2.第二讲 整式的加减知识点复习
- 格式:doc
- 大小:154.50 KB
- 文档页数:4
整式的加减全章知识点总结一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,5、x、2xy 等都是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
比如单项式 3x²y 的系数是 3,次数是 3(2 + 1 =3)。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如,多项式 2x³+ 3x² 5 中,有三项,分别是 2x³、3x²、-5,其中-5 是常数项,次数最高项是 2x³,次数为 3,所以这个多项式的次数是 3。
3、整式单项式和多项式统称为整式。
二、整式的加减运算1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,2x²y 和5x²y 是同类项,3 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。
3、去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如,a +(b c)= a + b c 。
(2)括号前是“ ”号,把括号和它前面的“ ”号去掉后,原括号里各项的符号都要改变。
例如,a (b c)= a b + c 。
4、整式的加减运算整式的加减运算实际上就是合并同类项和去括号。
一般步骤是:(1)如果有括号,先去括号;(2)然后合并同类项。
例如,计算(2x² 3x + 1)(3x²+ 5x 2)= 2x² 3x + 1 3x² 5x + 2=(2x² 3x²)+( 3x 5x)+(1 + 2)= x² 8x + 3三、整式加减运算的应用1、化简求值先将整式进行化简,然后代入给定的值进行计算。
第二讲:整式的加减一、合并同类项:(一).知识点:1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:数与数都是同类项如 :2a b 与-5a b 是同类项;4x 2y 与-31yx 2是同类项;83、0与2.5是同类项, 2、同类项的条件:(1)所含字母相同 (2)相同字母的指数也相同如 :32xyz 与xy 不是同类项,因为所含字母不相同 ; 0.523y x 和732y x 不是同类项 ,因为相同字母的指数不相同;(二)、应用题型一:找同类项1、指出下列多项式中的同类项:(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2。
解:(1)3x 与-2x 是同类项;-2y 与3y 是同类项;1与-5是同类项;(2 )2、写出-5x 3y 2的一个同类项_______________;3、下列各组式子中,是同类项的是( )A 、y x 23与23xy -B 、xy 3与yx 2-C 、x 2与22xD 、xy 5与yz 5题型二:利用同类项,求字母的值1、k 取何值时,(1)3x k y 与-x 2y 是同类项?(2)35k x y 与439y x -是同类项?解:(1)k=2时,3x k y 与-x 2y 是同类项;(2)2、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。
分析:因为是同类项,所以字母x 的指数要相同:即13n +=,所以2n =;字母y 的指数要相同:即2m =3、若425m x y 和149n x y +-是同类项,则m=_________,n=___________。
二、合并同类项(一).知识点:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
2、合并同类项的法则:把同类项的系数相加减,所得的结果作为系数,字母和字母指数保持不变。
整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。
整式的加减知识点归纳一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a 等都是单项式。
单项式中的数字因数叫做这个单项式的系数,所有字母指数的和叫做这个单项式的次数。
比如,单项式 3x 的系数是 3,次数是 1;单项式-5 的系数是-5,次数是 0。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
例如,多项式 2x²+ 3x 1 中,有三项,分别是 2x²、3x、-1,其中-1 是常数项,次数最高的项是 2x²,次数为 2,所以这个多项式的次数是 2。
3、整式单项式和多项式统称为整式。
二、同类项1、定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,2x²y 和5x²y 是同类项,3 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²,因为 3x²和 2x²是同类项,所以可以合并为(3 + 2)x²= 5x²。
三、去括号法则1、括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如,a +(b c) = a + b c2、括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。
例如,a (b c) = a b + c四、整式的加减运算整式的加减的实质就是合并同类项。
一般步骤是:1、如果有括号,先去括号。
2、然后找出同类项,将同类项合并。
例如,计算(2x² 3x + 1) (3x²+ 5x 2)先去括号:2x² 3x + 1 3x² 5x + 2然后合并同类项:(2x² 3x²) +(-3x 5x) +(1 + 2)= x² 8x + 3再比如,计算 3a²b + 2ab² 5a²b ab²合并同类项:(3a²b 5a²b) +(2ab² ab²)=-2a²b + ab²五、整式加减的应用整式的加减在解决实际问题中有着广泛的应用。
整式的加减知识点总结整式的加减知识点总结一、引言整式是在代数学中常见的一种表达形式,也是解决各种代数问题的基础工具。
整式的加减运算是整式运算中最基础、最常见的操作之一,掌握整式的加减运算规则对于学习代数学非常重要。
本文将从整式的定义、整式的加减运算规则、练习题与解析等方面,对整式的加减运算知识点进行总结。
二、整式的定义整式是由字母、常数及其乘方以及它们的积与和组成的代数表达式。
整式的一般形式为:aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀其中,aₙ、aₙ₋₁…、a₁和a₀是常数系数,x是字母。
三、整式的加减运算规则1. 相同的字母幂相加减:当两个整式的相同字母幂相加减时,直接把系数相加减即可。
例如:3x² + 5x² = 8x²;6x³ - 2x³ = 4x³2. 不同的字母幂相加减:当两个整式中的字母幂不相同时,无法进行直接加减运算,需要按照字母幂的大小进行整理。
例如:4x³ - 2x² + 3x⁴ - 5 = 3x⁴ + 4x³ - 2x² - 53. 加减运算的性质:(1) 交换律:a + b = b + a,a - b ≠ b - a(2) 结合律:(a + b) + c = a + (b + c),(a - b) - c ≠a - (b - c)(3) 分配律:a(b + c) = ab + ac,a(b - c) = ab - ac针对整式的加减运算规则,需要注意运算符的使用和字母幂的整理。
四、练习题与解析1. 计算下列整式的和:2x² + 3 - 5x + 4x² + 7解析:同类项相加,得到:(2x² + 4x²) + (3 + 7) - 5x =6x² + 10 - 5x = 6x² - 5x + 102. 计算下列整式的差:6x³ - 4x² + 2x - 8 - 2x³ + 5x² - 7x + 6解析:同类项相加,得到:(6x³ - 2x³) + (-4x² + 5x²) + (2x - 7x) + (-8 + 6) = 4x³ + x² - 5x - 2五、总结整式的加减运算是代数学中重要的基础知识点,常见的代数问题中都需要用到整式的加减运算。
《整式的加减》全章复习与巩固【知识网络】【要点梳理】知识点一、整式的相关概念1.单项式:由数字或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;③单项式次数只与字母的指数有关。
2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.知识点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,有括号先去括号,然后再合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h +举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【变式2】多项式432231y y y y -+-+是______次_____项式,常数项是_______,三次项是_________.【变式3】把多项式321325x x x --+按x 的降幂排列是____________________.类型二、同类项及合并同类项2.合并同类项:(1)232338213223c c c c c c -+-+-+;(2)22220.50.40.20.8m n mn nm mn -+-.举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________. 类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【变式2】化简:-2a+(2a-1)的结果是( ).A .-4a-1B .4a-1C .1D .-1类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.举一反三: 【变式】计算:11(812)3(22)32a a b c c b ---+-+类型五、化简求值5.(1)直接化简代入:已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值.(2)条件求值:若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入:已知x 2-2y =1,那么2x 2-4y+3=________.举一反三:【变式1】若实数a 满足2210a a -+=,则2245a a -+=________.【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.类型六、综合应用6. 已知多项式是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.《整式的加减》巩固练习一、选择题1.A 、B 、C 、D 均为单项式,则A+B+C+D 为().A .单项式B .多项式C .单项式或多项式D .以上都不对2.下列计算正确的个数( )① ab b a 523=+;② 32522=-y y ; ③ y x x y y x 22254=-;④ 532523x x x =+; ⑤ xy xy xy =+-33A .2B .1C .4D .03.现规定一种运算:a * b = ab + a - b ,其中a ,b 为有理数,则3 * 5的值为().A .11B .12C .13D .144.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为().A .0B .-2aC .2aD .2a 或-2a5.已知a -b =-3,c+d =2,则(b+c )-(a -d )为().A .-1B .-5C .5D .16. 有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB .0C .2cD .2c -2b7.当x =-3时,多项式535ax bx cx ++-的值是7,那么当x =3时,它的值是().A .-3B .-7C .7D .-178.如果32(1)n m a a --++是关于a 的二次三项式,那么m ,n 应满足的条件是().A .m =1,n =5B .m ≠1,n >3C .m ≠-1,n 为大于3的整数D .m ≠-1,n =5二、填空题9.nmx y -是关于x ,y 的一个单项式,且系数是3,次数是4,则m =________,n =________. ()()22222mx -x +3x +1-5x -4y +3x10.(1)-=+-222x y xy x (___________);(2)2a -3(b -c )=___________.(3)2561x x -+-(________)=7x+8.11.当b =________时,式子2a+ab -5的值与a 无关.12.若45a b c -+=,则30()b a c --=________. 13.某一铁路桥长100米,现有一列长度为l 米的火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟时间,则火车的速度为________.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n 个图案需要枚棋子.三、解答题15.先化简,再求值:4x 3- [-x 2-2( x 3-12x 2+1)],其中x= -13.16.已知:a 为有理数,3210a a a +++=,求23420121...a a a a a++++++的值.17. 如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD,其中,GH=2cm, GK=2cm, 设BF=x cm,(1)用含x 的代数式表示CM=cm,DM=cm.(2)若x=2cm ,求长方形ABCD 的面积.…。
整式其加减知识点总结一、整式的基本概念1. 整式:由正整数幂、变量和它们的积(包括系数)以及它们的和或差组成的式子称为整式。
2. 字母的幂:整式中的变量乘方。
3. 项:整式中的单个元素,可以是常数、变量或者它们的乘积。
4. 系数:整式中变量的乘方的系数,可以是数字或者其他变量的多项式。
5. 次数:整式中变量的幂次的最高指数。
二、整式的加法1. 整式的加法公式:将同类项相加,即将具有相同字母幂的项相加,并将结果写成一个整式。
2. 同类项:具有相同字母幂的项即为同类项。
3. 加法运算规则:将同类项的系数相加,并将相同的字母幂保持不变。
三、整式的减法1. 整式的减法公式:与整式的加法类似,只是将同类项相减,并将结果写成一个整式。
2. 减法运算规则:将同类项的系数相减,并将相同的字母幂保持不变。
四、整式的加减混合运算1. 整式的加减混合运算:将整式的加法和减法相结合,首先将同类项相加或相减,然后将结果写成一个整式。
2. 加减混合运算规则:先将同类项相加或相减,然后将结果整理成一个整式。
3. 注意事项:注意符号的加减变换,并且要注意合并同类项时系数的变化。
五、整式加减的化简1. 整式加减的化简:将整式中的同类项相加或相减,然后将结果整理成一个简化的整式。
2. 通常包括的步骤:合并同类项、整理系数、整理变量。
六、整式加减的应用1. 代数方程式的整理:将代数方程式中的整式进行加减混合运算,将同类项进行合并后化简方程式。
2. 代数方程式的解:通过整式的加减混合运算,可以更方便地求解代数方程式,从而得到方程的解。
七、整式加减的补充1. 整式的系数:整式中变量的乘方的系数可以是数字,也可以是其他变量的多项式。
2. 多项式的次数:整式中变量的幂次的最高指数即为整式的次数。
3. 整式的导数:整式的导数表示对整式中的变量求导数。
4. 整式的积分:整式的积分表示对整式中的变量求不定积分。
综上所述,整式的加减是代数中的基础运算,需要掌握多项式的各种形式以及相关运算规则。
第二章整式的加减知识梳理
一、知识结构图
整式的加减运算
用字母表示数
列式表示数量关系
单项式
整式
多项式
合并同类项
去括号
二、知识要点:
本章主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等。
整式的加减是学习下章“一元一次方程”的直接基础,也是以后学习分式方程和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科以及其他科学技术不可缺少的数学工具。
本章包括两节内容。
在第2.1节“整式”主要介绍单项式、多项式、整式及其相关概念。
这些概念是结合实际问题给出的。
在引出这些概念的过程中,教科书充分重视与实际问题的联系,在实际情境中抽象出数学概念。
在第2.2节“整式的加减”是在学习合并同类项和去括号的基础上,研究整式加减的运算法则。
本节内容的编写充分重视了“数式通性”,是在有理数运算的基础上,通过类比来研究整式的加减运算法则。
抓住重点、加强练习,打好基础。
本章教学必须抓好概念的教学,合并同类项的方法教学,以及去括号的符号变化教学。
要适当进行加强练习,使学生熟练掌握整式加减运算的法则,为今后的学习打好基础
本章重点和难点分析:
根据学生已有知识经验和本章的地位与作用,确定本章重点和难点是整式的加减运算,合并同类项和去括号。
整式的加减主要是通过合并同类项把整式化简,因此必须要熟练地进行合并同类项。
整式的加减知识点归纳关于整式的加减练习题很多同学都觉得做起来有一定的难度,主要在于变号、移项等问题。
整式的加减练习题做起来觉得难,是因为对于知识点掌握的不够好,所以想要做好有关于整式的加减练习题,首先还是要从知识点开始。
下面是小编为大家整理的关于整式的加减知识点归纳,希望对您有所帮助。
欢迎大家阅读参考学习!整式的加减知识点归纳1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。
所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1.3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:单项式和多项式统称为整式。
8. 多项式的加法:多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同。
整式的加减复习资料知识点1 代数式用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.例如:5,a ,32(a+b),ab ,a 2-2ab+b 2等等. 请你再举3个代数式的例子:___________________________________________知识点2 列代数式时应该注意的问题 (1)数与字母、字母与字母相乘时常省略“×”号或用“·”.如:-2×a=-2a ,3×a ×b=________, -2×x 2=________. (2)数字通常写在字母前面.如:mn ×(-5)=________, (a+b)×3=_______. (3)带分数与字母相乘时要化成假分数.如:221×ab=________,切勿 错误写成“221ab ”.(4)除法常写成分数的形式. 如:S ÷x=xS, x ÷3=__________, x ÷312=__________典型例题:1、列代数式:(1)a 的3倍与b 的差的平方:___________________ (2)2a 与3的和:____________(3)x 的54与32的和:______________知识点3 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.例如:求当x=-1时,代数式x 2-x+1的值. 解:当x=1时,x 2-x+1=12-1+1=1. ∴当x=1时,代数式x 2-x+1的值是1.对于一个代数式来说,当其中的字母取不同的值时,代数式的值一般也不相同。
请你求出: 当x=2时,代数式x 2-x+1的值。
_________________________________________________________________________________________________________________________________知识点4 单项式及相关概念由_____和_____的乘积组成的_____叫做单项式.单项式中的______叫做这个单项式的系数.一个单项式中,所有字母的______的和叫做这个单项式的次数。
典型例题:1、下列代数式属于单项式的有:_________________(填序号);53)5(;5)4(;3)3(;)2(;3)1(22+---x x mx a2、写出下列单项式的系数和次数.(1)-18a 2b ;(2)xy ;(3)322yz x -;(4)-x ;(5)23x 4(6)2abc π答:(1)_________(2) __________(3) _________ (4) _________ (5) _________ (6) _________ 3、若单项式25b a x-是一个五次单项式,则x =______。
4、请你写出一个系数是-6,次数是3并且包含字母x 的单项式:__________。
知识点5 多项式及相关概念(1)几个单项式的和叫做__________. 例如:a 2-ab+b 2,mn-3等.(2)在多项式中,每个_______叫做多项式的项,其中,不含字母的项叫做______。
如:多项式x 2-3x+2,它的项分别 是x 2,______,2,常数项是_______. (3)一般地,多项式里次数_____的项的____,就是这个多项式的次数.如:x 2y -3x 2y 2+4x 3y 2+y 4是五次四项式,最高次项是4x 3y 2.(4)________与________统称整式典型例题:1、下列多项式分别是哪几项的和?分别是几次几项式?(1)3x 2y 2—5xy 2+x 5-6;(2)-s 2—2s 2t 2+6t 2;(3)32x —by 3(4)3222b ab a ++解:(1)3x 2y 2-5xy 2+x 5-6是_____,_____,_____,_____这四项的和.是___次____项式.(2)_________________________________________________ (3)_________________________________________________ (4)_________________________________________________2、多项式232246x y x x y +--+是____次____项式,其中最高次项的系数是_____,三次项的系数是_____常数项是_____**3、(1)若x 2+3x-1=6,则x 2+3x+8= ;(2)若x 2+3x-1=6,则31x 2+x-31-= ; (3)若代数式2a 2-3a+4的值为6,则代数式32a 2-a-1的值为 4、当k= 时,代数式x 2—(3kxy +3y 2)+31xy —8中不含xy 项知识点6 同类项所含______相同,并且相同字母的______也相同的项叫做同类项。
所有的常数项都是________ 典型例题:1、下列各组中的两项属于同类项的是( ) A.25x 2y 与-23x y 3 B.-8a 2b 与5a 2c ; C.41pq 与-25qp D.19abc 与-28ab2、若n m y x y x +--223253与是同类项,则=+n m3、若y x b a b a-+-964253与可以合并成一个单项式,则=-y x 2______知识点7 合并同类项及法则Ⅰ.把多项式中的同类项合并成一项,叫做__________.Ⅱ. 合并同类项法则:把同类项的_____相加减,所得的结果作为系数,___________保持不变.典型例题:1、填空:(1)_____)(__53222=+=+a a a (2)______)(__3=+=--ab ab ab2、计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3、下列式子中,正确的是( ) A.3x+5y=8xyB.3y 2-y 2=3C.15ab-15ab=0D.29x 3-28x 3=x4、化简:(1)11x 2+4x-1-x 2-4x-5; (2)-32ab 3+2a 2b-21a 3b-2ab 2-21a 2b-a 3b5、已知的值。
求46,292322+=+x x知识点8 去括号法则括号前是“+”号,把括号和它前面的“+”号去掉,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.对应练习:1、(1)2(3)2(5)(2__)(____)________________a b b a a -+-=-+-== (2)2(3)2(5)(2__)(____)________________a b b a a ---=---== (3)2(3)2(5)(____)(____)________________a b b a ----=+--==2、化简()m n m n +--的结果为( )A .m 2B .m 2-C .n 2D .n 2-3、先化简,再求值:()()7457322+--+-a ab ab a ,其中31,2==b a .知识点9 整式加减法法则几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项. 典型例题:1、若232,57A x x B x =-+=-,请你求:(1)2A+B (2) A —3B2、试说明:无论x,y 取何值时,代数式(x 3+3x 2y-5xy +6y 3)+(y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3x y 2+7y 3)的值是常数.综合训练1、 已知一组数:1,43,95,167,259,…,用代数式表示第n 个数为2、在代数式-x 2+8x-5+23x 2+6x+2中,-x 2和 是同类项,8x 和 是同类项,2和 是同类项。
3、下列各式中,去括号正确的是( )A.x 2-(2y-x+z)=x 2-2y 2-x+zB.3a-[6a-(4a-1)]=3a-6a-4a+1C.2a+(-6x+4y-2)=2a-6x+4y-2D.-(2x 2-y)+(z-1)=-2x 2-y-z-14、有一块长为a ,宽为b 的长方形铝片,四角各截去一个相同的边长为x 的正方形,折起来做成一个没有盖的盒子,则此盒子的容积V 的表达式应该是( )A.V=x 2(a-x)(b-x)B.V=x(a-x)(b-x)C.V=31x(a-2x)(b-2x)D.V=x(a-2x)(b-2x)5、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图15-12(1)所示;第2次把第1次铺的完全围起来,如图15-12(2)所示;第3次把第2次铺的完全围起来,如图15-12(3)所示……依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 .6、观察下列各等式:①9-1=8 ②16-4=12 ③25-9=16 ④36-16=20 ……这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示 这个规律为 ___________ .7、将2(x+y)-3(x-y)-4(x+y)+5(x-y)-3(x-y)合并同类项得:____________________________ 8、如果a <0,ab <0,那么a b -+1+a –b-3的值等于____________________9、如图15-3所示,用代数式表示图中阴影部分的面积为______________ 10、若1-a +(b-2)2=0,A=3a 2-6ab+b 2,B=-a 2-5,求A-B 的值。
11、某工厂用12万元购进一台机器,随着使用年限的增加,机器的实际价值降低,下表是机器的实际价值y(单位:万元)与使用年限x 的关系.①写出实际价值y 与年限x 的关系; ②计算8年后该机器的实际价值; ③若机器的实际价值降到3万元时,就必须报废处理,计算这台机器可以使用多少年。