山西省曲沃中学校高三数学11月阶段性考试试题文
- 格式:doc
- 大小:278.04 KB
- 文档页数:4
曲沃县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A.B.C.D.2. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4) 3. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44954. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}5. 若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣6. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( ) A.124+B.124- C. 34 D .0 7. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( ) A. B. C .2 D.8. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0 C .﹣1 D .0或﹣19. 复数z 满足z (l ﹣i )=﹣1﹣i ,则|z+1|=( ) A .0B .1C.D .2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣11.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4二、填空题13.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .14.在△ABC 中,a=4,b=5,c=6,则= .15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
山西省曲沃中学高三第一学期阶段性考试语文试题2015年11月本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,共150分,考试时间150分钟。
第Ⅰ卷(阅读题,共70分)一、现代文阅读(9分,每小题3分)阅读下面的文字,完成l~3题。
有人说到“经”,便有意无意地把它等同于“经典”,而提起“中国经典”,就转换成“儒家经典”,这种观念有些偏狭。
中国经典绝不是儒家一家经典可以独占的,也应当包括其他经典,就像中国传统是“复数的”传统一样。
首先,中国经典应当包括佛教经典,也应当包括道教经典。
要知道,“三教合一”实在是东方的中国与西方的欧洲在文化领域中最不同的地方之一,也是古代中国政治世界的一大特色。
即使是古代中国的皇帝,不仅知道“王霸道杂之”,也知道要“儒家治世,佛教治心,道教治身”,绝不只用一种武器。
因此,回顾中国文化传统时,仅仅关注儒家的思想和经典,恐怕是过于狭窄了。
即使是儒家,也包含了相当复杂的内容,有偏重“道德自觉”的孟子和偏重“礼法治世”的荀子,有重视宇宙天地秩序的早期儒家和重视心性理气的新儒家。
应当说,在古代中国,关注政治秩序和社会伦理的儒家,关注超越世界和精神救赎的佛教,关注生命永恒和幸福健康的道教,分到承担着传统中国的不同责任,共同构成中国复数的文化。
其次,中国经典不必限于圣贤、宗教和学派的思想著作,它是否可以包括得更广泛些?比如历史著作《史记》《资治通鉴》,比如文字学著作《说文解字》,甚至唐诗、宋词、元曲里面的那些名著佳篇。
经典并非天然就是经典,它们都经历了从普通著述变成神圣经典的过程,这在学术史上叫“经典化”。
没有哪部著作是事先照着经典的尺寸和样式量身定做的,只是因为它写的好,被引用得多,被人觉着充满真理,又被反复解释,有的还被“钦定”为必读书,于是,就在历史中渐渐成了被尊崇、被仰视的经典。
因此,如今我们重新阅读经典,又需要把它放回产生它的时代里面,重新去理解。
经典的价值和意义,也是层层积累的,对那些经典里传达的思想,原则甚至知识,未必需要亦步亦趋“照办不走样”,倒是要审时度势“活学活用”,要进行“创造性的转化”。
卜人入州八九几市潮王学校第五2021届高三数学上学期11月阶段性考试试题文一、选择题(本大题一一共12小题,每一小题5分,一共60分,每一小题有且只有一个正确选项) 1.集合{}62>-+∈=x xR x A ,{}e x R x B <<-∈=π,那么()A.A Bφ⋂=B .R B A =⋃ C.A C B R ⊆ D.B A ⊆2. i z 21+=,那么=-⋅14z z i〔〕A.1B .1- C.i D.-i3. 以下结论错误的选项是〔〕A.“假设p ,那么q “假设q ⌝,那么p ⌝〞Bp :]1,0[∈∀x ,1≥xe q :,R x ∈∃012<++x x ,那么p 或者qC.假设p 或者q p 、qD.“假设22bmam <,那么b a <4.000sin 47sin17cos30cos17-=() A.23B .12- C.21D.5. 定义在R 上的可导函数)(x f 是偶函数,且满足0)(>'x f x ,0)21(=f ,那么不等式0)(log 41>x f 的解集为()A.),2()21,(+∞⋃--∞B .)2,1()1,21(⋃C.)2()1,21(∞+⋃,D .),2()21,0(+∞⋃ 6.将函数cos sin y x x =-的图象先向右平移()0ϕϕ>个单位长度,再将所得的图象上每个点的横坐标变为原来的a 倍〔纵坐标不变〕,得到cos2sin 2y x x =+的图象,那么,a ϕ的可能取值为()A .,22a πϕ==B .3,28a πϕ==C .31,82a πϕ==D .1,22a πϕ== {}n a 的前n 项和为n S ,01>a 且11956=a a ,那么当n S 取最大值时,n 的值是() A.9B .10C.11D.128. 一个项数为偶数的等比数列{}n a 中,所有项之和等于偶数项之和的4倍,前3项之积为64,那么=1a ()A.11B .12C.13D.149. 在ABC ∆中,内角A 、B 、C 的对边分别为a,b,c ,假设ABC ∆的面积为S ,且22)(2c b a S -+=,那么=C tan 〔〕A.43B .34C.43- D.34- 10. 在ABC ∆中,假设AD =AB 31+AC 21,记ABD S S ∆=1,ACD S S ∆=2,BCD S S ∆=3,那么以下结论正确的选项是()A.3213=S S B .2132=S S C.3212=S S D.316321=+S S S 11. 设不等式0222≤++-a ax x 的解集为A ,假设]3,1[⊆A ,那么实数a 的取值范围是〔〕A.]511,1(-B .]511,1(.C ]511,2( D.]3,1(- 12. 一个空间几何体的三视图如下列图,那么该几何体外接球的外表积为〔〕A.114πB .6π C.11π D.24π俯视图正视图二、填空题(本大题一一共4小题,每一小题5分,一共20分,把答案填在题中的横线上)13. 假设22tan -=θ,那么=θ2cos .14.正数,a b 满足2ab a b =+,那么a b +的最小值为.{}n a 的通项公式为12-=n n a ,且)1)(1(1++=+n n nn a a a b ,数列{}n b 的前n 项和为n T ,那么=5T .)0(12)3(21ln 3)(2>-+-+-=a a x a ax x x f ,0)(>x f 的解集为),(n m ,假设)(x f 在(0,+)上的值域与函数))((x f f 在),(n m 上的值域一样,那么实数a 的取值范围为.三、解答题(本大题6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤)17.〔总分值是12分〕在ABC中,角A、B、C的对边分别为a,b,c ,ca cb A B A B ++=--cos sin sin )cos 1(.(1) 求角A 的大小; (2) 假设ABC 的面积为23,,3=+c b 求a . 18.〔总分值是12分〕数列{}n a 中,11a =,()*14nn n a a n N a +=∈+.(1)求证:113n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式; (2)数列{}n b 满足()1413n n n nn b a +=-⋅⋅,求数列{}n b 的前n 项和n T . 19.〔总分值是12分〕如图在三棱柱111C B A ABC -中,221==AB AA ,31π=∠BAA ,D 为1AA 的中点,点C 在平面11A ABB 内的射影在线段BD 上.(1) 求证:⊥D B 1平面CBD ;(2) 假设CBD ∆是正三角形,求三棱锥111C B A ABC -的体积.20.〔总分值是12分〕9()log (91)2x k f x x =++为偶函数,9()log (23)xg x a =⨯-.(1)务实数k 的值;(2)假设[0,1]x ∈时,函数)(x f 的图象恒在()g x 图象的下方,务实数a 的取值范围. 21.〔总分值是12分〕函数ax x x f 2ln )(-=,R a ∈.(1)求函数)(x f 的单调区间;(2)假设不等式2)(ax x x f -<在1>x 时恒成立,求a 的取值范围.22.〔总分值是10分〕选做题:请在A 、B 题中任选一题做答,写清题号.假设多做,那么按所做第一题记分.A 【选修4-4-极坐标与参数方程】 在极坐标系中,曲线C 的极坐标方程为θρ22sin 314+=,以极点为坐标原点,极轴为x 轴非负半轴建立极坐标系,直线l 的参数方程为⎩⎨⎧-=-=ty mt x 36(t 为参数,mR).(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)M 为曲线C 上的动点,点M 到直线l 间隔的最大值为13136,求m 的值.B 【选修4-5-不等式选讲】0,0>>b a ,且1=+b a .(1) 假设m ab ≤恒成立,求m 的取值范围;(2) 假设关于b ,a 的不等式21214+--≤+x x ba 有解,务实数x 的取值范围. AB C D1A 1B 1高三数学〔文〕答案一、 选择题BCDCDDBBCCAC 二、填空题13166316.[2,+¥)三、解答题17.解析:〔1〕p 32〔2〕 18.〔2〕,∴①②①-②得∴.19.解析:〔1〕可证:平面CBD^平面ABB 1A 1,用勾股定理证明:,用面面垂直性质定理可证:平面〔2〕3==.20.解析:〔1〕k=-1;〔2〕由题意可得时,恒成立,即,即恒成立,所以恒成立,且.即在恒成立,因为在上单调递增,所以.21.22.AB故要使有解,那么,即,(1)当时,不等式化为,解得;(2)当时,不等式化为,无解;(3)当时,不等式化为,解得;综上:或者.。
曲沃县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)3. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 4. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数5. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -6. 设a是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定7. 已知椭圆C:+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( ) A.﹣B.﹣C.D.﹣8.若向量=(3,m),=(2,﹣1),∥,则实数m 的值为( ) A.﹣ B.C .2D .69. 函数y=2sin 2x+sin2x 的最小正周期( ) A. B. C .π D .2π10.奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()A.B.C.D.12.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.15B.C.15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.二、填空题13.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)14.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 18.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .三、解答题19.(1)设不等式2x ﹣1>m (x 2﹣1)对满足﹣2≤m ≤2的一切实数m 的取值都成立,求x 的取值范围;(2)是否存在m 使得不等式2x ﹣1>m (x 2﹣1)对满足﹣2≤x ≤2的实数x 的取值都成立.20.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.21.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =. (Ⅰ)求AD 的长; (Ⅱ)求cos C .22.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.(Ⅰ)当m=3时,求;A ∩(∁R B );(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.23.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.曲沃县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.2.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.3.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.4.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 6. 【答案】C【解析】解:作出y=2x和y=logx 的函数图象,如图:由图象可知当x 0>a 时,2>log x 0,∴f (x 0)=2﹣logx 0>0.故选:C .7. 【答案】B【解析】解:如图所示,由椭圆的性质可得==﹣=﹣.由椭圆的对称性可得,,∴=﹣,同理可得===﹣.∴直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积==﹣.故选:B .【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.8. 【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.9. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin (ωx+φ)的周期为,属于基础题.10.【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 11.【答案】B【解析】解:∵y=f (|x|)是偶函数, ∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.12.【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA二、填空题13.【答案】 ①②④【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确; 对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误; 对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1, ∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确; 对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF , 设点P 坐标为(x,y ,0),由|PF|=|PG|,得,即x 2﹣y 2=1,∴P 点轨迹所在曲线是双曲线,⑤错误. 故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.14.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2==.15.【答案】 2x ﹣y+1=0 .【解析】解:由题意得,y ′=(x+e x )′=1+e x,∴点A (0,1)处的切线斜率k=1+e 0=2,则点A (0,1)处的切线方程是y ﹣1=2x ,即2x ﹣y+1=0,故答案为:2x ﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.16.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB17.【答案】必要而不充分 【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 18.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3, 又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去) ∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)令f (m )=2x ﹣1﹣m (x 2﹣1)=(1﹣x 2)m+2x ﹣1,可看成是一条直线,且使|m|≤2的一切 实数都有2x ﹣1>m (x 2﹣1)成立.所以,,即,即所以,.(2)令f (x )=2x ﹣1﹣m (x 2﹣1)=﹣mx 2+2x+(m ﹣1),使|x|≤2的一切实数都有2x ﹣1>m (x 2﹣1)成立.当m=0时,f (x )=2x ﹣1在时,f (x )≥0.(不满足题意)当m ≠0时,f (x )只需满足下式:或或或,解之得结果为空集. 故没有m 满足题意.【点评】本题以不等式为载体,恒成立问题,关键是构造函数,变换主元,考查解不等式的能力.属于中档题.20.【答案】【解析】解:(1)∵函数f (x )=log 2(x ﹣3), ∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,解得:x ∈(3,4] 【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.21.【答案】【解析】(Ⅰ)因为AD AC ⊥,所以sin sin cos 2BAC BAD BAD π⎛⎫∠=+∠=∠ ⎪⎝⎭,所以cos 3BAD ∠=.…… 3分 在ABD ∆中,由余弦定理可知,2222cos BD AB AD AB AD BAD =+-⋅⋅∠ 即28150AD AD -+=,解之得5AD =或3AD =, 由于AB AD >,所以3AD =.…… 6分(Ⅱ)在ABD ∆中,由cos 3BAD ∠=可知1sin 3BAD ∠= …… 7分由正弦定理可知,sin sin BD ABBAD ADB =∠∠,所以sin sin 3AB BAD ADB BD ∠∠==…… 9分因为2ADB DAC C C π∠=∠+∠=+∠,即cos C =…… 12分22.【答案】【解析】解:(1)当m=3时,由x 2﹣2x ﹣3<0⇒﹣1<x <3,由>1⇒﹣1<x <5,∴A ∩B={x|﹣1<x <3}; (2)若A ∩B={x|﹣1<x <4}, ∵A=(﹣1,5),∴4是方程x 2﹣2x ﹣m=0的一个根,∴m=8,此时B=(﹣2,4),满足A ∩B=(﹣1,4). ∴m=8.23.【答案】(1){}125a a a <<≤或;(2)1m =.【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题.若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 24.【答案】【解析】(1)解:赞成率为,被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43 (2)解:由题意知ξ的可能取值为0,1,2,3,,,,,∴ξ的分布列为:ξ0 1 2 3∴.【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.。
曲沃县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}2. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是()A .b >c >aB .b >a >cC .a >b >cD .c >b >a3. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣24. 已知函数y=2sinx 的定义域为[a ,b],值域为[﹣2,1],则b ﹣a 的值不可能是( )A .B .πC .2πD .5. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .()D .(]6. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( )A .{5}B .{1,2,5}C .{1,2,3,4,5}D .∅7. 已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A .B .C .3D .58. 在△ABC 中,已知A=30°,C=45°,a=2,则△ABC 的面积等于( )A .B .C .D .9. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37121新设备22202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对10.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A∈班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于()A .65B .63C .33D .3112.实数a=0.2,b=log 0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a二、填空题13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .14.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)15.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .16.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= . 17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 . 18.计算:×5﹣1= .三、解答题19.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为: =, =﹣.20.(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.111C B A ABC -AC F E 、11AC B A 、(1)求证:平面; //EF ABC (2)求证:平面平面.⊥AEF B B AA 1121.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和. 22.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.23.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.24.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?曲沃县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.2.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.3.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.4.【答案】C【解析】解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C【点评】本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是熟悉三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.5.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.6.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.7.【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.8.【答案】B【解析】解:因为△ABC中,已知A=30°,C=45°,所以B=180°﹣30°﹣45°=105°.因为a=2,也由正弦定理,c===2.所以△ABC的面积,S===2=2()=1+.故选:B.【点评】本题考查三角形中正弦定理的应用,三角形的面积的求法,两角和正弦函数的应用,考查计算能力. 9. 【答案】 A 【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.10.【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.11.【答案】 D【解析】解:由=﹣(2x n +1),得+(2x n +1)=,设,以线段P n A 、P n D 作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.12.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 二、填空题13.【答案】 cm3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P ﹣ABC .该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2,由几何体的正视图可得:AD+BD=AB=4cm ,故几何体的体积V=×8×4=cm 3,故答案为:cm 3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键. 14.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10af x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.15.【答案】 .【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.16.【答案】 2016 .【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题. 17.【答案】 .【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积. 18.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.三、解答题19.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.20.【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,∵直三棱柱中,四边形是矩形,C A 1111C B A ABC -C C AA 11故点在上,且为的中点,F C A 1F C A 1在中,∵分别是的中点,∴.BC A 1∆F E 、11AC B A 、BC EF //又平面,平面,∴平面.⊄EF ABC ⊂BC ABC //EF ABC考点:1.线面平行的判定定理;2.面面垂直的判定定理.21.【答案】【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2ωx ﹣=ωx+(1﹣cos2ωx )﹣=2ωx ﹣2ωx=sin (2ωx ﹣),依题意得函数f (x )的周期为π且ω>0,∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f (x )=sin (2ωx ﹣),∴,∴.又∵x ∈[0,2π],∴.∴y=f(x)在x∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题. 22.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.23.【答案】【解析】解:(I)∵椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.∴点在椭圆G上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.24.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.。
曲沃县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+42. 设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题3. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( ) A.B .6C.D .34. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种5. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B ) 6. 已知数列,则5是这个数列的( ) A .第12项B .第13项C .第14项D .第25项7. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .28. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .410.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 12.设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)二、填空题13.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力. 14.在矩形ABCD 中,=(1,﹣3),,则实数k= .15.已知实数x ,y满足,则目标函数z=x ﹣3y 的最大值为16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .17.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.18.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 . 三、解答题19.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系; (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值.20.已知函数上为增函数,且θ∈(0,π),,m∈R.(1)求θ的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.21.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.22.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.23.已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.24.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
曲沃县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .42. 已知函数sin(2)y x ϕ=+在6x π=处取得最大值,则函数cos(2)y x ϕ=+的图象( )A .关于点(0)6π,对称 B .关于点(0)3π,对称 C .关于直线6x π=对称 D .关于直线3x π=对称3. 已知α是三角形的一个内角,且,则这个三角形是( )A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形4. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]5. 数列1,3,6,10,…的一个通项公式是( )A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 6. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣7. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .11?B .12?C .13?D .14?8. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .9. 已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .10.已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 11.“a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件12.若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 .14.已知i 是虚数单位,复数的模为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .17.(sinx+1)dx 的值为 .18.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .三、解答题19.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.20.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.21.设函数f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x+2)=﹣f (x ),当x ∈[0,2]时,f (x )=2x ﹣x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值.22.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,BG⊥平面ABCD,且24AB BG BH==.(1)求证:平面AGH⊥平面EFG;(2)求二面角D FG E--的大小的余弦值.23.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.24.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.曲沃县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n ∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.2. 【答案】A 【解析】∵22,62k k Z ππϕπ⨯+=+∈,∴2,6k k Z πϕπ=+∈,∴cos(2)cos(22)cos(2)66y x x k x ππϕπ=+=++=+, 当6x π=时,cos(2)066y ππ=⨯+=,故选A .3. 【答案】A【解析】解:∵(sin α+cos α)2=,∴2sin αcos α=﹣,∵α是三角形的一个内角,则sin α>0, ∴cos α<0, ∴α为钝角,∴这个三角形为钝角三角形.故选A .【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.4. 【答案】C【解析】解:∵对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y ), ∴令x=n ,y=1,得f (n )•f (1)=f (n+1),即==f (1)=,∴数列{a n }是以为首项,以为等比的等比数列,∴a n =f (n )=()n,∴S n ==1﹣()n ∈[,1).故选C .【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题.5. 【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 6. 【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣. 故选:C .【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.7. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8. 【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C 9. 【答案】C【解析】 令得,所以,即,所以是以1为公差的等差数列,首项为,所以,故选C答案:C10.【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D. 考点:数列的函数特性.11.【答案】B【解析】解:由a 2≠1,解得a ≠±1.∴“a ≠1”推不出“a 2≠1”,反之由a 2≠1,解得a ≠1. ∴“a ≠1”是“a 2≠1”的必要不充分条件.故选:B .【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.【答案】B【解析】解:若f (x )的图象关于x=对称,则2×+θ=+k π,解得θ=﹣+k π,k ∈Z ,此时θ=﹣不一定成立, 反之成立,即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.二、填空题13.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.114.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.15.【答案】 3 .【解析】解:直线l 的方程为ρcos θ=5,化为x=5.点(4,)化为.∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.17.【答案】 2 .【解析】解:所求的值为(x ﹣cosx )|﹣11=(1﹣cos1)﹣(﹣1﹣cos (﹣1)) =2﹣cos1+cos1 =2.故答案为:2.18.【答案】 3,﹣17 .【解析】解:由f ′(x )=3x 2﹣3=0,得x=±1, 当x <﹣1时,f ′(x )>0, 当﹣1<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,故f (x )的极小值、极大值分别为f (﹣1)=3,f (1)=﹣1, 而f (﹣3)=﹣17,f (0)=1,故函数f (x )=x 3﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.三、解答题19.【答案】(本小题满分13分)解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a+∞,()f x 的递减区间为2(0,)a . (4分)②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)③当0a <时,解()0f x '>得20x a<<,解()0f x '<得0x >或2x a <∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2(,)a-∞和(0,)+∞. (7分)(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2(,0)a上递增,在(0,)+∞上递减.∵22240a f a a -⎛⎫=> ⎪⎝⎭,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11(2)028f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01(0,)2x ∈ (12分) 综上所述,当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈. (13分)20.【答案】【解析】解:(1)依题意,可设椭圆C 的方程为(a >0,b >0),且可知左焦点为F (﹣2,0),从而有,解得c=2,a=4,又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为.(2)假设存在符合题意的直线l ,其方程为y=x+t ,由得3x 2+3tx+t 2﹣12=0,因为直线l 与椭圆有公共点,所以有△=(3t )2﹣4×3(t 2﹣12)≥0,解得﹣4≤t ≤4,另一方面,由直线OA 与l 的距离4=,从而t=±2,由于±2∉[﹣4,4],所以符合题意的直线l 不存在.【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.21.【答案】【解析】(1)证明:∵f (x+2)=﹣f (x ), ∴f (x+4)=f[(x+2)+2]=﹣f (x+2)=f (x ), ∴y=f (x )是周期函数,且T=4是其一个周期.(2)令x ∈[﹣2,0],则﹣x ∈[0,2],∴f (﹣x )=﹣2x ﹣x 2,又f (﹣x )=﹣f (x ),∴在x ∈[﹣2,0],f (x )=2x+x 2,∴x ∈[2,4],那么x ﹣4∈[﹣2,0],那么f (x ﹣4)=2(x ﹣4)+(x ﹣4)2=x 2﹣6x+8,由于f (x )的周期是4,所以f (x )=f (x ﹣4)=x 2﹣6x+8,∴当x ∈[2,4]时,f (x )=x 2﹣6x+8. (3)当x ∈[0,2]时,f (x )=2x ﹣x 2.∴f (0)=0,f (1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.22.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.∵GH∈平面AGH,∴平面AGH⊥平面EFG.……………………………5分23.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.24.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1。
曲沃县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知定义在上的奇函数)(x f ,满足,且在区间上是增函数,则 R (4)()f x f x +=-[0,2]A 、 B 、(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-C 、D 、(11)(80)(25)f f f <<-(25)(80)(11)f f f -<<2. 为得到函数的图象,只需将函数y=sin2x 的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位3. 设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i4. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B . C.D .1234585. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x6. 已知在数轴上0和3之间任取一实数,则使“”的概率为( )2log 1x <A .B .C .D .1418231127. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( )A .(﹣3,0)∪(2,3)B .(﹣∞,﹣3)∪(0,3)C .(﹣∞,﹣3)∪(3,+∞)D .(﹣3,0)∪(2,+∞) 8. 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,)63sin(2)(π+=x x f 4π)(x g 则的解析式为( ))(x g A . B .3)43sin(2)(--=πx x g 343sin(2)(++=πx x g C .D .3123sin(2)(+-=πx x g 3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.9. 图1是由哪个平面图形旋转得到的()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .10.执行右面的程序框图,如果输入的,则输出的属于( )[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.11.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线12.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .二、填空题13.在(x 2﹣)9的二项展开式中,常数项的值为 .14.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= . 15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线()()ln R xf x x a a x=+-∈122e e 1x x y +=+(为自然对数的底数)上存在点使得,则实数的取值范围为__________.e ()00,x y ()()00f f y y =a 17.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)三、解答题19.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论.(Ⅱ)证明:AM ⊥PM .20.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC 在矩阵N 应对的变换作用下得到矩形区域OA ′B ′C ′,如图所示.(1)求矩阵M ;(2)求矩阵N 及矩阵(MN )﹣1.21.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.22.(本小题满分12分)111]在如图所示的几何体中,是的中点,.D AC DB EF //(1)已知,,求证:平面; BC AB =CF AF =⊥AC BEF (2)已知分别是和的中点,求证: 平面.H G 、EC FB //GH ABC23.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.24.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?曲沃县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D A ABCCABAB题号1112答案BD二、填空题13. 84 .14. 1 .15. 5 .16.1,e⎛⎤-∞ ⎥⎝⎦17.218. , 无.三、解答题19. 20.21.(1)甲,乙,丙,丁;(2).25P =22.(1)详见解析;(2)详见解析.23. 24.。
曲沃县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列1,,,,,,,,,,…的前100项的和等于( )A .B .C .D .2. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .1323123. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°4.设集合,,则( )A B C D5. 一空间几何体的三视图如图所示,则该几何体的体积为(A .B .126C .D .426. 如图给出的是计算A .i ≤21B .i ≤11C .i ≥21D .i ≥117. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.8. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x9. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( )A .15B .30C .31D .6410.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于()A .4B .2C .D .211.在平行四边形ABCD 中,AC 为一条对角线, =(2,4),=(1,3),则等于()A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)12.不等式组在坐标平面内表示的图形的面积等于( )A .B .C .D .二、填空题13.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)14.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +15.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:年份20302035204020452050年份代号t 12345所占比例y6865626261根据上表,y 关于t 的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.16.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是 .17.已知f(x)=,若不等式f(x﹣2)≥f(x)对一切x∈R恒成立,则a的最大值为 .18.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .三、解答题19.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.20.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数610121255赞成人数3610643(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.21.如图所示,在四棱锥中,底面为菱形,为与的交点,平P ABCD -ABCD E AC BD PA ⊥面,为中点,为中点.ABCD M PA N BC (1)证明:直线平面;//MN ABCD(2)若点为中点,,,,求三棱锥的体积.Q PC 120BAD ∠=︒PA =1AB =A QCD -22.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;()f x(2)求函数的解析式并确定其定义域.[()]f f x 23.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.24.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.曲沃县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】解:=1×故选A . 2. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为的正方体21111ABCD A B C D -中的一个四面体,其中,∴该三棱锥的体积为,选B .1ACED 11ED =112(12)2323⨯⨯⨯⨯=3. 【答案】B【解析】解:y /=3x 2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B .【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题. 4. 【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
2015秋山西曲沃高三数学11月阶段试卷(文科含答案)高三年级第三次联考数学试题(文)一、选择题(每题5分,共60分)1、已知集合,时,()A.B.C.D.2、复数z=-3+i2+i的共轭复数是A.2+iB.2-iC.-1+iD.-1-i3、下列结论正确的是()A.若,则B.若,则C.若,,则D.若,则4、设数列中,已知,则()A.B.C.D.25、下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是()A.y=B.y=﹣x2+1C.y=2xD.y=lg|x+1|6、某三棱锥的三视图如图所示,该三棱锥的表面积是()A.B.C.D.7、已知为等比数列,,,则()A.B.C.D.8、函数零点所在的区间是()A.B.C.D.9、下列有关命题的说法错误的是()A.命题“若,则”的逆否命题为:“若则”B.“”是“”的充分不必要条件C.若为假命题,则、均为假命题D.对于命题使得,则均有10、设是直线,a,β是两个不同的平面A.若∥a,∥β,则a∥βB.若∥a,⊥β,则a⊥βC.若a⊥β,⊥a,则⊥βD.若a⊥β,∥a,则⊥β11、若函数,且在上是增函数,则的取值范围是()A.B.C.D.12、在中,,设,则向量()A.B.C.D.二、填空题(每题5分,共20分)13、幂函数的图象经过点则=14、已知=2,则的值为;的值为_____.15、若正数x,y满足x+3y=5xy,则3x+4y的最小值是16、观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5…照此规律,第n个等式可为.三、解答题(共70分)17、(10分)已知函数。
(Ⅰ)求函数的最小正周期和值域;(Ⅱ)若,求的值。
18、(12分)已知分别为三个内角的对边,(1)求(2)若,的面积为;求.19、(12分)已知数列的前n项和为Sn,且Sn=,n∈N ﹡,数列满足an=4log2bn+3,n∈N﹡.(1)求an,bn;(2)求数列的前n项和Tn.20、(12分)如图,在三棱锥中,⊥底面,是的中点,已知∠=,,,,求:(1)三棱锥的体积(2)异面直线与所成的角的余弦21、(12分)已知函数。
高三年级第三次联考数学试题(文)
一、选择题(每题5分,共60分)
1时,A B =( )
A .∅
2、复数z =-3+i
2+i 的共轭复数是
A. 2+i
B.2-i
C.-1+i
D.-1-i
3、下列结论正确的是( )
A .若a b >,则ac bc >
B .若a b >,则22a b >
C .若a c b c +<+,0c <,则a b >
D >a b >
4、设数列{}n a 中,已知)1(1
1,11
1>+==-n a a a n n ,则=3a ( )
A .58
B .35
C .23
D .2
5、下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是( )
A . y= B. y=﹣x 2+1 C .y=2x D. y=lg|x+1|
6、某三棱锥的三视图如图所示,该三棱锥的表面积是 (
)
A .28+
B .30+
C .56+
D .60+
7、已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += (
)
A .7
B .5
C .-5
D .-7
8、 函数5()3f x x x =+-零点所在的区间是( )
A .[0,1]
B .[1,2]
C .[2,3]
D .[3,4]
9、下列有关命题的说法错误的是( )
A.命题“若210x -= , 则1x =”的逆否命题为:“若1x ≠ 则210x -≠”
B .“1x = ”是“2320x x -+=”的充分不必要条件
C.若p q ∧为假命题,则p 、q 均为假命题
D.对于命题R :∈∃x p 使得210x x ++<,则R :∈∀⌝x p 均有2
10x x ++…
10、 设l 是直线,a ,β是两个不同的平面
A. 若l ∥a ,l ∥β,则a ∥β
B. 若l ∥a ,l ⊥β,则a ⊥β
C. 若a ⊥β,l ⊥a ,则l ⊥β
D. 若a ⊥β, l ∥a ,则l ⊥β
11、若函数()221(01x x ax x f x a a x ⎧+-≤⎪=>⎨->⎪⎩,且1)a ≠在()0,+∞上是增函数,则a 的取值范围是( )
A .1(0,)2
B .(0,1)
C .1(0,]2
D .1[,1)2
12、在ABC ∆中,34
BD BC =,设==,,则向量AD =( ) A .1344a b + B .3144a b + C .7344a b - D .7344
a b -+ 二、填空题(每题5分,共20分)
13、幂函数()x f 的图象经过点)41,2(则⎪⎭⎫ ⎝⎛21f =
14、已知tan 2α
=2,则αtan 的值为_________;6sin cos 3sin 2cos αααα
+-的值为_____. 15、若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是_________
16、观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5
…
照此规律,第n 个等式可为 .
三、解答题(共70分)
17、 (10分) 已知函数21()cos sin cos 2222
x x x f x =--。
(Ⅰ)求函数()f x 的最小正周期和值域;
(Ⅱ)若()10f α=
,求sin 2α的值。
18、(12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对
边,cos sin 0a C C b c --=
(1)求A (2)若2a =,ABC ∆的面积为3;求,b c .
19、(12分)已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡.
(1)求a n ,b n ;
(2)求数列{a n ·b n }的前n 项和T n .
20、(12分)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC
=2π
,2AB =,AC =2PA =,求:
(1)三棱锥P ABC -的体积
(2)异面直线BC 与AD 所成的角的余弦
21、(12分)已知函数x x
x f y ln )(==。
(Ⅰ)求函数)(x f y =的图像在e x 1
=处的切线方程;
(Ⅱ)求)(x f y =的最大值;
22、(12分)设函数329
()62f x x x x a =-+-.
(1)求函数)(x f 的单调区间.
(2)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.
高三第三次考试参考答案
一、BDDCD BDBCB CA
二、13、4 14、--34 ,6
7 15、5 16、(n+1) (n+2)(n+3)…(n+n)=)12...(*5*3*1*2-n n
三、17、(1)T=∏ -2
222≤≤y (2)257 18、(1)A=
3 (2)b=c=2 19、(1)14-=n a n 2
1-=n n b (2)2*)54(5n n n T -+= 20、(1)
334 (2)43 21、(1))(x f 定义域为()+∞,021ln ()x f x x
-'∴= e e f -=)1( 又2/2)1(e e
f k == ∴函数)(x f y =的在e x 1=处的切线方程为:)1(22e
x e e y -=+,即e x e y 322-= (2)令0)(/=x f 得e x =
当),0(e x ∈时,0)(/>x f ,)(x f 在),0(e 上为增函数
当),(+∞∈e x 时,0)(/
<x f ,在),(+∞e 上为减函数 e e f x f 1
)()(max ==∴
22、(1)()6932+-='x x x f ,
当()0>'x f 时,2>x 或1<x .
当()0<'x f 时,21<<x .
(2)由(1)知,函数在(-∞,1)为增,)(2,1为减函数,()∞+,
2为增函数,根据函数的图像特征,判断x 轴应在极值之间,(1)0(2)0
f f >⎧⎨<⎩由得,522a <<。