讨物联网的结构。
二、物联网的组成1. 感知层感知层是物联网的基础层,主要由各种传感器和执行器组成。
传感器可以通过采集环境信息、物体参数等方式将实时数据转换为电信号,并传输给上层设备。
执行器可以根据上层设备发送的指令,控制物体的运行状态。
感知层的设备通常具有低功耗、低成本和小体积等特点,能够实现对物体的实时监测和远程控制。
2. 网络层网络层负责物联网内各个设备之间的通信,包括设备与设备之间的直接通信和设备与云端平台之间的通信。
物联网的网络层采用各种无线通信技术,如WiFi、蓝牙、ZigBee等,可以根据不同的需求选择合适的通信协议和网络拓扑结构。
网络层的设计需要考虑到网络的可靠性、带宽、延迟等因素,以满足物联网系统对数据传输的需求。
云平台层是物联网的核心部分,主要负责数据的存储、处理和分析。
它集成了各种云计算技术和大数据分析算法,能够对从感知层和网络层传输过来的海量数据进行实时处理和深度挖掘。
云平台层可以根据用户的需求提供不同的服务,如数据分析、监测预警、智能控制等,实现对物联网系统的智能化管理。
三、物联网的架构物联网的结构可以分为三层:感知层、网络层和应用层。
这三层之间通过各种协议和技术实现数据的传输和交互。
1. 感知层感知层是物联网的底层,负责采集环境信息和物体状态。
感知层包括各种传感器和执行器,它们可以将采集到的数据转换成电信号,并通过网络层传输到上层设备。
感知层的设备通常分布在各个环境中,如农田、工厂、家庭等,能够实时监测环境的温度、湿度、水质等参数,以及物体的运行状态。
物联网的工作原理物联网(Internet of Things, IoT)是指利用互联网和传感器等技术,将各种物理设备、传感器和其他对象互联起来,实现信息的传递、数据的收集和分析,从而实现设备之间的远程控制和智能化运作。
物联网的工作原理主要可分为以下几个部分:一、感知层物联网的感知层是由大量的传感器、RFID标签等设备组成的。
这些设备可以感知到周围环境的各种参数,如温度、湿度、光线等,并将这些信息转化为数字信号,以便后续的数据处理和传输。
二、网络传输层物联网的网络传输层负责将感知层收集到的数据进行传输。
这一层主要采用各种无线传输技术,如Wi-Fi、蓝牙、Zigbee等,实现数据的无线传输与通信。
同时,通过路由器、网关等设备,将物联网设备与互联网进行连接,实现对设备的远程监控与控制。
三、数据处理与存储层物联网的数据处理与存储层是对感知层传来的数据进行处理和存储的核心环节。
这一层主要负责对大量的数据进行分析、过滤和处理,提取有价值的信息,并将其存储在数据库或云平台中。
同时,为了避免数据过载和带宽浪费,还需要对数据进行压缩和优化处理。
四、应用与服务层物联网的应用与服务层是最接近用户和应用场景的一层。
通过这一层,用户可以通过终端设备(如手机、平板电脑)与物联网设备进行互动,并获取所需的服务和信息。
这一层的应用包括智能家居、智能城市、智能交通等各种应用场景,可以带给用户更加便捷和智能的生活体验。
五、安全与隐私保护层由于物联网涉及到大量的设备和数据,安全与隐私保护成为物联网发展中重要的一环。
这一层包括物理安全、通信安全、数据隐私保护等方面的措施,通过加密、认证、访问控制等手段,确保物联网系统的安全性和可靠性。
物联网的工作原理可以总结为感知、传输、处理和应用四个环节,通过各个环节的配合和协调,实现设备之间的互联互通,将物理世界与数字世界有机地结合起来。
随着技术的不断进步和应用场景的拓展,物联网正日益深入到人们的生活和工作中,为人们带来了更多的便利和可能。
物联网体系结构与技术分析物联网(Internet of Things,IoT)指的是基于互联网的智能化事物互联,是由智能化硬件、软件、通信网络、数据存储与处理中心等构成的一个复杂的系统。
物联网的体系结构物联网的体系结构包括感知层、网络传输层、数据处理层和应用层。
感知层感知层是指通过各种传感器和感知节点将物理世界的信息采集并进行初步处理,转化为数字信号,传输到网络传输层。
感知层的主要组成部分包括传感器、控制器、执行器、嵌入式芯片、数据采集设备等。
网络传输层网络传输层是指将感知层采集的数据通过无线传输或有线传输技术传输到云端,实现数据的实时传输和通信。
网络传输层的主要组成包括局域网、无线传感网、移动通信网、互联网等。
数据处理层数据处理层是指对传入的数据进行分析、计算、存储和处理,提供各种技术支持和服务,便于用户进行数据分析和决策。
数据处理层的主要组成部分包括云计算平台、数据存储系统、大数据分析软件和人工智能算法等。
应用层应用层是指用户通过互联网对数据进行访问和使用的界面,完成对物联网的各项功能的使用和管理。
应用层的主要组成包括各种智能终端、软件应用程序和管理系统等。
物联网的技术分析物联网核心技术主要包括感知技术、通信技术、云计算和大数据分析技术、人工智能技术等。
感知技术感知技术是物联网的基础技术,主要是通过传感器和控制器实现对物理信号、声音、光线、温度、湿度等各种变化的采集。
传感器技术的发展已经发展成强大的商业市场,大量的厂商在骨感传感器、图像传感器、红外传感器等方面进行大量的开发工作。
通信技术通信技术是物联网的沟通桥梁,在实际的应用过程中,无线传感网络和蓝牙等技术,长距离通信技术有WiFi、LTE和NarrowBand-Internet of Things (NB-IoT)等技术。
这些技术可以满足不同场景下的链接与通信需求,方便数据的交换和共享。
随着5G技术的逐渐成熟,其将成为物联网通信技术的重要发展方向。
物联网技术的构成和应用实例物联网技术已经成为数字化时代的重要组成部分,是智能化社会建设的基石之一。
那么物联网技术由哪些构成?又有哪些应用实例呢?本文将分别探讨。
一、物联网技术的构成(1) 感知层:包括物联网节点、传感器、执行器等。
传感器和执行器分别用于感知环境信息和执行控制动作。
这些节点是物联网技术最基础的部分,其作用是将物理世界中的信息转化为数字信号,然后将其发送到物联网的下一层。
(2) 网络层:负责连接物联网各个节点,涉及的技术包括无线通信、有线通信、蜂窝网络和卫星通信等。
这一层的目标是为上层提供稳定、可靠的连接环境。
(3) 服务层:为应用程序提供服务,包括数据存储、数据计算、网络安全等功能。
这一层的目标是将底层的通讯和硬件操作细节封装起来,为上层应用程序提供易于使用的编程接口。
(4) 应用层:涵盖了物联网技术具体的应用领域,例如智能家居、智能交通、智能医疗等。
该层作为物联网的最上层,应用的目标是解决现实生活中的问题,优化用户体验。
二、物联网技术的应用实例(1) 智能家居:智能家居是指应用物联网技术实现家居设备自动化管理的一种概念。
例如,智能门锁可以通过身份验证技术来限制出入门的时间和人员。
智能摄像头可以将视频内容上传到网络中,以便用户可以远程访问。
此外,一些智能家电,如智能冰箱和智能空调,可以自动优化能源消耗。
(2) 智能仓储:物流仓储产业已经越来越意识到物联网技术的重要性。
例如,通过物联网技术,仓库管理人员可以追踪物流,并知道实时库存情况。
在智能仓库中,物联网传感器可将物流信息从入库到出库,更有效、更精准地跟踪。
同时,物流企业还可以利用物联网技术实现智能排序,减少传统仓库人工流程,并提高效率以提高运输速度,并优化货物存储和提供安全的工作环境和条件。
(3) 智慧城市:智慧城市是指通过物联网技术实现城市物联网化,实现城市管理的科学化、高效化和优化管理的一种概念。
整个系统包括城市安全、交通、环境、能源管理等多个方面系统,由相关部门和企业共同完成运行和维护。
物联网感知层物联网本身的结构复杂,主要包括三大部分:首先是感知层,承担信息的采集,可以应用的技术包括智能卡、RFID电子标签、识别码、传感器等;其次是网络层,承担信息的传输,借用现有的无线网、移动网、固联网、互联网、广电网等即可实现;第三是应用层,实现物与物之间,人与物之间的识别与感知,发挥智能作用。
具体的核心,是感知层中的技术,从现在阶段来看,物联网发展的瓶颈就在感知层。
国际电信联盟(ITU)将射频技术(RFID)、传感器技术、纳米技术、智能嵌入技术列为物联网关键技术。
射频识别(radiofrequencyidentification,RFID)射频识别技术是20世纪90年代开始兴起的一种非接触式自动识别技术,该技术的商用促进了物联网的发展。
它通过射频信号等一些先进手段自动识别目标对象并获取相关数据,有利于人们在不同状态下对各类物体进行识别与管理。
射频识别系统通常由电子标签和阅读器组成。
电子标签内存有一定格式的标识物体信息的电子数据,是未来几年代替条形码走进物联网时代的关键技术之一。
该技术具有一定的优势:能够轻易嵌入或附着,并对所附着的物体进行追踪定位;读取距离更远,存取数据时间更短;标签的数据存取有密码保护,安全性更高。
RFID目前有很多频段,集中在13.56MHz频段和900MHz 频段的无源射频识别标签应用最为常见。
短距离应用方面通常采用13.56MHzHF频段;而900MHz频段多用于远距离识别,如车辆管理、产品防伪等领域。
阅读器与电子标签可按通信协议互传信息,即阅读器向电子标签发送命令,电子标签根据命令将内存的标识性数据回传给阅读器。
RFID技术与互联网、通讯等技术相结合,可实现全球范围内物品跟踪与信息共享。
但其技术发展过程中也遇到了一些问题,主要是芯片成本,其他的如FRID反碰撞防冲突、RFID天线研究、工作频率的选择及安全隐私等问题,都一定程度上制约了该技术的发展。
传感器技术传感技术同计算机技术与通信技术一起被称为信息技术的三大支柱。
物联网感知层的关键技术感知层是物联网的基础,是联系物理世界与信息世界的重要纽带。
感知层是由大量的具有感知、通信、识别(或执行)能力的智能物体与感知网络组成.其主要技术有:传感器技术、RFID技术、二维码技术、Zig-Bee 和蓝牙技术。
1.传感器技术传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求.它是实现自动检测和自动控制的首要环节。
人是通过视觉、嗅觉、听觉及触觉等感官来感知外界的信息,感知的信息输入大脑进行分析判断(即人的思维)和处理,再指挥人作出相应的动作,这是人类认识世界和改造世界具有的最基本的本能。
但是通过人的五官感知外界的信息非常有限,例如,人总不能利用触觉来感知超过几十甚至上千度的温度吧,而且也不可能辨别温度的微小变化,这就需要电子设备的帮助。
同样,利用电子计算机特别象计算机控制的自动化装置来代替人的劳动,那么计算机类似于人的大脑,而仅有大脑而没有感知外界信息的“五官”显然是不足够的,中央处理系统也还需要它们的“五官"——即传感器。
基于传感器的传感器技术是对感知节点的不同定义与探索.比如一个温度传感器可以实时地传输它所测量到得环境温度,这是基于温度利用汞的液态与温差变化而形成的;声控灯安装在楼道之间,有人路过就亮,这是基于人走路时声音的分贝大小来进行控制;高速路上的收费站人们开车经过时,在地面的称重传感器会将车辆重量反馈给电脑,以便确认其是否超重,这是基于弹簧弹性收缩变化的张力长度来进行测量。
未来传感器技术可能是温度、湿度、声音、压力等物理参数,亦可以是氧气、二氧化碳等化学成分的含量等化学参数.把这些物理与化学集合而成的传感器是现在人们追求的技术,及机器人得目标。
2.RFID技术RFID(射频识别技术)是一门独立的将不同的跨学科的专业技术综合在一起,如高频技术、微波与天线技术、电磁兼容技术、半导体技术、数据与密码学、制造技术和应用技术等。
物联网感知层技术物联网感知层技术1、引言1.1 背景1.2 目的1.3 范围2、感知层技术概述2.1 感知层的定义2.2 感知层的作用2.3 感知层的基本原理2.4 感知层的组成部分3、无线通信技术3.1 无线传感器网络(WSN)3.2 低功耗广域网(LPWAN)3.3 蓝牙技术3.4 ZigBee技术3.5 Wi-Fi技术4、传感器技术4.1 传感器的定义和分类4.2 常见的传感器技术4.3 传感器数据的采集和处理5、数据传输与处理5.1 数据传输协议5.2 数据压缩与优化5.3 数据处理与分析6、安全与隐私保护6.1 安全威胁与防范6.2 数据加密与解密6.3 隐私保护技术7、能源管理7.1 能源获取与存储7.2 能源管理策略7.3 能量回收与自供能8、应用案例8.1 智能家居8.2 智能交通8.3 工业自动化8.4 农业物联网8.5 医疗健康9、附录9.1 附件一、示例代码9.2 附件二、数据通信协议说明附:法律名词及注释1、广域网(LPWAN):一种面向广域范围的低功耗无线通信技术,用于物联网设备间的远程通信。
2、传感器网络(WSN):一种由大量分布式传感器节点组成的网络,用来感知和采集环境信息。
3、ZigBee技术:一种低功耗、短距离通信技术,适用于低速率、低功耗的物联网应用。
4、Wi-Fi技术:一种基于无线局域网的通信技术,用于提供高速、大容量的数据传输。
5、蓝牙技术:一种短距离无线通信技术,适用于低功耗设备间的数据传输。
本文档涉及附件:附件一、示例代码附件二、数据通信协议说明。
具体来说,物联网的体系自下而上可以分成五个层级,分别是感知层、接入层、网络层、服务管理层以及应用层。
(1)感知层
感知层是物联网的初始层级,也是数据的基础来源。
这一层级的基础元件是传感器,人才将各种各样的传感器装在不同的物品合设备上,使之感知这些物质的属性,判断它们的材质是属于金属、塑料、皮革还是矿石等。
同时,这些异常敏感的传感器还能对物品所处的内在环境状态合外在环境状态进行数据采集,比如采集环境的空气湿度、温度、污染度等信息。
另外,这些传感器还能对物质的行为状态跟踪监控,观察它们是静态的,还是动态的,并将这些信息全部以电信号的形式存储起来。
实现物物信息相连的庞大物联网,就需要这些传感器的分布密集度更高、覆盖范围更广以及更加灵敏合高效。
这样,传感器对物质信息获取的规模才能更大,对物质状态的辨识度才能更加精密,当网络形成后,其数据流才更具参考价值。
一般来说,对于不同的感知任务,传感器会根据具体情况协同作战。
比如要获取一台机器设备的内部工作动态视频,就需要感光传感器、声音传感器、压力传感器等协同工作,形成一幅有声音、有画面、有动感的机械内部工作动态视频。
感知层的传感器能全方位、多角度地获取数据信息,为物联网提供充足的数据资源,从而实现各种物质信息的在线计算合统一控制。
另外,传感器不仅可以通过无线传输,还可以利用线传输接入设备,人们利用传感器传输刀设备中的信息可以与网络资源进行交互合共享。
(2)接入层
接入层的作用是连接传感器和互联网,而这种连接的过程需要借助较多的网络基础设施才能实现。
例如,人们可以利用移动通信网中的GSM网和TD-SCDMA网来实现感知层向互联网的信息传输,也可以利用无线接入网(WiMAX)和无线局域网(WiFi)来实现感知层向互联网的信息传输。
另外,通过卫星网进行信息传输也是一种可行方案。
(3)网络层
网络层指的其实就是互联网,建立互联网需要利用两种IP,分别是IPv6/IPv4和后IP (Post-IP)。
网络层将网络信息进行整合,形成一个庞大的信息智能网络,这样就构成了一个高效、互动的基础设施平台。
(4)服务管理层
服务管理层的主体是中心计算机群,该计算机群拥有超级计算能力,可以对互联网中的信息进行统一管理和控制。
同时,这一层级还能够为上一层级提供用户接口,保证应用层级的有效运行。
(5)应用层
应用层是物联网体系的最终层级,用于承接服务管理层级以及构建应用体系,如果将服务
管理层比作一个商品开发中心,那么应用层就是商品的应用中心。
应用层级将面向社会中的各行各业,为它们构建物联网产品的实际应用。
物联网产品可以应用于多个领域,如交通运输、远程医疗、安全防护、文物保护、自然灾害监控等。
由于传感器网络技术相对复杂,目前,国内外的有关机构和大型科技企业在该技术领域的研发还不成熟,物联网的发展尚处于初级阶段。
现阶段,世界各个国家的主要研究方向是传感网的核心技术。
与此同时,关于物联网的其他技术也在进一步推进和展开,其中包括射频识别技术、传感器融合技术、智能芯片设计技术等。
此外,讲后IP网络和感知层网络更合理地整合、完善,一直是各大科研机构努力的方向。
物联网在服务管理层的数据如何拓展、如何探寻物联网新的商业模式,如何以点带面,开发典型物联网应用,并让其成为推动整个物联网行业的典型案例,带动整个物联网行业稳定有序地向更高层次迈进,这些都是现阶段科学家以及各大科技巨头正在努力探索的问题。
而在这之前,在各个领域、各个层面、各个系统开展物联网相关标准的制定是重中之重。