第二章 整式的加减小结与复习
- 格式:docx
- 大小:43.42 KB
- 文档页数:4
第二章代数式小结与复习班级姓名学习目标:1、本章的以合并同类项运算为主线,从代数式的意义开始入手,讲述了单项式、多项式、整式的意义及单项式的系数与次数,多项式的项数与次数,列代数式,及合并同类项的方法,及一次式的加减,代数式的求值等;2、能系统一章知识点;一、代数式的意义理解:1、意义p62页2、规范的书写方法P59页题型:填空选择题:(1)x的10倍表示为()(2)比a的倒数小5的数表示为()教材P59页练习,P60页A组二、列代数式:找准表示数量关系的语句:1、如果某长方形的周长为m米,宽是n米,则它的长是(1)从文字中可以读出的数量关系是:长方形周长=m宽=n米求长?(2)怎样把他们联系起来:涉及到公式:长方形的周长=2×长+2×宽(3)把已知的量代入,看是否能求解。
2、练习:P82页(1)设圆的周长为acm,该圆的面积是多少?(2)洗衣厂原来库存洗衣机m台,现在每天又生产n台,经过x天后,该厂库存洗衣机有多少台?(3)如果b千克面粉售价为n元,那么3千克面粉售价为多少元?3、两位数的有关问题:一个两位数,个位数字为a,十位数字比个位数字大3,则这个两位数是(正确理解两位数的表示方法)巩固练习:基础训练P26页巩固练习第2题,教材P65页B组第1题4、出租车问题:株洲市出租车计费标准是:1.5千米以内(含1.5千米)收3元,(不足1.5千米也按1.5千米计算,这也就是所谓的起步价),以后每超过部份,按1.8元每千米费。
并且是每0.5元跳一次表,(即每0.5千米计价器上加收0.9元),如果乘坐出租车x 千米(x >1.5千米),则应付车费为多少元。
试计算乘坐6千米应收的车费。
其他问题:P82页A 组第1、2、6、7P83页,第2、3题,C 组第1、2题)三、合并同类项:试计算:(1)422237549x x x x x -+--+ (2)(42)(2)x y x y -+-(3)(42)(2)x y x y --- (4)2()3()x y x y ---+(5)(2)4()x y x y ---+ (6)()4()2(2)x y x y x y ---++-四、同类项、整式等意义理解:1、单项式的理解:P66页:练习:P69页第1题:下列代数式中是单项式的有: 23x y - 23xy 3- 0 b a 12x + 2x y - 312x 2、单项式的系数与次数的理解:练习P68页第1题,P68页A 组第1、2、3题,P69页B 组第6题,通常出现在选择与填空题中,也是解决合并同类项及多项式的次数的基础。
第2章小结与复习【学习目标】对本章的内容进行回顾和总结,熟练掌握代数式、单项式、多项式、同类项等有关概念和合并同类项、去括号及添括号法则.掌握整式的运算.【学习重点】回顾本章知识,构建知识体系.【学习难点】整式加减.行为提示:创景设疑,帮助学生知道本节课学什么.说明:引导学生回顾本章知识点,展示本章知识结构图.使学生系统了解本章知识及它们之间的关系.教学时,边回顾边建立知识结构图.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入 生成问题知识结构我能建: 用字母表示数代数式列代数式求代数式的值整式单项式单项式的次数、系数多项式多项式的次数、项数升(降)幂排列整式加减去(添)括号合并同类项自学互研 生成能力知识模块一 代数式与整式典例1:(1)把含盐15%的盐水a 千克与含盐20%的盐水b 千克混合得到的盐水浓度是(含盐的百分比)( B )A .17.5%B .15%a +20%b a +b×100% C .a +b 15%a +20%b D .15%a +20%b 85%a +80%b×100% (2)校园里刚栽下一棵1.8米高的小树苗,以后每年长0.3米,则n 年后的树高是(1.8+0.3n)米;(3)“a 的2倍与1的和”用代数式表示是2a +1;(4)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重x -25千克; (5)某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是55%x 人.典例2:(1)下列说法中不正确的是( D )A .-a 2b 的系数是-1,指数是3B .a 2-1是整式 C .6a 2-2b -3的项是6a 2,-2b ,-3 D .22ab 2c 3-3a 3是八次二项式(2)已知多项式-13x 2y m +1+12xy 2-3x +6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m ,n 的值.解:由题意得:2+m +1=6,2n +2=6,m =3,n =2.变例:(齐齐哈尔中考)已知x 2-2x =5,则2x 2-4x -1的值为9.知识模块二 整式加减典例1:-x 2n -1y 与8x 9y 是同类项,则代数式(2n -9)2015的值是( B ) A .0 B .1 C .-1 D .1或-1学习笔记:行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 典例2:一个长方形的一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是( B )A .12a +16bB .6a +8bC .3a +8bD .6a +4b仿例:(1)一个多项式P 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则P 等于( D )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy(2)2a 5-3b 5-4⎝⎛⎭⎫12a 5-12a 3b 2+2a 2b 3-34b 5. 解:原式=2a 5-3b 5-2a 5+2a 3b 2-8a 2b 3+3b 5=2a 3b 2-8a 2b 3.变例:(1)已知a =-15,求15a 2-{-4a 2+[5a -(2a 2-a)]}; 解:原式=21a 2-6a ,将a =-15代入, 得原式=21×⎝⎛⎭⎫-152-6×⎝⎛⎭⎫-15=5125; (2)3x 2y -⎣⎡⎦⎤2xy 2-2⎝⎛⎭⎫xy -32x 2y +xy +3xy 2,其中x =3,y =-13. 解:原式=3x 2y -(2xy 2-2xy +3x 2y +xy)+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy.将x =3,y =-13代入, 得原式=3×⎝⎛⎭⎫-132+3×⎝⎛⎭⎫-13=13+(-1)=-23. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 代数式与整式知识模块二整式加减检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。
整式的加减小结与复习考点呈现1.利用同类项的概念求字母的值例1 如果2x3y n+1与-3x m-2y2是同类项,则2m+3n=___.解析:根据同类项的概念,可知x的指数相同,y的指数也相同,可以求出m、n的值,进而求出2m+3n的值.由m-2=3,n+1=2,得m=5,n=1.所以2m+3n=2×5+3×1=13.反思:若将题目中的“2x3y n+1与-3x m-2y2是同类项”变成“2x3y n+1与-3x m-2y2的和是单项式”,那么怎样求2m+3n的值.2.整式的加减运算例2 计算6a2-2ab-2(3a2+12ab)所得的结果是().A.-3ab B.-ab C.3a2D.9a2解析:先根据去括号法则,去掉括号,再合并同类项,得6a2-2ab-6a2-ab=-3ab.故选A.3.利用整式求值例3 若3a2-a-2=0,则5+2a-6a2=___.解析:注意到待求式中含a项与a2项的系数,分别是已知条件中a项与a2项的系数的-2倍,可以先将待求式变形为5-2(3a2-a).又由已知条件可得3a2-a=2.于是5-2(3a2-a)=5-2×2=1.4.利用整式探索规律例4 观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有____个★.解析:观察图形,第1个图形中“★”的个数为4=3×1+1;第2个图形中“★”的个数为7=3×2+1;第3个图形中“★”的个数为10=3×3+1;第4个图形中“★”的个数为13=3×4+1;…. 由此可知,第n个图形中“★”的个数为3n+1,所以第16个图形中“★”的个数为3×16+1=49.误区点拨误区1 整式书写不规范例1 用含有字母的式子填空:(1)a与b的143倍的差是____.(2)某商品原价为a元,提高了20%后的价格为____.错解:(1)a-143b (2)a(1+20%)点拨:(1)带分数与字母相乘时,应将带分数写成假分数的形式;(2)数与字母相乘时,数字应写在字母前面.正解:(1)a-133b (2)(1+20%)a误区2 忽略1和π致错例2 (1)4π2r2的系数是____;(2)单项式54-a2b3c的次数是____.错解:(1)4(2)5点拨:(1)π是一个以字母面孔出现的常数,因此4π2r2的系数是4π2.(2)c的指数是1,而不是0,因此单项式54-a2b3c的次数是6,而不是5.正解:(1)4π2(2)6误区3 去括号时出错例3 计算:(x-2x2+2)-3(x2-2+x).错解:原式=x-2x2+2-3x2-2+x.点拨:有两处错误:①-3只同括号里面的第一项相乘,而漏乘后两项;②由于括号前面是“-”,“-2”与“+x”这两项的符号应该改变.正解:原式=x-2x2+2-3x2+6-3x=-5x2-2x+8.误区4 列式未加括号而出错例4 已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是().A.-5x-1 B.5x+1 C.-13x-1 D.13x-1错解:由题意知,这个多项式等于3x2+4x-1与3x2+9x的差,即3x2+4x-1-3x2+9x=13x-1,故选D.点拨:在表示两个多项式的和或差时,一定要将每个多项式都加上括号,以避免符号错误.正解:(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1,故选A.复习学习方案基础盘点1.单项式:由___或___的积组成的___叫做单项式.单独的一个___或一个___也是单项式.单项式中的___叫做这个单项式的系数.一个单项式中,所有字母的___叫做这个单项式的次数.2.多项式:____________叫做多项式.在多项式中,每个单项式叫做这个多项式的___,其中不含字母的项叫做___.一个多项式中,___项的次数叫做这个多项式的次数.3.整式:___和___统称整式.4.同类项及其合并:___相同,并且相同字母的___也相同的项叫做同类项.把多项式中的___合并成一项,叫做合并同类项.合并同类项的法则:把同类项的___相加,所得的结果作为系数,____保持不变.5.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号____;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号____.6.整式的加减:一般地,整式的加减运算第一步是_____,第二步是______.课堂小练1.单项式-23xy3的系数与次数分别是()A.-2、4 B.-6、3 C.-2、7 D.-8、42.若A是一个五次多项式,B也是一个五次多项式,则A+B一定是()A.五次多项式B.十次多项式C.不高于五次的多项式或单项式D.五次二项式3.如果单项式-2x2y m+2与53x n y的和仍然是一个单项式,则m、n的值分别是()A.m=2,n=2 B.m=-2,n=2 C.m=-1,n=2 D.m=2,n=-1 4.下列去括号所得结果正确的是()A.x2-(x-y+2z)=x2-x+y+2z B.x-(-2x+3y-1)=x+2x-3y+1 C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-(x2-2)=x-1-x2-25.写出系数是56,含有字母x、y、z的3个四次单项式:_______.6.多项式3x2-2x+1与-x2+2x+1的差等于_____.跟踪训练1.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为___.2.一辆公共汽车以每小时30 km的速度行驶于各站之间,若在x km的行程内(x>30),它曾停车b次,每次停车a分钟,则行完全程共需___小时.3.已知2m2-3m=-1,求12m-8m2+2 006的值.4.某同学在运算时误将“A+B”看成“A-B”,求出的结果是-7x2+9x+18,其中B为5x2-4x+8. 求A+B的正确结果.整式的加减小结与复习基础盘点1. 数 字母 式子 数 字母 数字因数 指数和2. 几个单项式的和 项 常数项 次数最高3. 单项式 多项式4. 所含字母 指数 同类项 系数 字母部分5. 相同 相反6. 去括号 合并同类项课堂小练1. D2. C3. C4. B5. 56-x 2yz 、56-xy 2z 、56-xyz 2 6. 4x 2-4x 跟踪训练1. 3n +22.3060x ab+ 3. 解:12m -8m 2+2 006=-4(2m 2-3m )+2 006.4. 解:由已知,得A-B=-7x 2+9x +18.所以A=5x 2-4x +8+(-7x 2+9x +18)=-2x 2+5x +26. A+B=-2x 2+5x +26+(5x 2-4x +8)=3x 2+x +34.。
第二章整式的加减知识点总结整式有理式代数式分式无理式※、书写含有字母的式子时应注意:(1)当数字与字母相乘时,乘号通常省略不写或简写为“· ”,且数字在前,字母在后,若数字是带分数,要化为假分数,如×a写成·a或a;(2)字母与字母相乘时,乘号通常省略不写或简写为“·”,如a×b写成a·b或ba;(3)除法运算写成分数形式,如1÷a通常写作。
(一)单项式1、都是数字与字母的乘积2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
如5的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
如-k,pq2等。
12、单项式的次数仅与字母有关,与单项式的系数无关。
如9×103a2b3c的次数是6,与103无关。
13、圆周率π是常数。
(二)多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
要点诠释:(1)多项式的每一项都包括它前面的符号。
如多项式6x2-2x-7,它的项是6x2,-2x,-7;(2)多项式3n4-2n2+n+1的项是3n4,-2n2,n,1,其中3n4是四次项,-2n2是二次项,n是一次项,1是常数项;(3)多项式的次数不是所有的项的次数之和,而是次数最高项的次数;(4)多项式中含有几项,就是几项式,最高项的次数是几,就是几次式;(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数。
人教版数学七年级上册第二章整式的加减
《小结与复习(二)》学习任务单及课后练习
【学习目标】
进一步理解同类项、合并同类项的概念,掌握去括号法则和合并同类项法则,并理解两个法则的依据,能较准确、熟练地应用去括号法则和合并同类项法则进行整式的加减运算和整式求值.通过整式求值,养成认真审题的思维习惯,并加强对条件的分析,发现未知和已知之间的隐含关系,“凑出”整体利于代换,体会换元的数学思想方法.
【课前学习任务】
1.阅读课本 74 页小结内容;
2.阅读课本 63 至 69 页内容,复习同类项和合并同类项的概念、去括号和合并同类项的法则.
【课上学习任务】
学习任务一:练一练
去括号:
合并下列各式的同类项:
学习任务:
例 1 化简:
思考:
某同学做一道数学题,“已知两个多项式 A、B,B=2x2+3x-4,试求 A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10. 请你替这位同学求出“A-2B”的正确答案.
【学习资源】
课本72-73 页数学活动2、活动3.
【课后练习】
第一部分
复习题2
3.计算:
4.计算:
5.先化简下式,再求值:
其中 x = -3
第二部分
思考:
某同学做一道数学题,“已知两个多项式 A、B,B=2x2+3x-4,试求 A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10. 请你替这位同学求出“A-2B”的正确答案.
课后练习答案:。
可编辑修改精选全文完整版第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点2、单项式的系数 单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2. (3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π. 知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.。
(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式-43242z y x 的次数是字母z y x ,,的指数和,即2+3+4=9而不是13次 (4)单项式通常根据字母的次数进行命名。
第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。
第二章 整式的加减小结与复习
学习目标:
1、复习单项式,多项式,整式,同类项的概念;
2、熟练掌握合并同类项法则,去括号法则,整式的加减运算法则,会先化简再求值;
3、会用整体法求多项式的值。
问题引入:“心有灵犀”数学游戏
请同学们在你心中想一个数字,在草稿纸上进行以下的运算:
把这个数先乘以2后加24,然后除以4,再减去你原来所想那个数的一半,最后得到一个数。
你能解释为什么大家“心有灵犀”吗?
一、整式的有关概念
1.表示__________________叫做单项式.单独的一个数或一个字母也是单项式.
(1)单项式中的_________叫做这个单项式的系数.
(2)一个单项式中,___________________叫做这个单项式的次数. .
________________,
,,423次数分别是的系数分别是练习:单项式t ab y x
2.多项式:_____________________叫做多项式.
每个单项式叫做多项式的项,多项式里,_________________叫做这个多项式的次数.
3.整式:___________________统称整式.
二、同类项、合并同类项
1.所含_________________________________的项叫做同类项.几个常数项也是同类项.
2.合并同类项法则:把多项式中的同类项合并成一项,叫做合并同类项,即把它们的系数相加作为新的系数,而字母连同它的指数不变. ._________1233____;
__________12_________;
1212=-+-=--=-)()()()()()练习:(x x x x
三、去括号法则
1.如果括号外的因数是正数,去括号后原括号内
各项的符号与原来的符号相同;
2.如果括号外的因数是负数,去括号后原括号内
各项的符号与原来的符号相反.
.
_______________________,
__________35232项式次它是,
,次数是其中常数项是的项是练习:-+b a a _________
7-533=+)(练习:b a b a
四、整式的加减
一般地,几个整式相加减,如果有括号就先________,然后再_____________.
考点一 整式的有关概念
针对训练:
考点二 同类项
.32325的值的和是单项式,求与:若例n n m m y x y x +
针对训练:
是同类项,与:若n m y x y x 252则m=( ) ,n=( ) 能合并,与若单项式n n m b a b a +32则m=( ) , n=(
) 小结: 2
295)5(;127)4(;
85.03;101002;411R xy x abc c b a a π-+++)()()(哪些是多项式?
是单项式?
:观察下列各式,哪些例分别是几次几项式?多项式是次数分别是;
系数分别是单项式是);()(;
);();()(在下列整式中,
______;__________.
_____________;__________913
55-421
33222-12
2222x b ab a x y x xy π+---
考点三 整式的加减运算与求值 例4 化简:
小结:
针对训练:
.
42-2018,1222的值则若m m m m +-=-
五、课堂小结
1、知识内容:
2、思想方法:
3、数学核心素养: [].2)1(2533);23()2(2
12);
1(2)3912222x x x x ab b a ab b a y y +---+-+-+--)()()(([]
.212)1(25322-=+---x x x x x 的值,其中求变式练习:.
2)2()2(2,
253232的值求:已知:例a a a b b a b b a -+---=-。