找规律例3例4题片(1)
- 格式:doc
- 大小:361.50 KB
- 文档页数:1
例1:盒子里放了一只球,一位魔术师第一次从盒子里将这只球取出,变成4只球后放回盒子里;第二次从盒子里取出2只球,将每只球各变成4只球后,放进盒子里;……;第十次从盒子里取出10只球,将每只球各变成4只球的放回盒子里。
问:这时盒子里共有多少只球?分析:在此题中,变化的量有以下几个:①操作的次数,即取球的次数;②取出的球数;③每次取出球以后,盒中剩余的球数;④每次放回的球数⑤盒中每次增加的球数;⑥每次操作结束后盒子中的球数。
这每一个量都随着操作次数的变化而变化,正因如此,把每次操作的情况列成表格,在表格中的数据上寻找出数据的规律:操作次数1 2 3 (10)取出球数1 2 3 (10)盒中剩球数0 2 7 … A放回的球数4 8 12 … B盒中增加球数3 6 9 … C总球数 4 10 19 … D在上表中,若能把A、B、C、D这四处的数据找到,那么此题也就完成了解题。
从表中容易得到结果的是B为4N、C为3N。
因此对所要求的D的结果就显而易见了:每次变化后的球的数目分别为:1、1+3=4、10=1+3+6、1+3+6+9=19、1+3+6+9+12=31……1+3+6+9+12+15+18+21+24+27+30=166。
即D为166。
说明:解决此类问题时,应将每一过程产生的结果用表格把数据一一列出,再观察数据的变化,从变化的数据中寻找规律,从而得出结论。
例2:有10个朋友聚会,见面时如果每人和其余的每个人只握一次手,那么10个人共握手多少次?若N个朋友呢?分析:学生必须明白:1)每两个人握一次手;2)甲和乙握手的结果与乙和甲握手的结果只能看成是一种结果。
3)若设这10个人为A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。
则A1与其它9个人握9次手;A2则与剩下的8个人握8次手;A3则与剩下的7个人握7次手;……A9与A10握1次手。
因此,所有握手的次数就是9+8+7+6+5+4+3+2+1=45(次)。
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化; ⑵图形形状的变化; ⑶图形大小的变化; ⑷图形颜色的变化; ⑸图形位置的变化; ⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】 观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】 请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
【例8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】 在纸上画5条直线,最多可有 个交点。
模块二、图形规律—— 旋转、轮换型规律【例 11】 相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗? ○ □ ☆ △ ○ □ ☆ △ △ ○ □ ☆ △ ○ □ ☆ ☆ △ ○ □ ☆ △ ○ □ ()()()()()()()()【例 12】 下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)(2)(3)【例 13】 观察下图的变化规律,画出丙图.甲DA乙BC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A★B C★D A★D【例15】(希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
知识点说明在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。
有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。
这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。
这类题主要考查孩子们的发现能力。
模块一,周期规律【例 1】 四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次 是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看 下图)【考点】操作找规律 【难度】2星【题型】解答 【关键词】华杯赛,初赛 【解析】 根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。
【答案】第2号【例 2】 在1989后面写一串数字。
从第5个数字开始 ,每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 ……那么这串数字中,前2005个数字的和是____________。
【考点】操作找规律 【难度】2星 【题型】填空 【关键词】迎春杯,中年级,初试 【解析】 由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。
1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。
()2005463333-÷=⋯,前2005个数字和是()()()1989286884333286+++++++++⨯+++27119881612031=++=。
例题精讲知识点拨操作找规律【答案】12031【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。
二年级找规律填图(总5页) -CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
创智教育内部讲义二年级找规律填图
姓名
例1、根据前面几幅图的规律,接下去该怎么画?
试一试:在空白处填上合适的图形.
(1)
(2)
例2、根据前面几幅图的规律,接着画。
试一试:根据前面三幅图的规律,接着画。
例3、观察前几幅图的变化规律,再接着画。
试一试:仔细观察下图,根据规律,接着画。
例4、观察下图的变化,想一想第四幅图应是画上怎样的图形。
试一试:按顺序仔细观察下图,画一画第三幅图。
例5、仔细观察下图的变化,按规律把图填在横线上。
▲▲▲▲○○▲▲▲▲○▲▲○○▲▲▲▲○○
试一试:找规律填图。
○○○●●○○○●●○○○●●
二年级找规律填图练习题
姓名家长签名
1.接着画,我能行!
2.看一看,填一填。
3.下面应画什么图形呢?
4、“”处应填什么图形?
要认真
哟!!
5、接下去该怎么画?
6、仔细观察下图,想一想第三幅图应怎么填?
7、仔细观察下图,回答下面问题。
8、认真观察下图,找找变化规律,画出第三组图。
第一组第二组第三组
9、根据前面几幅图的规律,接着画。
(1)
(2)
10、观察下图的变化规律,在空白处填上适当的图形.
11、下图的变化很多,请你认真仔细地观察,画出第四幅图的答案.
12、依照下面图中所给图形的变化规律,在空格中填图.。
浅谈初中数学中找规律题的解法例1,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是___。
”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n 项是n -1,第100项是100 -1。
如果题目比较复杂,或者包含的变量比较多。
解题的时候,不但考虑已知数的序列号,还要考虑其他因素。
例2 (1)观察下列运算并填空1×2×3×4+1=24+1=25=52×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=1924×5×6×7+1= +1= = 27×8×9×10+1= +1= = 2(2)根据(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2并用你所学的知识说明你的猜想。
分析:第(1)题是具体数据的计算,第(2)题在计算的基础上仔细观察。
已知四个数乘积加上1的和与结果中完全平方数的数的关系是猜想的正确性的解释,只要用完全平方数四个数的首尾两数乘积与1的和正好是完全平方数的底数,由此探索其存在的规律,解决猜想公式逆用就可解决解:(1)4×5×6×7+1=840+1=841=2927×8×9×10+1=5040+1=5041=712(2)(n+1)(n+2)(n+3)(n+4)+1=[(n+1)(n+4)+1]2=(n2+5n+1)2一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
第一讲找规律(4)例1.观察下面的数列,找出其中的规律。
并根据规律,在横线上填上适当的数。
(1)1,4,7,10,_____,16,19(2)19,17,15,13,,9,7(3)1,2,4,8,16,_____,64(4)1,1,3,7,13,,31(5)1,1,2,3,5,8,,21,34(6)1,3,9,27,_______(7)1,4,9,16,25,,49,64,81(8)1,2,3,6,11,20,______例2.给出一个数表,缺了一些数,请你补全。
11 11 2 11 3 3 11 4 61 5 10 1例3.下图是按照一定规律排列而成的数学三角形,按照规律填上数字例4.找规律,在空白方格中填入数字例5.看一看,根据前两个方格中数字填写的规律,想想问号处黑格应该填什么数字?例6.12 43 6 94 8 12 165 10 15 256 12 18 30 36(课后练习)1、找出规律,空白处应填什么数。
2、仔细观察, 、===3、?表示什么数?4、小明写下一串数列0,1,2,3,6,7,14,15,30, , ,他是按照一定规律写下来的,第一次写出0,1,第二次写下2,3,第三次写下6,7……依次类推。
16 1228 243013 92214 1610 16 1872115 25 35 16 36 17273790 60 30 78 28 50362525 41 16 32 5018 2714请按照这个规律,在横线上填入相应的数。
5、找规律填数:(1) 64,32,16,8, ,2(2) 1,5,9,13,17,_ _, _,(3) 1,4,8,13,19,_____,_____(4) 1,4,5,9,14,23, ,60(5) 21,24,24,24,27,24,30, , ,6、看一看,根据前两个方格中数字填写的规律,想想黑格应该填什么数字?7、下表,缺了两个数,还有一个数是错误的,请你补全,并且找出那个错误的数来1 1 1 12 1 13 3 1 14 6 1 12 10 1。