三角函数高考总复习专题训练
- 格式:docx
- 大小:1.39 MB
- 文档页数:35
高考专题复习三角函数专题模块一——选择题一、选择题: (将正确答案的代号填在题后的括号内. )π5π1.(2021天·津)以下图是函数 y =Asin(ωx+φ)(x∈R)在区间 -6,6上的图象,为了得到这个函数的图象,只要将 y =sinx(x∈R)的图象上所有的点 ( )π1A .向左平移3个单位长度,再把所得各点的横坐标缩短到原来的2,纵坐标不变π2倍,纵坐标不变B .向左平移个单位长度,再把所得各点的横坐标伸长到原来的3π1C .向左平移6个单位长度,再把所得各点的横坐标缩短2,纵坐标不变到原来的π2倍,纵坐标不变D .向左平移个单位长度,再把所得各点的横坐标伸长到原来的6y =Asin(ωx+φ)中A =1,2ππ π解析:观察图象可知,函数 ω=π,故ω=2,ω×-6+φ=0,得φ= 3,所以函数y =sin 2x + ,故只要把y =sinx 的图象向左平移π1即个单位,再把各点的横坐标缩短到原来的2可.答案:A2.(2021全·国Ⅱ)为了得到函数 y =sin2x -π的图象,只需把函数y =sin2x +π的图象()36πB .向右平移A .向左平移个长度单位个长度单位44πD .向右平移C .向左平移2个长度单位2个长度单位解析:由y=sin2x+πx→x+φ=sin2x-πππ――→y=sin2(x+φ),即2x+2φ+=2x-,解得φ=-6634π即向右平移4个长度单位.应选B. 答案:B3.(2021重·庆)函数y=sin(ωx +φ)ω>0,|φ|<π的局部图象如下图,那么()2πB.ω=1,φ=-πππA.ω=1,φ=66C.ω=2,φ=6D.ω=2,φ=-6解析:依题意得T=2π7ππππ2πππω=412-3=π,ω=2,sin2×3+φ=1.又|φ|<2,所以3+φ=2,φ=-6,选D.答案:D4.函数 y=2sin(ωx+φ)(ω>0)在区间[0,2π]上的图象如下图,那么ω=( )11A.1B.2 C.2D.32π解析:由函数的图象可知该函数的周期为π,所以 ω=π,解得ω=2.答案:Bπ()5.函数y =sinx -12cosx -12,那么以下判断正确的选项是A .此函数的最小正周期为2π,其图象的一个对称中心是π,012B .此函数的最小正周期为 π,其图象的一个对称中心是π,012C .此函数的最小正周期为 2π,其图象的一个对称中心是π,6D .此函数的最小正周期为 π,其图象的一个对称中心是π,6ππ1π解析:∵y=sinx -12·cosx-12=2sin2x -6,∴T=2ππ2=π,且当x =12时,y=0.答案:Bπa 的值为()6.如果函数y =sin2x +acos2x 的图象关于直线对称,那么实数 x =-8A.2B .-2C.1D.-1π分析:函数f(x)在x =- 时取得最值;或考虑有8ππf-+x=f--x对一切x∈R恒成立.88解析:解法一:设f(x)=sin2x+acos2x,因为函数的图象关于直线x=-πππ8对称,所以f-8+x=f-8-x对一切实数x都成立,即sin2ππ-+x+acos2-+x=sin2ππ--x+acos2--xππsin-4+2x+sin4+2xππ=acos4+2x-cos-4+2x,ππ∴2sin2x·cos4=-2asin2x·sin4,即(a+1)sin2x·=0对一切实数x恒成立,而sin2x不能恒为,∴a+1=0,即a=-1,应选D.π解法二:∵f(x)=sin2x+acos2x关于直线x=-8对称.ππ∴有f-+x=f--x对一切x∈R恒成立.88π特别,对于x=8应该成立.π将x=8代入上式,得f(0)=f-,ππ∴sin0+acos0=sin-2+acos-2∴0+a=-1+a×0.∴a=-1.应选D.解法三:y=sin2x+acos2x=1+a2sin(2x+φ),其中角φ的终边经过点(1,a).其图象的对称轴方程π2x+φ=kπ+2(k∈Z),kππφx=2+4-2(k∈Z).kππφπ令2+4-2=-8(k∈Z).3π得φ=kπ+4(k∈Z).π但角φ的终边经过点(1,a),故k为奇数,角φ的终边与-2角的终边相同,∴a=-1.解法四:y=sin2x+acos2x=21+asin(2x+φ),其中角φ满足tanφ=a.因为f(x)的对称轴为πy=-8,π∴当x=-8时函数y=f(x)有最大值或最小值,所以1+a2=fπ-8或-1+a2=fπ-8,即1+a2=sinπ-4+acosπ-4,或-1+a2=sinπ-4+acosπ-4.解之得a=-1.应选D.答案:D评析:此题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f(m+x)=f(m-x)的图象关于直线=m对称的性质,取特殊值来求出待定系数a的值.解法三利用函数y=Asin(ωx+φ)的对称轴是方程xωxππkπ+2-φπ+φ=kπ+2(k∈Z)的解x=ω(k∈Z),然后将x=-8代入求出相的φ,再求a的.解法四利ππ用称的特殊性,在此函数f(x)取最大或最小.于是有f-8=[f(x)]max或f-8=[f(x)]min.从而化解方程,体了方程思想.由此可,本体了丰富的数学思想方法,要从多种解法中悟出其西.模块二——填空题二、填空:(把正确答案填在后的横上.)π7.(2021福·建)函数f(x)=3sinωx-6(ω>0)和g(x)=2cos(2x+φ)+1的象的称完全相同.假设π,f(x)的取范是________.x∈0,2解析:∵f(x)与g(x)的象的称完全相同,∴f(x)与g(x)的最小正周期相等,∵ω>0,∴ω=2,∴f(x)ππππ5π13≤3,即f(x)=3sin2x-6,∵≤2x-≤≤sin2x-61,∴-≤3sin2x-6 0≤x≤2,∴-666,∴-22的取范,3.答案:-3,318.函数y=cos2πx的象位于y 右所有的称中心从左依次A1,A2,⋯,An,⋯.A50的坐是________.解析:称中心横坐x=2k+1,k≥0且k∈N,令k=49即可得.答案:(99,0)9.把函数y=cosx+π的象向左平移m个位(m>0),所得象关于y称,m的最小是3________.解析:由y=cos(x+πππ3+m)的象关于y称,所以3+m=kπ,k∈Z,m=kπ-3,当k=1,m最2小3π.答案:2π310.定义集合A,B的积A×B={(x,y)|x∈A,y∈B}.集合M={x|0≤x≤2π},N={y|cosx≤y≤1},那么M×N所对应的图形的面积为________.解析:如下图阴影面积可分割补形为ABCD的面积即BC×CD=π·2=2π.答案:2π模块三——解答题三、解答题:(写出证明过程或推演步骤.) 11.假设方程3sinx+cosx=a在[0,2π]上有两个不同的实数解x1、x2,求a的取值范围,并求x1+x2的值.分析:设函数y1=3sinx+cosx,y2=a,在同一平面直角坐标系中作出这两个函数的图象,应用数形结合解答即可.解:设f(x)=π3 sinx +cosx =2sin x+6,x∈[0,2.π]π令x+6=t,那么f(t)=2sint,且t∈π6,13π6 .在同一平面直角坐标系中作出y=2sint及y=a的图象,从图中可以看出当1<a<2和-2<a<1时,两图象有两个交点,即方程3sinx+cosx=a在[0,2上π]有两个不同的实数解.当1<a<2时,t1+t2=π,ππ即x1+6+x2+6=π,2π∴x1+x2=3;当-2<a<1时,t1+t2=3π,ππ即x1+6+x2+6=3π,8πx1+x2=3.综上可得,a的取值范围是(1,2)∪(-2,1).2π当a∈(1,2)时,x1+x2=3;8πa∈(-2,1)时,x1+x2=3.评析:此题从方程的角度考查了三角函数的图象和对称性,运用的主要思想方法有:函数与方程的思想、数形结合的思想及换元法.解答此题常见的错误是在换元时忽略新变量t的取值范围,仍把t当成在[0,2 π]中处理,从而出错.11πφ<π),其图象过点π1+φ(0<,12.(2021山·东)函数f(x)=2sin2xsinφ+cosxcosφ-2sin262.(1)求φ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的1,纵坐标不变,得到函数y=g(x)的图象,求函2π数g(x)在0,4上的最大值和最小值.11π解:(1)因为f(x)=sin2xsinφ+cos2xcosφ-sin+φ(0<φ<π),2211+cos2x1所以f(x)=2sin2xsinφ+2cosφ-2cosφ1 12sin2xsinφ+2cos2xcosφ12(sin2xsinφ+cos2xcosφ)1π2cos(2x-φ),π1又函数图象过点6,2,11ππ所以2=2cos2×6-φ,即cos3-φ=1,π又0<φ<π,所以φ=3.1π1(2)由(1)知f(x)=2cos2x-3,将函数y=f(x)的图象上各点的横坐标缩短到原来的2,纵坐标不变,得1 2 3 4 56π到函数y =g(x)的象,可知g(x)=f(2x)=2cos4x -3,π4x∈[0,π],因x∈0,4 ,所以ππ2π1因此4x - 3∈-3,3 ,故- 2≤cos4x -3≤1. 所以y =g(x)在0,π114上的最大和最小分 2和-4.13.〔2021天津卷理〕在⊿ ABC 中,BC=5,AC=3,sinC=2sinA求AB 的: (II) 求sin 2A 的4本小主要考正弦定理、余弦定理、同角三角函数的根本关系、二倍角的正弦与余弦、两角差的正弦等基知,考根本运算能力。
专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
绝密★启用前三角函数图象与性质第I 卷(选择题)一、选择题1.0cos15-的值为 ( )A.4B.4-C.4D.42.函数cos y x =的一个单调减区间是A .ππ⎛⎫- ⎪44⎝⎭,B .π⎛⎫ ⎪4⎝⎭0,C .π⎛⎫π ⎪2⎝⎭, D . ()ππ,23.已知函数x x f y sin )(⋅=的一部分图象(如右图所示),则函数)(x f 可以是( ).A x sin 2 .B x cos 2 .C x sin 2- .D x cos 2- 4.下列函数中,是奇函数且周期为2π的是 A .sin 2y x π=(2-) B .cos 2y x π=(2-)C .sin 2y x π=+(4) D .cos 2y x π=+(4) 5.将函数()2cos 2f x x =的图象向右平移4π个单位,再向下平移2个单位,则平移后得到图象的解析式是( ) A .2sin 22y x =- B .2cos 22y x =- C .2cos 22y x =+D .2sin 22y x =+6.函数x x y cos 4sin 3+-=的最小值为 ( )3.4.5.7.----D C B A)8.函数]),0[)(26sin(2π∈-=x x y 为增函数的区间是( )A 、]3,0[πB 、]127,12[ππC 、]65,3[ππD 、],65[ππ9.函数)62sin(2π-=x y 的图像 ( )A.关于原点成中心对称B. 关于y 轴成轴对称C. 关于点⎪⎭⎫⎝⎛012,π成中心对称 D. 关于直线12π=x 成轴对称10.函数)(x f =)sin(ϕω+x ∈x (R ))20(πϕω<>,的部分图像如图所示,如果)3,6(,21ππ-∈x x ,且)()(21x f x f =,则=+)(21x x f ( )A .21B .22C .23D .111.已知()sin (1)(1)33f x x x ππ⎡⎤⎡⎤=++⎢⎥⎢⎥⎣⎦⎣⎦,则(1)(2)(2011)(2012)f f f f ++++=A.0 C.1 D.12.函数sin()y x ϕ=+的图像关于原点对称,则ϕ的一个取值是A .2πB .4π-C .πD .32π第II 卷(非选择题)二、填空题13.函数x x y sin 2+=在区间⎥⎦⎤⎢⎣⎡2,0π上的值域为 .14.函数)22sin(π+=x y 的对称轴是________,对称中心是___________.15.(文) 函数⎥⎦⎤⎢⎣⎡∈+=2,0,cos 3sin πx x x y 的最小值是__________16.当(0,)2x π∈时,函数sin y x x =的值域为___▲____.三、解答题17.(12分)已知函数[]πππ2,2,321sin -∈⎪⎭⎫ ⎝⎛+=x x y(1)求最小正周期.(2)求函数的单调递增区间.18.(本题满分12分)已知函数2()cos cos f x x x x ωωω=+,R x ∈,0>ω.(1)求函数)(x f 的值域; (2)若函数)(x f 的最小正周期为2π,则当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求)(x f 的单调递减区间.19.(本小题满分12分)已知函数()sin()f x A x ωϕ=+(其中0,0,02A πωϕ>>-<<)的相邻对称轴之间的距离为2π,且该函数图象的一个最高点为5(,4)12π. (1)求函数()f x 的解析式和单调增区间;(2)若ππ[]42x ∈,,求函数()f x 的最大值和最小值.20.(本小题满分12分)已知函数2()2cossin 12xf x x =+-(1)求函数()f x 的最小正周期和值域;(2)若 3,24x ππ⎛⎫∈ ⎪⎝⎭,且1()5f x =,求sin x 的值.21.(本小题满分12分)设函数)3sin(5)(πω+=x x f ,0ω>,(),x ∈-∞+∞,且以π为最小正周期. (Ⅰ)求()0f ;(Ⅱ)求()f x 的解析式; (Ⅲ)已知3)122(=+παf ,求sin α的值.ks5u22.(本小题满分14分)已知sin 2().sin xf x x x=+(I )求()f x 的周期,并求()0,x π∈时的单调增区间. (II )在△ABC 中,c b a 、、分别是角A ,B ,C 所对的边,若3π=A ,且3=a ,求⋅的最大值.试卷答案1.B2.B3.D4.D5.A42cos 22cos 2()2cos(2)2sin 242y x y x y x x πππ=→=-==-=向右平移个单位22sin 22x −−−−−−→-向下平移个单位,故选择A 。
1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
2023届高考复习数学专项(三角函数)好题练习1.下列结论正确的是()7冗A.-是第三象限角6冗B. 若圆心角为—的扇形的弧长为亢,则该扇形而积为—-3冗32 C.若角a 的终边过点P(—3,4),则cos a =--35D.若角a 为锐角,则角2a 为钝角12.已知0E (0,冗),sin0+cos 0 =—,则下列结论正确的是(5、丿A.0E (子]3B. c o s 0 =--3 . 7 C.ta n 0=—一D.sm0-co s 0=-453.对千函数f(x )={sinx,sinx :e::; cosx,下列四个结论正确的是(cosx smx > cosx ,、丿A./(x)是以冗为周期的函数B.当且仅当X =冗+k 兀(kEZ)时,f(x)取得最小伯-1冗,c .f(x)图象的对称轴为直线X=-+k 冗(kEZ)4冗D.当且仅当2k 冗<x<-+2k 兀(kEZ)时,0< f(x )�—-✓2224.记函数f(x )= sin (2x —f)的图象为G,则下列结论正确的是()A. 函数f (x)的最小正周期为1CB.函数f (x )在区间[——,—冗5冗12 12]上单调递增冗C.直线x=-一是图象G 的一条对称轴12冗D .将函数y =si n 2.x的图象向右平移—个单位长度,得到图象G ·35.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数()y f x =的图象关于直线6x π=-对称B .函数()y f x =的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上单调递减 D .该图象对应的函数解析式为()2sin 23f x x π⎛⎫=+⎪⎝⎭.6.关于函数()sin sin f x x x =+有下述四个结论,其中正确的结论是( ) A .f (x )是偶函数B .f (x )在区间(2π,π)单调递增C .f (x )在[,]-ππ有4个零点D .f (x )的最大值为27.已知函数 f (x ) = sin(ωx +φ)(ω> 0)的图象经过点1,32π⎛⎫ ⎪⎝⎭,且在区间,126ππ⎛⎫⎪⎝⎭上单调,则 ω , φ 可能的取值为 ( ) A .ω = 2, φ = 6π-B .ω = 2, φ =2π-C .ω = 6, φ =6πD .ω = 6, φ =56π 8.下列结论正确的是( ) A .''sin10315sin16430> B .sin 508sin144> C .34cos()cos()109ππ->- D .4447cos(cos()910ππ> 9.下列命题中,真命题的是( )A .sin y x =的图象与sin y x =的图象关于y 轴对称B .()cos y x =-的图象与cos y x =的图象相同C .sin y x =的图象与()sin y x =-的图象关于x 轴对称D .cos y x =的图象与()cos y x =-的图象相同10.有下列四种变换方式:①向左平移4π个单位长度,再将横坐标变为原来的12(纵坐标不变);②横坐标变为原来的12(纵坐标不变),再向左平移8π个单位长度;③横坐标变为原来的12(纵坐标不变),再向左平移4π个单位长度;④向左平移8π个单位长度,再将横坐标变为原来的12(纵坐标不变). 其中能将正弦函数sin y x =的图象变为sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的是()A .①B .②C .③D .④1.下列结论正确的是()7冗A .-是第三象限角6答案解析冗B. 若圆心角为—的扇形的弧长为亢,则该扇形而积为—-3冗C.若角a 的终边过点P(—3,4),则cos a =--35D. 若角a 为锐角,则角2a 为钝角【参考答案】BC【答窊解析】根据角的定义,可判断选项A 是否正确;由扇形的而积公式,判断选项B 是否正确;根据三角函数定义,判断选项C是否正确;根据角的范围,判断选项D是否正确7冗5冗选项A:-终边与—-相同,为第二象限角,所以A 不正确;66 冗选项B:设扇形的半径为r ,一r=冗,:.r = 3,3 3冗扇形面积为-x 3x冗=一-,所以B正确;2 2选项C:角a的终边过点P (-3,4),根据三角函数定义,3cos a = -—,所以C正确;5冗选项D:角a ,为锐角时,O<a<-,O<a <冗,所以D不正确2 故选BC2.已知0E (0, 冗), sin0+cos0 =—,则下列结论正确的是()A.BE(沪]3B.cos0二一53C.tan0=--7D.sin0-cos0=-【参考答案】ABD 【答案解析】根据所给条件,利用同角三角函数的基本关系计绊可得1解:·:sin 0 + c os 0 =—(j)5()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭即221sin 2sin cos cos 25θθθθ++= 242sin cos 25θθ∴=- (0,)θπ∈sin 0θ∴>,cos 0θ<,2πθπ⎛⎫∴∈ ⎪⎝⎭()249sin cos 12sin cos 25θθθθ∴-=-= 7sin cos 5θθ∴-=② ①加②得4sin 5θ= ①减②得3cos 5θ=-4sin 45tan 3cos 35θθθ∴===--综上可得,正确的有ABD 故选:ABD3.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z时,0()2f x <≤【参考答案】CD【答案解析】求得()f x 的最小正周期为2π,画出()f x 在一个周期内的图象,通过图象可得对称轴、最小值和最大值,即可判断正确参考答案.解:函数sin ,sin cos ()cos ,sin cos x x xf x x x x ⎧=⎨>⎩…的最小正周期为2π,画出()f x 在一个周期内的图象, 可得当52244k x k ππππ++剟,k Z ∈时, ()cos f x x =,当592244k x k ππππ+<+…,k Z ∈时, ()sin f x x =,可得()f x 的对称轴方程为4x k ππ=+,k Z ∈,当2x k ππ=+或322x k ππ=+,k Z ∈时,()f x 取得最小值1-; 当且仅当22()2k x k k Z πππ<<+∈时,()0f x >,()f x的最大值为(42f π=,可得0()2f x <…,综上可得,正确的有CD . 故选:CD .4.记函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图象为G ,则下列结论正确的是( ) A .函数f (x )的最小正周期为π B .函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增 C .直线12x π=-是图象G 的一条对称轴D .将函数y =sin 2x 的图象向右平移3π个单位长度,得到图象G【参考答案】ABC【答案解析】根据三角函数的图像与性质,对选项逐一分析,由此得出正确选项. 函数()f x 的最小正周期为2ππ2=,故A 选项正确. 由πππ2232x -≤-≤,解得π5π1212x -≤≤,所以函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确. 由于ππππsin 2sin 1121232f ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是图象G 的一条对称轴,故C 选项正确.sin 2y x =向右平移π3得到π2πsin 2sin 233y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误.故选:ABC5.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数()y f x =的图象关于直线6x π=-对称B .函数()y f x =的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上单调递减 D .该图象对应的函数答案解析式为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭. 【参考答案】ABC【答案解析】先根据图象求振幅、周期,解得A ω,,再根据最值点求ϕ,最后根据三角函数性质判断选择.由函数的图象可得2A =,由124312πππω⋅=-,0>ω,得2ω=. 再由最值得22122k ππϕπ⨯+=+,k Z ∈,又2πϕ<,得3πϕ=,得函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,故选项D 正确.当6x π=-时,()0f x =,不是最值,故A 不成立;当512x π=-时,()2f x =-,不等于零,故B 不成立;3+22+2232k x k πππππ≤+≤得7++1212k x k ππππ≤≤,k Z ∈,故C 不成立; 故选:ABC .6.关于函数()sin sin f x x x =+有下述四个结论,其中正确的结论是( ) A .f (x )是偶函数B .f (x )在区间(2π,π)单调递增C .f (x )在[,]-ππ有4个零点D .f (x )的最大值为2【参考答案】AD【答案解析】根据绝对值的意义,结合三角函数的图象和性质逐一进行判断即可. 解:f (﹣x )=sin|﹣x |+|sin (﹣x )|=sin|x |+|sin x |=f (x )则函数f (x )是偶函数, 故A 正确; 当x ∈(2π,π)时,sin|x |=sin x ,|sin x |=sin x ,则f (x )=sin x +sin x =2sin x 为减函数,故B 错误;当0≤x ≤π时,f (x )=sin|x |+|sin x |=sin x +sin x =2sin x ,由f (x )=0得2sin x =0得x =0或x =π,由f (x )是偶函数,得在[﹣π,0)上还有一个零点x =﹣π,即函数f (x )在[﹣π,π]有3个零点,故C 错误;当sin|x |=1,|sin x |=1时,f (x )取得最大值2,故D 正确, 故选AD7.已知函数 f (x ) = sin(ωx +φ)(ω> 0)的图象经过点1,32π⎛⎫ ⎪⎝⎭,且在区间,126ππ⎛⎫⎪⎝⎭上单调,则 ω , φ 可能的取值为 ( ) A .ω = 2, φ = 6π-B .ω = 2, φ =2π-C .ω = 6, φ =6πD .ω = 6, φ =56π 【参考答案】BC【答案解析】将各选项,ωϕ代入答案解析式,逐项判断是否过点1,32π⎛⎫⎪⎝⎭,再计算出正弦函数的单调区间,判断函数在区间(,)126ππ上是否单调,即可得解.对于A,()sin(26f x x π=-,2()sin(sin 13362f ππππ=-==,图像不过点1,32π⎛⎫ ⎪⎝⎭,不合题意; 对于B, ()sin(2)2f x x π=-,21(sin()sin 33262f ππππ=-==图像过点1,32π⎛⎫ ⎪⎝⎭, 令22,2()222x k k k Z πππππ⎡⎤-∈-++∈⎢⎥⎣⎦,解得,()2x k k k Z πππ⎡⎤∈+∈⎢⎥⎣⎦, 所以()sin(22f x x π=-在区间(,126ππ上单调递增;对于C, ()sin(66f x x π=+,1()sin(2)sin 3662f ππππ=+==图像过点1,32π⎛⎫ ⎪⎝⎭, 令62,2()622x k k k Z πππππ⎡⎤+∈-++∈⎢⎥⎣⎦,解得11,()93183x k k k Z ππππ⎡⎤∈-++∈⎢⎥⎣⎦, 令362,2()622x k k k Z πππππ⎡⎤+∈++∈⎢⎥⎣⎦,解得141,()183183x k k k Z ππππ⎡⎤∈++∈⎢⎥⎣⎦, 所以()sin(66f x x π=+在区间(,126ππ上单调递减;对于D, 5()sin(6)6f x x π=+,551()sin(2sin3662f ππππ=+==图像过点1,32π⎛⎫⎪⎝⎭, 令562,2()622x k k k Z πππππ⎡⎤+∈-++∈⎢⎥⎣⎦,解得211,()93183x k k k Z ππππ⎡⎤∈-+-+∈⎢⎥⎣⎦, 当51,,918k x ππ⎡⎤=∈⎢⎥⎣⎦所以5()sin(6)6f x x π=+在区间(,126ππ上不是单调函数,不合题意.故选:BC8.下列结论正确的是( ) A .''sin10315sin16430> B .sin 508sin144> C .34cos()cos()109ππ->- D .4447cos(cos()910ππ> 【参考答案】AC【答案解析】利用诱导公式与正余弦函数的单调性分析即可. 对A,因为正弦函数在区间2ππ⎛⎫⎪⎝⎭,上为减函数,且''901031516430180︒<<<︒ , 故''sin10315sin16430> ,故A 正确.对B,因为sin 508sin(360148)sin148=+= ,且正弦函数在区间2ππ⎛⎫⎪⎝⎭上为减函数,故sin148sin144< ,即sin 508sin144< ,故B 错误.对C,因为余弦函数为偶函数,且在区间0,2π⎡⎤⎢⎥⎣⎦为减函数,且34109ππ<,故34cos cos 109ππ>, 故34cos(cos(109ππ->-,故C 正确. 对D, 4488cos(cos(4cos 999ππππ=+=,4777cos(cos(4)cos 101010ππππ=+=.因为782109ππππ<<<,故87cos cos 910ππ<,故4447cos()cos()910ππ<.故D 错误. 故选:AC9.下列命题中,真命题的是( )A .sin y x =的图象与sin y x =的图象关于y 轴对称B .()cos y x =-的图象与cos y x =的图象相同C .sin y x =的图象与()sin y x =-的图象关于x 轴对称D .cos y x =的图象与()cos y x =-的图象相同【参考答案】BD【答案解析】利用正弦曲线和余弦曲线以及正余弦函数的奇偶性,借助图象变换,逐个判断,即可得出结论.对于A ,sin y x =是偶函数,而sin y x =为奇函数,故sin y x =与sin y x =的图象不关于y 轴对称,故A 错误;对于B ,()cos cos ,cos cos y x x y x x =-===,即其图象相同,故B 正确;对于C ,当0x <时,()sin sin x y x =-=,即两图象相同,故C 错误;对于D ,()cos cos y x x =-=,故这两个函数图象相同,故D 正确,故选:BD.10.有下列四种变换方式:①向左平移4π个单位长度,再将横坐标变为原来的12(纵坐标不变); ②横坐标变为原来的12(纵坐标不变),再向左平移8π个单位长度; ③横坐标变为原来的12(纵坐标不变),再向左平移4π个单位长度; ④向左平移8π个单位长度,再将横坐标变为原来的12(纵坐标不变). 其中能将正弦函数sin y x =的图象变为sin 24y x π⎛⎫=+⎪⎝⎭的图象的是( ) A .①B .②C .③D .④ 【参考答案】AB 【答案解析】根据函数()sin y A ωx φ=+ 的图象变换规律,一一判断,即可得到结论.①向左平移4π个单位长度,再将横坐标变为原来的12(纵坐标不变),则正弦函数sin y x =的图象变为sin 24y x π⎛⎫=+ ⎪⎝⎭的图象; ②横坐标变为原来的12(纵坐标不变),再向左平移8π个单位长度,则正弦函数sin y x =的图象变为sin 2sin 284y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭的图象; ③横坐标变为原来的12(纵坐标不变),再向左平移4π个单位长度,则正弦函数sin y x =的图象变为sin 2sin 242y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭的图象; ④向左平移8π个单位长度,再将横坐标变为原来的12(纵坐标不变),则正弦函数sin y x =的图象变为sin 28y x π⎛⎫=+ ⎪⎝⎭的图象,因此①和②符合题意, 故选AB .。
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
2025届新高考一轮复习特训 三角函数一、选择题1.函数()sin 2f x =到()g x 的图象,则()g x =( )A.cos 4xB.cos x- C.cos 4x- D.sin x-2.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=( )3.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭,若()f x 在2π0,3⎡⎤⎢⎥⎣⎦上有两个零点,则ω的取值范围是( )A.5,42⎡⎫⎪⎢⎣⎭B.5,2⎡⎫+∞⎪⎢⎣⎭C.511,22⎡⎫⎪⎢⎣⎭D.5,42⎡⎤⎢⎥⎣⎦4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P -,则cos 2α=( )355.与1990-︒终边相同的最小正角是( )A.80︒B.150︒C.170︒D.290︒6.已知tan α==( )7.下列区间中,函数π()7sin 6f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A.π0,2⎛⎫⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭8.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭πT <<,且()y f x =的图象关于点3π,22⎛⎫⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( )D.3二、多项选择题9.设x ∈R ,用[]x 表示不超过x 的最大整数,则函数[]y x =被称为高斯函数;例如[]2.13-=-,[]2.12=,已知()sin sin f x x =+()()x f x =⎡⎤⎣⎦,则下列说法正确的是( )A.函数()g x 是偶函数B.函数()g x 是周期函数C.函数()g x 的图像关于直线x =()g x x =只有1个实数根10.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.()()πf x f x += B.()f x 的图象关于直线x =C.()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D.()f x 在5ππ,1212⎛⎫-⎪⎝⎭单调递增11.已知函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =A.函数π12f x ⎛⎫+ ⎪⎝⎭为奇函数B.函数()f x 在ππ,123⎡⎤⎢⎥⎣⎦上单调递增)()12x f x -=-D.函数()f x 的图象关于5π,012⎛⎫ ⎪⎝⎭中心对称三、填空题12.若tan θ==____________.13.如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别是直角三角形ABC 的斜边AB ,直角边AC ,BC ,点E 在以AC 为直径的半圆上,延长AE ,BC 交于点D .若5AB =,sin CAB ∠=DCE ∠=ABE 的面积是______.14.如图所示,终边落在阴影部分(含边界)的角的集合是__________.四、解答题15.如图,弹簧挂着的小球做上下振动,它在t (单位:s )时相对于平衡位置(静止时的位置)的高度h (单位:cm )由关系式πsin 4h A t ω⎛⎫=+ ⎪⎝⎭确定,其中0A >,0ω>,[0,)t ∈+∞.在一次振动中,小球从最高点运动至最低点所用时间为1s ,且最高点与最低点间的距离为10cm .(1)求小球相对于平衡位置的高度h (单位:cm )和时间t (单位:s )之间的函数关系式;(2)小球在0t s 内经过最高点的次数恰为50次,求0t 的取值范围.16.已知α=(1)写出与角α终边相同的角的集合;(2)写出在()4π,2π-内与角α终边相同的角.17.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,||πϕ<)图象的最高点为π,16⎛⎫⎪⎝⎭,距离该最高点最近的一个对称中心为5π,012⎛⎫⎪⎝⎭.(1)求()f x 的解析式及单调递减区间;(2)若函数()(0)2a g x f x a ⎛⎫=>⎪⎝⎭,()g x 的图象关于直线x =()g x 在π0,15⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的值.18.已知函数(1)化简;(2)若的值.19.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.cos αβ的值.()f x =()f x ()0f x =00π2π2cos(2)63x x ⎛⎫-+- ⎪⎝⎭参考答案1.答案:A解析:()sin 2f x=ππsin 2sin 2cos 242y x x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭的图象,再把横坐标缩短为原来的一半,得到()cos 4g x x =的图象故选:A.2.答案:A解析:因为()sin sincos +cos sin αβαβαβ+===cos 5cos sin αβαβ=,所以11sin cos cos sin 6cos sin ,cos sin ,sin cos 212αβαβαβαβαβ+====所以()5141sin sin cos cos sin .1212123αβαβαβ-=-=-==故选:A.3.答案:A解析:因为2π0,3x ⎡⎤∈⎢⎥⎣⎦,0ω>,所以ππ2ππ,3333x ωω⎡+∈+⎢⎣π[2π,3π)3+∈,所以5,42ω⎡⎫∈⎪⎢⎣⎭.4.答案:D解析:因为角α的始边与x 轴非负半轴重合,终边过点()1,2P -,所以cos α==所以2cos 22cos 1αα=-=故选:D.5.答案:C解析:因为199********-=-⨯-︒︒︒,199********-=-⨯+︒︒︒,所以与1990-︒终边相同的最小正角是170︒.故选C.6.答案:B,故选:B.7.答案:A解析:方法一:令πππ2π2π262k x k -+-≤+≤,k ∈Z ,得π2π2π2π33k x k -+≤≤+,k ∈Z .取0k =,则π3x -≤≤ππ2π0,,233⎫⎡⎤-⎪⎢⎥⎭⎣⎦Ü,所以区间π0,2⎛⎫⎪⎝⎭是函数()f x 的单调递增区间.方法二:当π02x <<时,,所以在π0,2⎛⎫⎪⎝⎭上单调递增,故A 正πx <<π6x <-<()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故B 错误;当πx <<π6x <-<()f x 在3ππ,2⎛⎫ ⎪⎝⎭上单调递减,故C 错误;当3π2π2x <<π6x <-<()f x 在3π,2π2⎛⎫⎪⎝⎭上不单调,故D 错误.8.答案:A T <<2ππω<<,解得23ω<<.因为()y f x =的图象关于点3π,22⎛⎫ ⎪⎝⎭中心对称,所以2b =,且,即,所以,又π4π4+=,解得ω=5π()sin 224f x x ⎛⎫=++ ⎪⎝⎭,所以π5ππ3πsin 2sin 2122242f ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭.故选A.9.答案:AD解析:选项A ,函数()f x 的定义域为R ,2tan 313tan 2αα+==-πππ663x -<-<()f x 3ππsin 224b ω⎛⎫++= ⎪⎝⎭3ππsin 024ω⎛⎫+= ⎪⎝⎭3πππ()24k k ω+=∈Z 2ω<<3ππ24ω<+<因为()()()sin sin sin sin f x x x x x f x -=-+-=+=,所以()f x 为偶函数,当0πx <≤时,()sin sin 2sin f x x x x =+=,当π2πx <≤时,()sin sin 0f x x x =-=,当2π3πx <≤时,()sin sin 2sin f x x x x =+=,…因为()f x 为偶函数,所以函数()f x 的图象如下图所示由()()g x f x =⎡⎤⎣⎦可知,在0x ≥内,当2πx k =+∈Z 时,()2g x =,当π2π2π6k x k +≤≤+2πx k ≠+∈Z 时,()1g x =,当2π2πk x k ≤<5ππ2π2π6k x k +<≤+,k ∈Z 时,()0g x =,因为()()()()g x f x f x g x -=-==⎡⎤⎡⎤⎣⎦⎣⎦,所以()g x 为偶函数,则函数()g x 的图象如下图所示显然()g x 不是周期函数,故选项A 正确,B 错误,C 错误;()g x x =,当()0g x =时,0x =方程有一个实数根,当()1g x =时,x =π212⎛⎫=≠ ⎪⎝⎭,方程没有实数根,当()2g x =时,πx =,此时()π02g =≠,方程没有实数根,()g x x =只有1个实数根,故D 正确;故选:AD.10.答案:AD解析:对于A,函数()π23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==,()()πf x f x +=,A正确;对于B,由πππ2π3266332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线x =对于C,由πππ2π32066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 的图象不关于点π,06⎛⎫⎪⎝⎭对称,C 错误;对于D,当5ππ,1212x ⎛⎫∈- ⎪⎝⎭时,πππ2,322x ⎛⎫+∈- ⎪⎝⎭,而正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,因此函数()f x 在区间5ππ,1212⎛⎫- ⎪⎝⎭上单调递增,D 正确.故选:AD.11.答案:ACD解析: 函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =ππ3π42k ϕ∴⨯+=+,k ∈Z ,ππ4k ϕ∴=-+,k ∈Z因为ππ22ϕ-<<,所以ϕ=π()sin(3)4f x x =-.函数πππ()sin 3sin 312124f x x x ⎡⎤⎛⎫+=+-= ⎪⎢⎥⎝⎭⎣⎦为奇函数,故A 正确;当[,123ππx ∈,π3π0,434x ⎡-∈⎤⎢⎥⎣⎦,函数()f x 没有单调性,故B 错误;若12|()()|2f x f x -=,因为[]()1,1f x ∈-,所以()()1211f x f x =⎧⎪⎨=-⎪⎩或()()1211f x f x =-⎧⎪⎨=⎪⎩,则12|x x -2π3=5π5ππsin 3sin 012124f π⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 图象关于5π,012⎛⎫⎪⎝⎭中心对称,故D 正确故选:ACD ..解析:由题意得:DCE ACE ∠+∠=π2CAE ACE +∠=所以DCE CAE ∠=∠,故sin sin DCE CAE ∠=∠=cos CAE ∠==因为sin CAB ∠=45CAB ∠=故()sin sin sin cos cos sin EAB CAE CAB CAE CAB CAE CAB∠=∠+∠=∠∠+∠∠343455=⨯=因为5AB =,ACB ∠=CAB ∠=3BC =,4AC =又因为AEC ∠=CAE ∠=,所以cos 4AE AC CAE =∠==的cos 11cos sin cos tan 131cos cos θθθθθθθ====+++所以ABE △的面积是11sin 522S AB AE EAB =⋅⋅∠=⨯=14.答案:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z 解析:终边落在阴影部分第二象限最左边的角为360120k ⋅︒+︒,k ∈Z ,终边落在阴影部分第四象限最左边的角为,k ∈Z .所以终边落在阴影部分(含边界)的角的集合是.故答案为:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z .15.答案:(1)π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭(2)1198,10044⎡⎫⎪⎢⎣⎭解析:(1)由题意得1052A ==.因为在一次振动中,小球从最高点运动至最低点所用时间为1s ,所以最小正周期为2s ,即2T ==π=,所以π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭.(2)由(1)知,当t =最高点.因为小球在0s t 0149504T tT +≤<+.因为2T =,所以01984t ≤<所以0t 的取值范围为1198,10044⎡⎫⎪⎢⎣⎭.16.答案:(1)π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z (2)36045k ⋅︒-︒36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z解析:(1)与角α终边相同的角的集合为π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z .(2)令π4π2π2π3k -<+<,得136k -<<又k ∈Z ,2k ∴=-,-1,0,∴在()4π,2π-内与角α终边相同的角是17.答案:(1)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭;单调递减区间为π2π[π,π]()63k k k ++∈Z(2)a =5=解析:(1)由题意解题思路知A =5ππ126=-=所以πT =,2π2πω==,所以()sin(2)f x x ϕ=+.将π,16⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+,得πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2π2k ϕ+=+,k ∈Z ,即π2π6k ϕ=+,k ∈Z ,又||πϕ<,所以ϕ=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭.π3π2π22π62k x k +≤+≤+,k ∈Z 2πππ3k x k +≤≤+,k ∈Z ,即()f x 的单调递减区间为π2π[π,π]()63k k k ++∈Z .(2)由(1)可得π()sin (0)6g x ax a ⎛⎫=+> ⎪⎝⎭,由()g x 的图象关于直线x =πππ62k =+,k ∈Z ,即51544a k =+,k ∈Z ,当π0,15x ⎡⎤∈⎢⎥⎣⎦时,ππππ,66156a ax ⎡⎤+∈+⎢⎥⎣⎦,由()g x 在[π0,15ππ62+≤,即5a ≤.又0a >且51544a k =+,k ∈Z ,所以a =5=.18.答案:(1)π()cos 23f x x ⎛⎫=+ ⎪⎝⎭(2)35-解析:(1)ππππcos 2cos 2π2tan 22333()ππtan 2πsin π233x x x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎛⎫⎛⎫-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππsin 2cos 2tan 2π333cos 2ππ3tan 2sin 233x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭==+ ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.(2)因为()00πcos 23f x x ⎛⎫=+= ⎪⎝⎭所以000ππππsin 2sin 2cos(2)6323x x x ⎡⎤⎛⎫⎛⎫-=+-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦0002πππcos 2cos 2πcos 2333x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故00π2π33sin 2cos 2631010x x ⎛⎫⎛⎫-+-=--=⎪ ⎪⎝⎭⎝⎭19.答案:(1)1-(2)3225-解析:(1)由题意得π2βα=+sin sin cos cos αβαβ=πsin sin sin cos 21πcos sin cos cos 2αααααααα⎛⎫+⎪⎝⎭==-=-⎛⎫+ ⎪⎝⎭.35α=,sin α=则πcos cos sin 2βαα⎛⎫=+=-= ⎪⎝⎭所以442sin cos 255αβ⎛⎫=⨯⨯-= ⎪⎝⎭。
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。