【高考数学】 二轮专题复习 专题一 三角函数与平面向量 第2讲 三角恒等变换与解三角形
- 格式:doc
- 大小:224.50 KB
- 文档页数:13
第2讲三角恒等变换与解三角形高考定位1 •三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和的核心;2•正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.与差、二倍角的正弦、余弦、正切公式)进行变换, “角”的变换是三角恒等变换真题感晤丨考点整合:::::::• ■•••••••••••••••••■ ••••• ••••・••・•••••••• ••••••• • • ・• •罷瀧皐1明考向專蕊扣要点i真题感1.(2018-全国III卷)若sina=28 A97 B9解析cos 2a =1—73,贝0 cos 2a =(8D_9答案2.(2018-全国III卷)AABC的内角A,B, C的对边分别为a, b, c.若△ABC的面积为a2-}~b2— c2,则C=(仆兀B-3C'4r兀D6解析根据题意及三角形的面积公式知j^sin c =厂,所以sin C —/ + 方2 —c22ab= cos C,所以在△ 4BC中,答案C3.(2018•浙江卷)在厶ABC中,角4, B, C所对的边分别为©b, c.若a=^i, b = 2,4 = 60°,贝lj sin B= ________ , c= _________ .・2X迪r解析因为b = 2, A = 60°,所以由正弦定理得^=零. 由余弦定理t/2—Z?2+c2— 2£>ccos A 可得c2— 2c—3 = 0,所以c=3.答案卑34.(2017•浙江卷)已知△ ABC, AB=AC=4, BC=2.点。
为AB延长线上一点,BD = 2,连接CD 则△BDC的面积是__________ , cos ZBDC= ___________ ・解析依题意作出图形,如图所示,则sinZDBC=sinZABC.由题意知AB=AC=4, BC=BD=2,贝U sinZ4BC=乎,cosZABC=^.所以S^BDC —2 BCBD sinZDBC= | X2X2X .因为BD2+BC2-CD2CQ = {Td由余弦定理,得cosZBDC=4+10—4 ^JIQ 2X2XV1O= 4 ・答案V15 Vio2 4B\—~7Ccos DBC —cosZABC= 2BDBC1・三角函数公式(2) 诱导公式:对于“㊁土弘kEZ 的三角函数值”与“a 角的三角函数值” 面口诀记忆:奇变偶不变,符号看象限.(3) 两角和与差的正弦、余弦、正切公式:sin(a±0) = sin acos 〃土cos asin 0; cos(a 土〃)=cos acos P s in asin 〃; tan(a 土〃)(4) 二倍角 公式:sin 2a = 2sin acos a, cos la=cos 2a — sin 2a = 2cos 26z —1 = 1_____ b y考点整合⑴同角关系: sin 2a+cos 2a=l,a.cos a的关系可按下tan a 土tan卩1 tan atan B(5)辅助角公式:asin x~\~bcos x==^/u2+Z?2sin(x+^), 其中tan(p=^.2•正弦定理、余弦定理、三角形面积公式 (1) 正弦定理在厶ABC 中,聶=岛=蠢=2R(R 为AABC 的外接圆半径);(2)余弦定理在△佔c 中, a 1 = b 1-\-c 1— 2bccos A ;变形:b 2j rc 2- j 2 1 2 2 2 b 十 c —a~ ci —2bccos4, cos A — n 7(3)三角形面积公式1 7 1 1SgBc=fbsin C=~Z?csin A=^acsin B.变形:a = 2/?sin A, sinci : b : c=sinA : sin B : sin C等.I热点聚焦丨分类突破I■■■誥絃総研热点扭[析考法浚签瘗热点一三角恒等变换及应用【例1] (1)(2018-全国I卷)己知角a的顶点为坐标原点,始边与x轴的非负半轴重2合,终边上有两点A(l, a). B(2, b),且cos 2(z=j,贝\\\a~b\ = { ) 1A-5 D.1(2)若tan兀a = 2tanI 3兀cos a—而则一;一, sin<z_5A.lB.2C.3D.4(3)如图,圆O与兀轴的正半轴的交点为A,点C, B在圆O上,且点C位于第一象12 _丄、巨_13,\/3cos2|—sin|-cos^— j 的值为2解析⑴由题意知cos a>0•因为cos 2a = 2cos2a—1=~,所以、6 、5 …土*得Itan od=*~・由题意知Itan a\ =,所以1“一勿=晋.故选B.,ZAOC=a.若IBCI = 1,则限,点B的坐标为cos 心晋,sin 0 =/ \ JI sin a — sin 心2+1 —3 . 7t . 7t tan a = 2— 1 sin otcosc -cos asing --------------------------- 1 5 5 7i tan 5f 3旳 co r _w(713兀、 s 吨+「而 sin”+£ tan a 】 .7T 71 asing tang sin acos^+cos(3)由题意得\OC\ = \OB\ = \BC\ = \,从而AOBC 为等边三角形,所以sinZAOB = 513*答案(1)B (2)C ⑶备 sin 曾_彳=器所以羽cos?号一sin^cos*— 22« 3_ 厂 1+cos a sin a 吋3 1 . =p3・ 2 P 2探究提高1 •解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时”“所求角”般表示为“两个已知角”的和或差的形式;⑵当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把"所求角”变成"已知角".2•求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练11 (1)(2018-全国II卷)已知sin a+cos 0= 1, cos oc+sin0=0,则sin(a+0)⑵(2017•北京卷)在平面直角坐标系兀Oy中,角u与角0均以S为始边,它们的终边关于y轴对称.若sin(/=*,则cos(or—〃)= ___________ .一 1 ] 4、疗71 兀(3)(2018-湖州质检)若cos(2a_0) = _盲,sin(a—20)=〒,Ov0v&vav刁贝!j a+0的值为解析(l)Tsin a + cos p= 1, cos a+sin0=0,sin2a + co邙+2sin acos①cos2a+sii?0+2cos asin £=0,②①②两式相加可得sin2a+cos2a+sin2^+cos2^+2(sin acos 0+cos asin 0)=1,/.sin(ot+^)1 =_2-(2)c t与0的终边关于y轴对称,贝lj a+p=Tt+2k7t,比丘乙:・B=Tt_aS ・7( 1) 7 /.cos(a—^) = cos( a — n + a — 2^)= — cos 2a=— (1 — 2sin^a) = — 11— 2X-| =—-,所以sin(2a—0)=p7・所以cos(a—20)=*所以cos(a +0) = cos[(2oc一0) —(a —20)] = cos(2«—”)・cos@ —2") + sin(2a —”)sin(a —X因为问+0罟,所以a + B =£. 答案(1)—£ (2)—£ (3)|热点二正、余弦定理的应用[考法1]三角形基本量的求解【例2—1】(2018-全国I卷)在平面四边形ABCD中,ZADC=90° , ZA=45° , AB =2, BD=5.⑴求cosZADB;(2)若DC=2d求BCRD A D C 2解⑴在△ABD中'由正弦定理得口二右而即而产sin為' 所以sinZADB=€・由题设知,ZADB<90°,、2(2)由题设及(1)知,cos ZBDC= sin ZADB =在△BCD 中,由余弦定理得、2BC 2=BD 2-hDC 2-2BDDCcosZBDC=25-h8-2X5X2\/2X^-=25. 所以BC=5.所以 cos ZADB=2=运 25— 5 •探究提高1•解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统—角、统一函数、统一结构"•[考法2]求解三角形中的最值问题【例2 — 2】(2018-绍兴质检)已知",b, c分别为ZVIBC的内角4, B, C的对边,且tzcos C+羽asin C—b—c = 0・⑴求4;(2)若ci = 2,求AABC面积的最大值.解(1)由cicos C+书asin C—b—c=0及正弦定理得sin Acos C+^/3sin Asin C—sin B —sin C=0・因为B=TI—A — Cy所以书sinAsin C—cos Asin C—sin C=0・易知sin C T^O,所以^/3sin A—cos A=l,所以sin A—=-又0<A<7i,所以A=^.(2)法一由⑴得B+C=y C=^—B (OVB<刽,由正弦定理得聶=盒二c 2 4 4 4 晶寸—卞 所以bpsinb c=^sm C. sin § v v v易知一£<23—£<¥,故当2E-*=号,即B=£时,S △初c 取得最大值,最大值为斗平A=|x^sin B X ^sin C sin |=^sin Bsin C=^ (2n }•sin B sin w B Id 丿¥血"cos B +^sin 2B =sin 2B~/3 , J3 2^3 3C0S 2B+ 3 = 3 / \ 7C 1 sin 2B —y + I 6丿 113・所以S^BC =法二由(1)知4=务又u = 2,由余弦定理得22= b2+c2-2bccos p即b2-\-c2~bc—4 Z?c+4 —Z?2+ c22Z?c bcW4,当且仅当b = c = 2时,等号成立.] 1 、厅、庁所以SgBc=qbcsin A=^X专bcW计X4=书,即当b = c = 2时,S^BC取得最大值, 最大值为也.探究提高求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值・(2)将要求的量转化为边的形式,借助于基本不等式求最值.[考法3]解三角形与三角函数的综合问题( \【例2 — 3】(2018-嘉兴、丽水高三测试)己知函数您)= cos 2x+中+羽(sinx+cosx)2.(1)求函数/(x)的最大值和最小正周期;(2)设△ABC的三边心b, c所对的角分别为力,B, C,若a = 2, 0=好/片+㊁戶好求b的值.] 、/3 ( Tt]解(1)因为—2COS 2%—专sin 2x+A/3(l+sin 2x) = sin 2x+g +书,所以/W的最大值为1+羽,最小正周期T=TI.z\ / \ / \ / \C(2)因为/ (才十qJ=sinl+C+gJ+^=cos C+& +羽=羽,所以cos| C+g =0 c=y由余弦定理c2=a+b2-2abcos C可得沪一2^ —3 = 0,因为b>0,所以b = 3.探究提高解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题, 优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【训练2】(2016-浙江卷)在△ABC中,内角儿B,C所对的边分别为心4 c.已矢口b+c = 2acos B.⑴证明:A = 2B;2(2)若△ABC的面积S=牛,求角A的大小.(1)证明由正弦定理得sin B+sin C=2sin Acos B,故2sin Acos B = sin B + sin(A+B) =sin B + sin Acos B + cos Asin B,于是sin B = sin(A-B).又儿Be(0, TC),故0<4—3<兀,所以或 3 =A—B,因此A=7t(舍去)或A = 2B,所以A = 2B・2 2(2)解由S=才得如bsin C=予,故有sin Bsin C=gsin 2B = sin Bcos B,因sinBHO,得sin C=cos B.又B, C£(O, TC),所以C=q土B. 当B+C=》时,A=|;当C~B=^时,A=中.综上,4=申或M纳总结丨思维升华I ■■■■課穩穩探规律瘗防失:误浚签瘗1 •对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式;I(2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设岀未知量,从几个三角形中列岀方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S= fabsinC来求面积,再利用正弦定理或余弦定理求出所需的边或角.。
2017届高考数学二轮复习 第一部分 专题篇 专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形课时作业 理1.(2016·贵阳模拟)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=513,则tan ⎝ ⎛⎭⎪⎫α+π4=( ) A .-717B .177C .717D .-177解析:因为α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1213,所以tan α=-512,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=-512+11+512=717,故选C. 答案:C2.(2016·合肥模拟)△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,若cos A =78,c -a =2,b =3,则a =( )A .2 B.52 C .3 D.72解析:由余弦定理可知,a 2=b 2+c 2-2bc cos A ⇒a 2=9+(a +2)2-2×3×(a +2)×78⇒a =2,故选A. 答案:A3.(2016·高考全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A .31010B .1010C .-1010D .-31010解析:利用正、余弦定理或三角恒等变换求解.解法一 设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a 22bc=59a 2+29a 2-a 22×53a ×23a =-1010.故选C. 解法二 同解法一得c =23a . 由正弦定理得sin C =23sin A ,又B =π4, ∴sin C =sin ⎝ ⎛⎭⎪⎫3π4-A =23sin A , 即22cos A +22sin A =23sin A , ∴tan A =-3,∴A 为钝角.又∵1+tan 2 A =1cos 2 A ,∴cos 2A =110,∴cos A =-1010.故选C. 答案:C4.(2016·河南八市联考)已知α∈⎝ ⎛⎭⎪⎫π4,π2,tan ⎝ ⎛⎭⎪⎫2α+π4=17,那么sin 2α+cos 2α的值为( ) A .-15B.75 C .-75D.34解析:由tan ⎝ ⎛⎭⎪⎫2α+π4=17,知tan 2α+11-tan 2α=17,∴tan 2α=-34.∵2α∈⎝ ⎛⎭⎪⎫π2,π,∴sin2α=35,cos 2α=-45.∴sin 2α+cos 2α=-15,故选A. 答案:A5.(2016·高考全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A .4B .5C .6D .7解析:利用诱导公式及二倍角的余弦公式,将三角函数最值问题转化为给定区间的二次函数的最值问题求解.∵f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =cos 2x +6sin x=1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B. 答案:B6.(2016·武汉调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为( ) A .14 h B .15 h C .16 hD .17 h解析:记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得6002+400t 2-2×20t ×600×22≤4502,即4t 2-1202t +1 575≤0,解得302-152≤t ≤302+152,所以Δt =302+152-302-152=15(h),故选B.答案:B7.(2016·高考四川卷)cos 2 π8-sin 2 π8=________.解析:逆用二倍角公式化简求值. cos 2 π8-sin 2 π8=cos π4=22.答案:228.(2016·高考浙江卷)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析:借助三角恒等变换求解. ∵2cos 2x +sin 2x =1+cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1=A sin(ωx +φ)+b , ∴A =2,b =1. 答案: 2 19.(2016·广西联考)已知△ABC 中,三边长分别是a ,b ,c ,面积S =a 2-(b -c )2,b +c =8,则S 的最大值是________.解析:因为S =a 2-(b -c )2,所以12bc sin A =-(b 2+c 2-a 2)+2bc ,所以12bc sin A =2bc -2bc cos A ,又sin 2A +cos 2 A =1,所以sin A =4(1-cos A ),所以sin A =817,所以S =12bc sinA =417bc ≤417⎝ ⎛⎭⎪⎫b +c 22=6417. 答案:641710.(2016·沈阳模拟)已知函数f (x )=2cos 2x2+3sin x .(1)求函数f (x )的最大值,并写出取得最大值时相应的x 的取值集合; (2)若tan α2=12,求f (α)的值.解析:(1)f (x )=1+cos x +3sin x=2cos ⎝⎛⎭⎪⎫x -π3+1,所以当cos ⎝ ⎛⎭⎪⎫x -π3=1,即x -π3=2k π,x =2k π+π3(k ∈Z)时,函数f (x )的最大值为3,此时相应的x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π+π3,k ∈Z. (2)f (α)=2cos 2 α2+23sin α2cos α2=2cos 2 α2+23sin α2cosα2cos 2 α2+sin 2α2=2+23tanα21+tan 2α2=8+435.11.(2016·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin 2B =3b sin A . (1)求B ;(2)若cos A =13,求sin C 的值.解析:(1)在△ABC 中,由a sin A =bsin B ,可得a sin B =b sin A .又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B , 所以cos B =32,所以B =π6. (2)由cos A =13,可得sin A =223,则sin C =sin[π-(A +B )]=sin(A +B )=sin ⎝⎛⎭⎪⎫A +π6=32sin A +12cos A =26+16. 12.(2016·昆明模似)如图在△ABC 中,已知点D 在BC 边上,满足AD ⊥AC ,cos ∠BAC =-13,AB =32,BD = 3.(1)求AD 的长; (2)求△ABC 的面积.解析:(1)因为AD ⊥AC ,cos ∠BAC =-13,所以sin ∠BAC =223.又sin ∠BAC =sin ⎝ ⎛⎭⎪⎫π2+∠BAD =cos ∠BAD =223, 在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD , 即AD 2-8AD +15=0,解得AD =5或AD =3,由于AB >AD , 所以AD =3.(2)在△ABD 中,BD sin ∠BAD =ABsin ∠ADB,又由cos ∠BAD =223得sin ∠BAD =13,所以sin ∠ADB =63,则sin ∠ADC =sin(π-∠ADB )=sin ∠ADB =63.因为∠ADB =∠DAC +∠C =π2+∠C ,所以cos ∠C =63.在Rt △ADC 中,cos ∠C =63,则tan ∠C =22=AD AC =3AC, 所以AC =32,则△ABC 的面积S =12AB ·AC ·sin ∠BAC =12×32×32×223=6 2.。
第2讲 三角恒等变换与解三角形高考定位 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题;(2)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.真 题 感 悟1.(2017·江苏卷)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.解析 法一 ∵tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tan π41+tan αtan π4=tan α-11+tan α=16,∴6tan α-6=1+tan α(tan α≠-1),∴tan α=75. 法二 tan α=tan ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π4+π4 =tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝ ⎛⎭⎪⎫α-π4tan π4=16+11-16×1=75. 答案 752.(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4. (1)求AB 的长;(2)cos ⎝ ⎛⎭⎪⎫A -π6的值. 解 (1)由cos B =45,得sin B =1-cos 2B =35.又∵C =π4,AC =6,由正弦定理, 得AC sin B =AB sin π4,即635=AB 22⇒AB =5 2. (2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210, cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210, 则cos ⎝ ⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式 (1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b2R ,sin C =c2R ;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ;变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A.热点一 三角恒等变换及应用 【例1】 (1)(2015·重庆卷改编)若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________. (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(3)(2016·苏北四市模拟)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2,则sin 2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5 =sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.(2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z , ∴β=π-α+2k π.∴cos(α-β)=cos(α-π+α-2k π) =-cos 2α=-(1-2sin 2α) =-⎝ ⎛⎭⎪⎫1-2×19=-79. (3)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α =cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3 =sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)3 (2)-79 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示 (1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练1】 (1)(2017·南京、盐城调研)若sin ⎝ ⎛⎭⎪⎫α-π6=35,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α的值为________.(2)(2017·苏北四市模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.(3)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________.解析 (1)因为α∈⎝ ⎛⎭⎪⎫0,π2,所以α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,则cos ⎝ ⎛⎭⎪⎫α-π6=1-sin 2⎝ ⎛⎭⎪⎫α-π6=45, 所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π6+π6 =cos ⎝ ⎛⎭⎪⎫α-π6cos π6-sin ⎝ ⎛⎭⎪⎫α-π6sin π6=45×32-35×12=43-310.(2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23. 由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66.所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66.(3)∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 (1)43-310 (2)-66 (3)3 热点二 正、余弦定理的应用 [命题角度1] 三角形基本量的求解【例2-1】 (1)(2016·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. 解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 2113(2)(2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. ①求b 和sin A 的值; ②求sin ⎝ ⎛⎭⎪⎫2A +π4的值.解 ①在△ABC 中,因为a >b , 故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以,b 的值为13,sin A 的值为31313.②由①及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎝ ⎛⎭⎪⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. [命题角度2] 求解三角形中的最值、面积问题【例2-2】 (2017·苏北四市调研)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,sin B =sin(A +C ) =sin A cos C +cos A sin C ,所以3sin A sin C -cos A sin C -sin C =0.易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =c sin C =2sin π3=43,所以b =43sin B ,c =43sin C .所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C=433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4, 当且仅当b =c =2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3, 即当b =c =2时,S △ABC 取得最大值,最大值为 3. 探究提高 1.求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值.2.求解面积问题时,根据已知条件选择适当的面积公式S =12ab sin C ,S =12ac sinB ,S =12bc sin A .【训练2】 (2017·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2. (1)求cos B ;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B 2, 故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517. (2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172. 由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用; (3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法. 2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S=12ab sin C来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、填空题1.(2017·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.解析由正弦定理得2sin B cos B=sin A cos C+sin C cos A=sin(A+C)=sin B.∴2sin B cos B=sin B,又sin B≠0,∴cos B=12,故B=π3.答案π32.(2017·苏、锡、常、镇调研)已知α是第二象限角,且sin α=310,tan(α+β)=-2,则tan β=________.解析由α是第二象限角,且sin α=310,则cos α=-1-sin2α=-110,则tan α=sin αcos α=-3,所以tan β=tan[(α+β)-α]=-2+31+6=17.答案1 73.(2016·全国Ⅲ卷改编)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=________.解析设BC边上的高AD交BC于点D,由题意B=π4,BD=13BC,DC=23BC,tan∠BAD=1,tan∠CAD=2,tan ∠BAC=1+21-1×2=-3,所以cos ∠BAC=-10 10.答案-10 104.在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=π3,则△ABC的面积是________.解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得 ab =6,∴S △ABC =12ab sin C =12×6×32=332. 答案3325.(2012·江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6-π4 =sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4 =2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1 =2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1 =12225-7250=17250.答案 172506.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得, a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8. 答案 87.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD=2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________. 解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2,则sin ∠ABC =154,cos ∠ABC =14.所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC=8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. 答案 152 104 8.(2014·江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C .由正弦定理可得a +2b =2c ,即c =a +2b 2,cos C =a 2+b 2-c 22ab =a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab =3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab=6-24, 当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24.答案 6-24二、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac .(1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac .由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以C =3π4-A ,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A =2cos A +cos 3π4cos A +sin 3π4sin A=2cos A -22cos A +22sin A=22sin A +22cos A =sin ⎝ ⎛⎭⎪⎫A +π4, ∵0<A <3π4,∴π4<A +π4<π,故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值为1.10.(2017·扬州调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2+2ac =b 2,sin A =1010.(1)求sin C 的值;(2)若a =2,求△ABC 的面积.解 (1)由a 2+c 2+2ac =b 2及余弦定理得cos B =a 2+c 2-b 22ac =-22,又B ∈(0,π),所以B =3π4,因为sin A =1010,且B 为钝角,所以cos A =31010,所以sin C =sin ⎝ ⎛⎭⎪⎫A +3π4=1010×⎝ ⎛⎭⎪⎫-22+31010×22=55. (2)由正弦定理得a sin A =c sin C , 所以c =a sin C sin A =2×551010=22,所以△ABC 的面积S △ABC =12ac sin B =12×2×22×22=2.11.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cosA +2)=0,解得cos A =12或cos A =-2(舍去),因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.。