[电子工程] 几组实用FPGA原理设计图
- 格式:docx
- 大小:790.98 KB
- 文档页数:5
FPGA结构与原理FPGA(现场可编程门阵列)是一种可以通过编程配置的硬件设备,可以实现数字逻辑电路的功能。
它使用大量的逻辑门、寄存器和可编程的连线资源,可以实现各种复杂的数字逻辑电路,如处理器、通信接口、图像处理等。
本文将介绍FPGA的结构与原理。
一、FPGA的结构FPGA的主要结构由三个部分组成:逻辑单元(Logic Element,LE)、可编程内部连接资源和输入/输出资源。
1. 逻辑单元(Logic Element,LE)逻辑单元是FPGA的基本计算单元,用于实现数字逻辑功能。
每个逻辑单元由一个或多个可编程逻辑元素(PLE)组成,PLE包括逻辑门(如与门、或门、非门等)、选择器和触发器(如D触发器或JK触发器)。
逻辑单元中的PLE经过编程配置后,可以实现各种逻辑功能,如布尔运算、复杂的控制逻辑等。
2.可编程内部连接资源可编程内部连接资源是FPGA中用于连接逻辑单元的资源,通过编程配置可以将逻辑单元连接起来。
它通常由多层的可编程互连网络构成,可以通过编程来控制信号的传输路径。
内部连接资源可以实现各种逻辑电路的连接,如寄存器、加法器、乘法器、存储器等。
3.输入/输出资源输入/输出资源用于与FPGA外部环境进行通信,包括输入和输出引脚以及输入/输出接口电路。
FPGA可以通过输入引脚接收外部数据,并将输出数据通过输出引脚发送到外部环境。
输入/输出引脚可以通过编程配置来控制数据的传输方向和数据的格式。
二、FPGA的原理FPGA的工作原理可以概括为编程配置、逻辑运算和时序控制。
1.编程配置FPGA的编程配置是将逻辑单元和可编程内部连接资源设置为特定的状态,使其能够实现特定的逻辑功能。
编程配置通常使用设计工具通过硬件描述语言(HDL)或图形化界面进行。
编程配置可以通过厂商提供的评估板、开发工具或JTAG接口等进行。
2.逻辑运算FPGA的逻辑运算是通过逻辑单元实现的。
逻辑单元可以根据编程配置的逻辑功能来执行相应的逻辑运算。
FPGA课程设计题目:全天候温度纪录仪旳设计与FPGA实现姓名:学号:院系:信息科学与工程学院专业:计算机技术摘要本设计有效旳克服了老式旳数字温度计旳缺陷,采用自上而下旳设计思路,绘制出了系统构造流程图,最后又在硬件上通过对其进行调试和验证。
基于FPGA在Quartus II13.0软件下应用Verilog HDL语言编写程序,采用ALTRA公司Cyclone- IV系列旳EP4CE40F23I7 芯片进行了计算机仿真,并给出了相应旳仿真成果。
该电路可以实现较好旳测温功能。
核心字:数字温度计;FPGA;Quartus II130.;Verilog HDL;EP4CE40F2317AbstractThis design effectively overcomes the traditional digital thermometer’s wea knesses and takes a top-down approach to design flow chart of system, and fi nally pass the circuits to the hardware to debug and verify it. This design is b ased on FPGA using Verilog HDL language to write program in Quartus II sof tware, adopting EP4CE40F23I7 chip of Cyclone- IV series of ALTRA company for computer simulation and at the same time showing the corresponding sim ulation result. This circuit is able to carry out excellent temperature- measurem ent function.KeyWords:Digital thermometer;FPGA;Quartus II 13.0;Verilog HDL ;EP4CE40F2317目录一、设计规定 (1)1.1 设计题目 (1)1.2 选题背景 (1)1.3 设计规定: (1)二、系统设计 (2)2.1 系统设计图 (2)2.2 系统设计阐明 (2)三、硬件设计 (2)3.1 FPGA简介 (3)3.2 LCD1602液晶显示 (5)3.3 DS18B20温度传感器 (7)3.4 AT24C02读写模块 (9)3.5 按键模块设计 (10)四、软件设计 (11)4.1 Quartus II软件简介 (11)4.2 系统架构图 (12)4.3 系统控制器 (12)4.4 系统调试 (13)五、代码附录 (13)5.1 顶层模块 (13)5.2 LCD驱动部分代码 (15)5.3 DS18B20驱动模块 (16)全天候温度纪录仪旳设计与FPGA实现一、设计有关1.1 设计题目全天候温度纪录仪旳设计与FPGA实现1.2选题背景当今电子产品正向功能多元化,体积最小化,功耗最低化旳方向发展。
电子信息工程技术毕业设计--基于FPGA的数字信号处理系统设计电子信息工程技术毕业设计通常需要涵盖电子信息工程领域的多个方面,包括电子线路设计、数字信号处理、通信原理、电磁场与电磁波、嵌入式系统等。
题目:基于FPGA的数字信号处理系统设计一、研究背景与意义数字信号处理是电子信息工程技术领域的重要分支,广泛应用于通信、音频、图像处理等领域。
随着科技的不断发展,数字信号处理系统的性能和速度要求越来越高。
FPGA(现场可编程门阵列)作为一种可编程逻辑器件,具有高性能、灵活性好、开发周期短等优点,适用于数字信号处理系统的设计。
二、研究内容与方法1.研究内容(1)FPGA芯片选型及编程语言研究:选择合适的FPGA芯片型号,学习并掌握FPGA的硬件描述语言(如VHDL或Verilog)编程。
(2)数字信号处理算法研究:研究并实现常见的数字信号处理算法,如FIR滤波器、FFT变换等。
(3)系统硬件设计:设计数字信号处理系统的硬件架构,包括FPGA、AD/DA转换器、存储器等器件的连接与配置。
(4)系统软件设计:编写数字信号处理系统的软件程序,实现算法的处理和控制功能。
(5)系统性能测试与分析:对设计的数字信号处理系统进行性能测试和结果分析,验证系统的正确性和性能指标。
2.研究方法(1)文献综述:通过查阅相关文献和资料,了解FPGA在数字信号处理系统中的应用和发展现状。
(2)理论分析:对数字信号处理算法和FPGA的硬件编程进行理论分析和研究。
(3)实验验证:搭建实验平台,对设计的数字信号处理系统进行实验验证和性能测试。
(4)结果分析:对实验结果进行分析和讨论,优化和改进系统的性能和设计。
三、预期成果与展望通过本次毕业设计,预期能够实现以下成果:1.掌握FPGA的硬件描述语言编程和数字信号处理算法的理论知识。
2.设计并实现一个基于FPGA的数字信号处理系统,提高系统的性能和速度。
3.通过实验验证和性能测试,优化和改进系统的性能和设计,提高系统的稳定性和可靠性。
fpga结构与工作原理FPGA(Field Programmable Gate Array,现场可编程门阵列)是一种可编程逻辑器件。
它由数百万个可编程逻辑门和存储器单元组成,可以实现各种数字逻辑和信号处理功能。
与传统的ASIC(Application-Specific Integrated Circuit,专用集成电路)相比,FPGA可以通过编程来实现功能,而ASIC需要设计和制造专用芯片。
FPGA的结构包括:1.输入-输出块(IOB):IOB根据需要配置为输入或输出,可以与其他电路或设备通信。
2.配置存储器(Configuration Memory):配置存储器储存着FPGA 的配置文件,也就是FPGA 指令集。
3.时钟管理电路(Clock Management Circuit,CMC):CMC用于生成和分发时钟信号,并提供时钟管理功能。
4.逻辑块(Logic Block,LB):逻辑块是FPGA的主要部分,它包含多个可编程逻辑单元(Look Up Tables,LUTs)和多个存储器单元(Flip-Flops,FFs)。
逻辑块通过互联网络相互连接。
FPGA的工作原理是:1.通过编程器将所需的功能指令加载到配置存储器中。
2.当FPGA通电时,配置存储器中的配置文件被加载到FPGA中。
3.FPGA内部的逻辑块根据配置文件中的指令进行组合逻辑操作、存储操作和时序控制操作。
4.将逻辑块中处理的信号通过互联网络连接到输入/输出块或其他逻辑块中进行进一步处理。
5.根据所需的功能和电路设计要求,重新编程配置存储器来更改FPGA的功能和行为,实现不同的功能和应用。
总之,FPGA具备高度灵活性、可定制性和可编程性,可以实现非常复杂和多样化的电路设计和应用。
前言信号发生器是实验室的常用仪器之一,设计信号发生器具有实际应用的意义。
而采用FPGA的方法设计信号发生器可以产生频率比较高的信号,例如频率为几M的正弦波。
通常正弦波产生的方法是采用MCU+DDS的方法,但是由于DDS 的造价比较高,所以在指标要求不高的情况下,可以使用FPGA来实现DDS频率合成的原理来产生较高频率的正弦波,任意波形的信号也是如此。
课题《基于FPGA的信号发生器的设计》主要研究内容为DDS基数及其FPGA 的实现。
其目的在于让设计者能掌握DDS的原理及其设计思路,具体的了解EDA 技术流程,熟悉硬件描述语言设计功能电路,并最终检验设计的设计能力。
随着我国的经济日益增长,社会对电子产品的需求量也就越来越大,目前,我国的电子产品市场正在迅速的壮大,市场前景广阔。
FPGA(Field Programmable Gate Array,现场可编程门阵列)在现代数字电路设计中发挥着越来越重要的作用。
FPGA/CPLD(Complex Programmable Logic Device)所具有的静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改,这样就极大地提高了电子系统设计的灵活性和通用性,缩短了产品的上市时间并降低可电子系统的开发成本,且可以毫不夸张地讲,FPGA/CPLD能完成任何数字器件的功能,从简单的74电路到高性能的CPU。
它的影响毫不亚于20世纪70年代单片机的发明和使用。
现在随着电子技术的发展,产品的技术含量越来越高,使得芯片的复杂程度越来越高,人们对数万门乃至数百万门设计的需求也越来越多,特别是专用集成电路(ASIC)设计技术的日趋进步和完善,推动了数字系统设计的迅速发展。
仅靠原理图输入方式已不能满足要求,采用硬件描述语言VHDL的设计方式应运而生,解决了传统用电路原理图设计大系统工程时的诸多不便,成为电子电路设计人员的最得力助手。
设计工作从行为、功能级开始,并向着设计的高层次发展。
FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA的开发相对于传统PC、单片机的开发有很大不同。
FPGA以并行运算为主,以硬件描述语言来实现;相比于PC或单片机(无论是冯诺依曼结构还是哈佛结构)的顺序操作有很大区别,也造成了FPGA开发入门较难。
时至今日,FPGA市场的主要业者仅剩数家,包括Altera、Xilinx(赛灵思,过去称为:智霖科技)、Actel、Atmel、Lattice、QuickLogic等,不过2007年11月QuickLogic也确定淡出FPGA市场,并转进发展CSSP (CustomerSpecificStandardProduct)。
下面给大家带来了几组原理图设计:
复位和晶振电路原理图设计
一个芯片,尤其是可编程芯片,通常在上电的瞬间需要一个短暂的时间进行内部参数的初始化,这个时候芯片无法立即进入工作状态。
通常称上电初始化这些工作为复位,完成这个功能的电路称之为复位电路。
本FPGA 芯片使用的是低电平复位,支持上电复位和手动复位,RESET 按下之后产生低电平。
晶振电路原理图设计
晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路。
有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好。
本FPGA 芯片采用50MHZ 的有源贴片晶振作为芯片工作的时钟输入。
按键开关电路原理图设计
最小系统板上使用的四腿按键实际上是分两组,每组中的两个是相通的,而两组直接是通过上面的按钮来控制通断状态的。
简单理解成开关就可以了,按下
去两端就形成短路,松开手就形成开路。
短路相当于输入0,开路为1。
另外需要说明的是,由于按键属于机械开关,按动过程不可避免存在抖动的现象,所以用户按下按键的时间可以稍微长一点。
八位拨码开关电路原理图设计
拨码开关就是相当与一个开关量,拨到ON 就表示接通,OFF 就是断开,在数字电路中对0、1,通常用于二进制输入。
本课题最小系统板使用八位拨码开关作为一个字节的输入,拨到ON 时相当于输入“1”,默认输入“0”。
最小系统电路设计的总体电路原理图
使用AlTIum 软件设计的电路原理图,FPGA 最小系统板包括时钟电路、复位电路、电源电路、JATG 电路、PROM 配置电路、显示模块电路、开关电路以及各种接口电路。
FPGA产品的应用领域已经从原来的通信扩展到消费电子、汽车电子、工业控制、测试测量等广泛的领域。
把相对成熟的技术应用到某些特定领域如通讯,视频,信息处理等等开发出满足行业需要并能被行业客户接受的产品这方面主要是FPGA技术和专业技术的结合问题。
另外还有就是与专业客户的界面问题产品设计还包括专业工具类产品及民用产品,前者重点在性能,后者对价格敏感产品设计以实现产品功能为主要目的,FPGA技术是一个实现手段在这个领域,FPGA因为具备接口,控制,功能IP,内嵌CPU等特点有条件实现一个构造简单,固化程度高,功能全面的系统产品设计将是FPGA技术应用最广大的市场,具有极大的爆发性的需求空
间产品设计对技术人员的要求比较高,路途也比较漫长不过现在整个行业正处在组建“首发团队”的状态,只要加入,前途光明产品设计是一种职业发展方向定位,不是简单的爱好就能做到的!产品设计领域会造就大量的企业和企业家,是一个发展热点和机遇。
‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ END ‧‧。