概率论与数理统计作业题详解
- 格式:doc
- 大小:648.00 KB
- 文档页数:10
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论练习题与解析十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853*********)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A Y 的概率)(B A P Y = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P Y 5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A Y 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P Y所求概率为75.08.06.0)()()|(===B A P A P B A A P Y Y6、 设随机事件A ,B 及其和事件B A Y 的概率分别是0.4,0.3和0.6。
概率论与数理统计练习题集及答案1. 某人射击三次,以A 表示事件“第,次击中目标”,则事件“三次中至多击中目标一次”的正确表示为()(C) A^ Ay 4 + A 4+4 A> A ( D ) 4 A A2. 掷两颗均匀的骰子,它们出现的点数之和等丁 8的概率为() (A) —(B) —(C) —(D)—363636363.设随机事件A^B 互不相容,且P(A)>0,P(B)>0,则( (A ) P(A) = 1-P(B) ( B ) P(AB) = P(A)P(B} (D) P(AB) = 1“7" x> 0 ni,i zt 则 EX=(0 x<0(A)斤(X)= ----- , —s < X < +s1 + x"/^(%) =-O0 < X < +cc(A) J 4| + A T +(B) 4 4 + 4 A+ 4 4(C ) P(A + B) = 14.随机变量X 的概率密度为/(%) =(B) 1 (C) 2(A)-25.下列各函数中可以作为某随机变量的分布函数的是(D)4(B) F2(X ) = <I + X0 X > 0耳(x) = —+——arctanx , - oo < x < +oo42兀6.己知随机变星X的概率密度为办(JV),令Y = —2X ,则y的概率密度/心)为((A ) 2办(-2y ) (D )7 .已知二维随机向量(X,F )的分布及边缘分布如表(D ) i3&设随机变量X~S1、5],随机变量Y~N (2,4),且X 与y 相互独立, 贝 ij£(2xy -y)=(EXY=EX EY,则下列结论不正确的是(1.某人射击三次,以4表示事件“第,次击中目标”,则事件“三次(B )办(-却>且X 与Y 相互独立,贝显=( (A) 3(B) 6(C) 10(D) 129.设X 与y 为任意二个随机变量,方差均存在且为正,若(A ) X 与Y 相互独立 (B ) X 与y 不相关 (C) cov(x,r)= o(D) D(X + r)= DX + Dy答案:1. B2. A 6. D7. D8.C9. A中恰好击中目标一次”的正确表示为(C )(c) 44 + 4 A 4 + 4 人 42.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为(A )(D)-4!3.设随机事件A •与S 互不相容,且P (A )>0,P (B )>0,则(D ) (B) P(AB) = P(A)P(B) (C) P (AIB) = ^^(D) P(AIB) = O/心)为(D )(A ) 3A (-3y ) (B ) A (-|)(07 .己知二维随机向暈(x,y )的分石弋边缘分布如表(A) J 4| + A T +(B ) 4 Ay + 4 & + A 4(A) P(A\B) = P(A) 4.随机变量X 的概率密度为/(x )=: X e(O,rt),则£;X= ( A )(A)扌(B) 1(C)£(D)35.随机变量X 的分布函数F (x )= A-(l + Q严2°,则A= ( B )x<0(A) 0 (B) 1(D) 36.己知随机变量X 的概率密度为厶W , 则y 的概率密度(A) -(B) -(C)-(D)-8483&设随机变量XV 相互独立,且X~饭16,0.5), y 服从参数为9的泊 松分布,则 D(X-2y + l)= ( C )9•设(XM)为二维随机向量,则X 与y 不相关的充分必要条件是(D ) (A) X 与 y 相互独立 (B) E(X + Y) = EX + EY (C) DXY = DX DY (D) EXY = EX • EY一、填空题:L 设是两个随机事件,P(A) = 0.5, P (A + B) = 0.8, (1)若A 与B 互不相容,则P(B) = __________ ; (2)若4与B 相互独立,则P(B)= _______ .2.—袋中装有20个球,其中4个黑球,6个白球,先后两次从袋中各 取一球(不放回).已知第一次取出的是黑球,则第二次取出的仍 是黑球的概率为 _____ .3. 设离散型随机变量X 的概率分布为P{X=k}=3a , R = l,2,…,则常数d= _________ .4. 设随机变量X 的分布函数为,x<Q,0<x<2,且X 与y 相互独立,贝|^= ( B )(A) -14(B) 13 (C) 40 (D) 41F(x) = iax,x>2 0,P {1<X<3} =5. 设随机变量X 的概率分布为则 £(3X2+3) =46. 如果随机变量X 服从[a,b] h 的均匀分布,且£(X) = 3, D(X) = -,贝ia= ____ , b= _____ .7. 设随机变量X, Y 相互独立,且都服从参数为0.6的0-1分布,则P[X=Y} =8•设X, y 是两个随机变量,E(X) = 2, £(%") = 20,答案:1. 0.3, 0.6 4.5 /2.- 36. 1. 57. 0.52& 212.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 _____ .则常数d = E(y)=3,F(y-) = 34> Pxr = 0.5 ,则D(X-Y)=5.1.设A^B 是两个随机事件, P(B)= _________ .P(A) = 0・3 , P (AB) = P(A B) > 则3.设随机变量X 的概率分布为P{X=k ] = -^,k=l, 2,3,4,5,则卩{|<7}=sin X, 0<x<— 贝g21 兀 1 , X > —25•设随机变量X 服从[1,3]上的均匀分布,则丄的数学期望X7. 设X, Y 是两个随机变量,互独立,则X + Y~ _______ •8. ________________ 设随机变量X'X 相互独立,且都服从[0,2]上的均匀分布,则 D (3X,-X,)= .9.设随机变星X 和y 的相关系数为0.5 , E(X)= E{Y) = Q ,E(X-)=E(Y-) = 2,则£(X+Y)2 = _____________ .4•设随机变量X 的分布函数为F{x )= < 6•设随机变量^2相互独立,则P{X^=X,} =1 2X , ■11133 ppJ 2 23亍X ~N (O ,32), 丫~川(1,牢),X 与y 相其概率分布分别为27. Na 5-) 二、有三个箱子,第一个箱子中有3个黑球1个口球,第二个箱子中 有3个黑球3个口球,第三个箱子中有3个黑球5个口球.现随机地 选取一个箱子,再从这个箱子中任取1个球.(1)求取到的是口球的 概率;(2)若已知取出的球是口球,求它属于第二个箱子的概率•解:设事件A 表示该球取自第,个箱子(/ = 1,23).事件B 表示取 到口球.3 111 3 1 5 11P(B)=zm)p(^-A)=-x-.-x-.-x-=_三. 某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是0.2.在一天中,若三部机器均无故障,则该厂可获取 利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元; 若有两部或三部机器发生故障,则该厂就要亏损0.5万元.求该厂一 天可获取的平均利润.答案:1. 0.72.4. 0.55.9. 6P(B)设随机变量X 表示该厂一天所获的利润(万元),则X 可能取2JT.5,且P{X=2} = 0・y =0.512,P{X=1} = C ;X O ・2X O ・82 =0.384,P{X=-0・5} = l-0・512-0・384 = 0・104・所以 £(X) = 2x0512 + 1x0384+(-0.5)x0,104 = 1.356 (万元)四、设随机向星(X,Y )的密度函数为八3)= {罗°笃丁 3 ⑴求 P{X<y };(2)求XM 的边缘密度,并判断X 与y 的独立性.解:P[X < y) = jj f (X,y)dxdy = J= {^2x(1 — x")dx = 0.5 ;x<y由氏(兀)齐0) = /(兀』)知随机变量x,y 相互独立・匸4兀)込=2x, I 0 ,J ;4xydx=2y, 0 ,0<x<l其它0<y<l其它y=2x + i 的密度函数解法一:y 的分布函数为F,(y) = P{r<y} = P{2X + l<>} = P{X<^) = F,(^:两边对y 求导,得解法二:因为y = 2x + l 是OMxMl 上单调连续函数,所以注:x*(y ) = ¥为y = 2x + l 的反函数。
概率论与数理统计习题答案详解版(廖茂新复旦版)习题一1. 设A,B,C 为三个事件,用A,B,C 的运算式表示下列事件:(1)A 发生而B与 C 都不发生;(2)A,B,C 至少有一个事件发生;(3)A,B,C 至少有两个事件发生;(4)A,B,C 恰好有两个事件发生;(5)A,B至少有一个发生而 C 不发生;(6)A,B,C 都不发生.解:(1)A BC或 A B C或 A (B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C )∪(AC B )∪(BC A).(5)(A∪B)C.(6) A B C 或ABC.2. 对于任意事件A,B,C,证明下列关系式:(1)(A+B)(A+B )( A + B)( A + B )= ;(2)AB+A B +A B+A B AB= AB;(3)A-(B+C)= (A-B)-C. 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B 都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B )=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(AB)=P( A B)=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB )=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10 把钥匙中有 3 把能打开门,今任意取两把,求能打开门的概率。
解:8/156. 任意将10 本书放在书架上。
其中有两套书,一套 3 本,另一套4 本。
2022年4月高等教育自学考试(概率论与数理统计)〔经管类〕答案解析一、单项选择题〔本大题共10小题,每题2分,共20分〕1.甲,乙两人向同一目标射击,A表示“甲命中目标〞,B表示“乙命中目标〞,C表示“命中目标〞,则C=〔〕A.AB.BC.ABD.A∪B(答案)D(解析)“命中目标〞=“甲命中目标〞或“乙命中目标〞或“甲、乙同时命中目标〞,所以可表示为“A∪B〞,应选择D.(提示)注意事件运算的实际意义及性质:〔1〕事件的和:称事件“A,B至少有一个发生〞为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②假设,则A∪B=B.〔2〕事件的积:称事件“A,B同时发生〞为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;② 假设,则AB=A.〔3〕事件的差:称事件“A发生而事件B不发生〞为事件A与B的差事件,记做A-B.性质:①;②假设,则;③.〔4〕事件运算的性质〔i〕交换律:A∪B=B∪A, AB=BA;〔ii〕结合律:〔A∪B〕∪C=A∪〔B∪C〕, 〔AB〕C=A〔BC〕;〔iii〕分配律:〔A∪B〕∩C=〔A∩C〕∪〔B∩C〕〔A∩B〕∪C=〔A∪C〕∩〔B∪C〕.〔iv〕摩根律〔对偶律〕,2.设A,B是随机事件,,P〔AB〕=0.2,则P〔A-B〕=〔〕A.0.1B.0.2C.0.3D.0.4(答案)A(解析),,应选择A.(提示)见1题(提示)〔3〕.3.设随机变量X的分布函数为F〔X〕则〔〕A.F〔b-0〕-F〔a-0〕B.F〔b-0〕-F〔a〕C.F〔b〕-F〔a-0〕D.F〔b〕-F〔a〕(答案)D(解析)依据分布函数的定义及分布函数的性质,选择D.详见(提示).(提示)1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F〔x〕≤1;②对任意x1,x2〔x1< x2〕,都有;③F〔x〕是单调非减函数;④,;⑤F〔x〕右连续;⑥设x为f〔x〕的连续点,则f′〔x〕存在,且F′〔x〕=f〔x〕.3.已知X的分布函数F〔x〕,可以求出以下三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量〔X,Y〕的分布律为0 1 20 1 0 0.1 0.2 0.4 0.3 0则〔〕A.0B.0.1C.0.2D.0.3(答案)D(解析)因为事件,所以,= 0 + 0.1 + 0.2 = 0.3应选择D(提示)1.此题考察二维离散型随机变量的边缘分布律的求法;2.要清楚此题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量〔X,Y〕的概率密度为,则〔〕A.0.25B.0.5C.0.75D.1(答案)A(解析)积分地域D:0<X≤0.5,0<Y≤1,所以应选择A.(提示)1.二维连续型随机变量的概率密度f〔x,y〕性质:①f〔x,y〕≥0;②;③假设f〔x,y〕在〔x,y〕处连续,则有,因而在f〔x,y〕的连续点〔x,y〕处,可由分布函数F〔x,y〕求出概率密度f〔x,y〕;④〔X,Y〕在平面地域D内取值的概率为.2.二重积分的计算:此题的二重积分的被积函数为常数,依据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分地域面积0.5.6.设随机变量X的分布律为X﹣2 0 2P 0.4 0.3 0.3则E〔X〕=〔〕A.﹣0.8B.﹣0.2C.0D.0.4(答案)B(解析)E〔X〕=〔﹣2〕×0.4+0×0.3+2×0.3=﹣0.2应选择B.(提示)1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….假设级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E〔c〕=c,c为常数;②E〔aX〕=aE〔x〕,a为常数;③E〔X+b〕=E〔X+b〕=E〔X〕+b,b为常数;④E〔aX+b〕=aE〔X〕+b,a,b为常数.7.设随机变量X的分布函数为,则E〔X〕=〔〕A. B. C. D.(答案)C(解析)依据连续型一维随机变量分布函数与概率密度的关系得,所以,=,应选择C.(提示)1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间,]上的均匀分布〔〕,x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.(答案)C(解析),,而均匀分布的期望为,应选择C.(提示)1.常用的六种分布〔1〕常用离散型随机变量的分布〔三种〕:X0 1概率q pA.两点分布①分布列②数学期望:E〔X〕=P③方差:D〔X〕=pq.B.二项分布:X~B〔n,p〕①分布列:,k=0,1,2,…,n;②数学期望: E〔X〕=nP③方差: D〔X〕=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=〔2〕常用连续型随机变量的分布〔三种〕:A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E〔X〕=,④方差:D〔X〕=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E〔X〕=,④方差:D〔X〕=.C.正态分布〔A〕正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:假设X~,,则~.〔B〕标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E〔X〕=0,④方差:D〔X〕=1.2.注意:“样本〞指“简单随机样本〞,具有性质:“独立〞、“同分布〞.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估量是〔〕A. B. C. D.(答案)A(解析)易知,,应选择A.(提示)点估量的评价标准:〔1〕相合性〔一致性〕:设为未知参数,是的一个估量量,是样本容量,假设对于任意,有,则称为的相合〔一致性〕估量.〔2〕无偏性:设是的一个估量,假设对任意,有则称为的无偏估量量;否则称为有偏估量.〔3〕有效性设,是未知参数的两个无偏估量量,假设对任意有样本方差,则称为比有效的估量量.假设的一切无偏估量量中,的方差最小,则称为的有效估量量.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是〔〕A.,B.,C.,D.(答案)A(解析)查表得答案.(提示)关于“课本p162,表7-1:正态总体参数的区间估量表〞记忆的建议:①表格共5行,前3行是“单正态总体〞,后2行是“双正态总体〞;②对均值的估量,分“方差已知〞和“方差未知〞两种情况,对方差的估量“均值未知〞;③统计量顺序:, t, x2, t, F.二、填空题〔本大题共15小题,每题2分,共30分〕11.设A,B是随机事件,P 〔A〕=0.4,P 〔B〕=0.2,P 〔A∪B〕=0.5,则P 〔AB〕= _____.(答案)0.1(解析)由加法公式P 〔A∪B〕= P 〔A〕+ P 〔B〕-P 〔AB〕,则P 〔AB〕= P 〔A〕+ P 〔B〕-P 〔A∪B〕=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________.(答案)(解析)设第三次取到0的概率为,则故填写.(提示)古典概型:〔1〕特点:①样本空间是有限的;②根本领件发生是等可能的;〔2〕计算公式.13.设随机事件A与B相互独立,且,则________.(答案)0.8(解析)因为随机事件A与B相互独立,所以P 〔AB〕=P 〔A〕P 〔B〕再由条件概率公式有=所以,故填写0.8.(提示)二随机事件的关系〔1〕包含关系:如果事件A发生必定导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;〔2〕相等关系:假设且,则事件A与B相等,记做A=B,且P 〔A〕=P 〔B〕;〔3〕互不相容关系:假设事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P 〔AB〕=0;〔4〕对立事件:称事件“A不发生〞为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.〔5〕二事件的相互独立性:假设, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:假设A, B相互独立,且P 〔A〕>0, 则.14.设随机变量服从参数为1的泊松分布,则________.(答案)(解析)参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.(答案)(解析)因为,则~,所以,故填写.(提示)注意审题,X判定概率分布的类型.16.设二维随机变量〔X,Y〕服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.(答案)(解析)因为二维随机变量〔X,Y〕服从圆域D:上的均匀分布,则,所以故填写.(提示)课本介绍了两种重要的二维连续型随机变量的分布:〔1〕均匀分布:设D为平面上的有界地域,其面积为S且S>0,如果二维随机变量〔X,Y〕的概率密度为,则称〔X,Y〕服从地域D上的均匀分布,记为〔X,Y〕~.〔2〕正态分布:假设二维随机变量〔X,Y〕的概率密度为〔,〕,其中,,,,都是常数,且,,,则称〔X,Y〕服从二维正态分布,记为〔X,Y〕~.17.设C为常数,则C的方差D 〔C〕=_________.(答案)0(解析)依据方差的性质,常数的方差为0.(提示)1.方差的性质①D 〔c〕=0,c为常数;②D 〔aX〕=a2D 〔X〕,a为常数;③D 〔X+b〕=D 〔X〕,b为常数;④D 〔aX+b〕= a2D 〔X〕,a,b为常数.2.方差的计算公式:D 〔X〕=E 〔X2〕-E2〔X〕.18.设随机变量X服从参数为1的指数分布,则E 〔e-2x〕= ________.(答案)(解析)因为随机变量X服从参数1的指数分布,则,则故填写.(提示)连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19.设随机变量X~B 〔100,0.5〕,则由切比雪夫不等式估量概率________.(答案)(解析)由已知得,,所以.(提示)切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20.设总体X~N 〔0,4〕,且x1,x2,x3为来自总体X的样本,假设~,则常数C=________.(答案)1(解析)依据x2定义得C=1,故填写1.(提示)1.应用于“小样本〞的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2〔n〕.②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m与n的F-分布,记为F~F〔m,n〕,其中称m为分子自由度,n为分母自由度.③t-分布:设X~N 〔0,1〕,Y~x2〔n〕,且X,Y相互独立,则服从自由度为n的t-分布,记为t~t 〔n〕.2.对于“大样本〞,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,〔1〕假设总体分布为,则的X分布为;〔2〕假设总体X的分布未知或非正态分布,但,,则的渐近分布为.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.(答案)(解析)课本P153,例7-14给出结论:,而,所以,故填写.(说明)此题是依据例7-14改编.因为的证明过程比拟复杂,在2022年课本改版时将证明过程删掉,即本次串讲所用课本〔也是学员朋友们使用的课本〕中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本(高等数学〔二〕第二分册概率统计)P164,例5.8.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估量________.(答案)(解析)由矩估量方法,依据:在参数为的泊松分布中,,且的无偏估量为样本均值,所以填写.(提示)点估量的两种方法〔1〕矩法〔数字特征法〕估量:A.根本思想:①用样本矩作为总体矩的估量值;②用样本矩的函数作为总体矩的函数的估量值.B.估量方法:同A.〔2〕极大似然估量法A.根本思想:把一次试验所出现的结果视为全部可能结果中概率最大的结果,用它来求出参数的最大值作为估量值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;假设某统计量满足,则称为的极大似然估量.C.估量方法①利用偏导数求极大值i〕对似然函数求对数ii〕对求偏导数并令其等于零,得似然方程或方程组iii〕解方程或方程组得即为的极大似然估量.②对于似然方程〔组〕无解时,利用定义:见教材p150例7-10;〔3〕间接估量:①理论依据:假设是的极大似然估量,则即为的极大似然估量;②方法:用矩法或极大似然估量方法得到的估量,从而求出的估量值.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估量时,记…,x n〕为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.(答案)(解析)已知总体服从参数为的指数分布,所以,从而…,=,故填写.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.(答案)(解析)课本p176,8.3.1.25.在一元线性回归模型中,其中~,1,2,…,n,且,,…,相互独立.令,则________.(答案)(解析)由一元线性回归模型中,其中~,1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题(提示)〔3〕得,故填写.(说明)课本p186,关于此题内容的局部讲述的不够清楚,请朋友们注意.三、计算题〔本大题共2小题,每题8分,共16分〕26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求〔1〕甲取到黑球的概率;〔2〕乙取到的都是黑球的概率.(分析)此题考察“古典概型〞的概率.(解析)〔1〕设甲取到黑球的概率为p,则.〔2〕设乙取到的都是黑球的概率为p,则.27.某种零件直径X~〔单位:mm〕,未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?〔〕〔附:〕(分析)此题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验〞类型.(解析)设欲检验假设H0:,H1:,选择检验统计量,依据显著水平=0.05及n=16,查t分布表,得临界值t0.025〔15〕=2.1315,从而得到拒绝域,依据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.(提示)1.假设检验的根本步骤:〔1〕提出统计假设:依据理论或经验对所要检验的量作出原假设〔零假设〕H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为以下三种情况之一::,其中i〕为双侧检验,ii〕,iii〕为单侧检验.〔2〕选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量〞有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.〔3〕求拒绝域:按问题的要求,依据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.〔4〕求统计量的样本值观察值并决策:依据样本值计算统计量的值,假设该值落入拒绝域W内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估量对比分类记忆.四、综合题〔本大题共2小题,每题12分,共24分〕28.设二维随机变量〔X,Y〕的概率密度为〔1〕求〔X,Y〕关于X,Y的边缘概率密度;〔2〕记Z=2X+1,求Z的概率密度.(分析)此题考察二维连续型随机变量及随机变量函数的概率密度.(解析)〔1〕由已知条件及边缘密度的定义得=,〔〕所以;同理可得.〔2〕使用“直接变换法〞求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx〔x〕、Fz〔Z〕,则,由分布函数Fz〔Z〕与概率密度的关系有由〔1〕知,所以=.(提示)求随机变量函数的概率密度的“直接变换法〞根本步骤:问题:已知随机变量X的概率密度为,求Y=g〔X〕的概率密度解题步骤:1.;2..29.设随机变量X与Y相互独立,X~N〔0,3〕,Y~N〔1,4〕.记Z=2X+Y,求〔1〕E〔Z〕,D〔Z〕;〔2〕E〔XZ〕;〔3〕P XZ.(分析)此题考察随机变量的数字特征.(解析)〔1〕因为X~N〔0,3〕,Y~N〔1,4〕,Z=2X+Y,所以E〔Z〕=E〔2X+Y〕=2E〔X〕+E〔Y〕=1D〔Z〕=D〔2X+Y〕=4D〔X〕+D〔Y〕=16〔2〕而随机变量与相互独立,所以 E〔XZ〕=6.〔3〕因为,所以.五、应用题〔10分〕30.某次考试成绩X服从正态分布〔单位:分〕,〔1〕求此次考试的及格率和优秀率;〔2〕考试分数至少高于多少分能排名前50%?〔附:〕(分析)此题考察正态分布的概率问题.(解析)已知X~N〔75,152〕,设Z~N〔0,1〕,为其分布函数,〔1〕==即本次考试的及格率为84.13%,优秀率为15.87%.〔2〕设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.。
概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。
第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度。
解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x , y )| x 2+y 2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)ABCABC ABC ABC ABCAB CAB BC AC ABBC CA3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立? 解 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员。
(2)当全校运动员都是三年级男生时,ABC =C 成立。
(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的。
(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立。
4.设P (A )=0.7,P (A -B )=0。
第二章习题详解:2.1解:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2.解:根据1)(0==∑∞=k k X P ,得10()1kkk k aea e ∞∞--====∑∑,即1111=---e ae 。
故 1-=e a2.3 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++(2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 2.4 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P 2.6 解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 解:设应配备m 名设备维修人员。
又设发生故障的设备数为X ,则)01.0,180(~B X 。
依题意,设备发生故障能及时维修的概率应不小于0.99,即99.0)(≥≤m X P ,也即01.0)1(≤+≥m X P因为n =180较大,p =0.01较小,所以X 近似服从参数为8.101.0180=⨯=λ的泊松分布。
查泊松分布表,得,当m +1=7时上式成立,得m =6。
故应至少配备6名设备维修人员。
2.9 解:一个元件使用1500小时失效的概率为3110001000)15001000(15001000150010002=-==≤≤⎰x dx x X P 设5个元件使用1500小时失效的元件数为Y ,则)31,5(~B Y 。
所求的概率为22351280(2)()()33243P Y C ==⨯=。
2.10 解:求每天的供电量仅有80万千瓦∙时, 该地区每天供电量不足的概率,只需要求出该地区用电量X 超过80万千瓦∙时(亦即X ≥0.8百万千瓦∙时)的概率:0.80.8202340.8(0.8=1-(X 0.8=1-()112(1)1(683)0.0272P X P f x dx x x dxx x x -∞>≤=--=--+=⎰⎰))若每天的供电量上升到90万千瓦∙时, 每天供电量不足的概率为:0.90.9202340.9(0.9=1-P(X 0.9=1-()112(1)1(683)0.0037P Xf x dx x x dxx x x -∞≤=--=--+=⎰⎰))2.11解:方程22230x Kx K +++=有实根,亦即248124(3)(1)0K K K K ∆=--=-+≥,显然,当31K K ≥⋃≤-时,方程22230x Kx K +++=有实根;又由于~(2,4),K U -所求概率为:1(2)4314(2)3---+-=--。
2.12 解:(1) 发射管寿命不超过100 小时的概率:1001000.0050.0050.50(100)0.0051xx P X edx ee ---<==-=-⎰=0.39(2) 发射管的寿命超过300 小时的概率:1.5 1.5(300)1(300)1(1)0.223P X P x e e -->=-<=--==(3) 一只发射管的寿命不超过100 小时, 另一只发射管的寿命在100 至300 小时之间.0.50.5 1.5(1)()0.15e e e -----=。
2.13 解:设每人每次打电话的时间为X ,X ~E (0.5),则一个人打电话超过10分钟的概率为5105.0105.05.0)10(-+∞-+∞-=-==>⎰e edx eX P x x又设282人中打电话超过10分钟的人数为Y ,则),282(~5-e B Y 。
因为n =282较大,p 较小,所以Y 近似服从参数为9.12825≈⨯=-eλ的泊松分布。
所求的概率为)1()0(1)2(=-=-=≥Y P Y P Y P56625.09.219.119.19.19.1=-=--=---e e e2.14 解:(1))42.0(1)42.0()12110105()105(Φ-=-Φ=-Φ=≤X P 3372.06628.01=-=(2))12110100()12110120()120100(-Φ--Φ=≤≤X P 5934.017967.021)83.0(2)83.0()83.0(=-⨯=-Φ=-Φ-Φ=。
2.15 解:设车门高度分别为x 。
则:170()10.010.99()6x P X x -≤=-==Φ 查表得,(2.33)0.99Φ=,因此1702.336x -=,由此求得车门的最低高度应为184厘米。
2.16 解:X 的可能取值为0,1,2。
因为1817161512(0),2019181719P X ===; 2184203(2)95C P X C ===;12332(1)1199595P X ==--= 所以X 的分布律为X 012P1219 3295 395X 的分布函数为0120119()92129512x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩2.17 解:X 的可能取值为1,2,3。
因为6.0106)1(3524====C C X P ; 1.01011)3(35====C X P ; 3.01.06.01)2(=--==X P所以X 的分布律为X 1 2 3 P0.60.30.1X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31329.0216.010)(x x x x x F 2.18 解:(1)2ln )2()2(==<F X P101)0()3()30(=-=-=<<F F X P25.1ln 2ln 5.2ln )2()5.2()5.22(=-=-=≤<F F X P(2) ⎩⎨⎧<≤='=-其它01)()(1ex x x F x f2.19 解:(1)由1)(=+∞F 及)0()(lim 0F x F x =→,得⎩⎨⎧=+=01b a a ,故a =1,b =-1.(2) ⎪⎩⎪⎨⎧<≥='=-00)()(22x x xex F x f x(3) )4ln ()16ln ()16ln 4ln (F F X P -=<< 25.041)1()1(24ln 216ln ==---=--ee。
2.20 解:(1) Y 的可能取值为0, π2, 4π2。
因为2.0)2()0(====πX P Y P ;7.0)()0()(2==+===ππX P X P Y P ;1.0)23()4(2====ππX P Y P 所以Y 的分布律为Y 0 π2 4π2 P0.20.70.1(2) Y 的可能取值为-1,1。
因为 7.0)()0()1(==+==-=πX P X P Y P ;3.0)23()2()1(==+===ππX P X P Y P 所以Y 的分布律为Y -1 1 P0.70.32.21 解:(1) X 的可能取值为F (x )的分界点,即-1,1,2。
因为 3.0)1(=-=X P ;5.03.08.0)1(=-==X P ;2.08.01)2(=-==X P 所以X 的分布律为X -1 1 2 P0.30.50.2(2) Y 的可能取值为1,2。
因为 8.0)1()1()1(==+-===X P X P Y P ;2.0)2()2(====X P Y P所以Y 的分布律为Y 1 2 P0.80.22.22 解:设()Y F y 和()Y f y 分别为随机变量Y 的分布函数和概率密度函数。
(1)已知2221)(x X ex f -=π因为)21()21()12()()(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y 求导得 )21(21)21)(21()(+='++=y f y y f y f X X Y 8)1(2)21(222212121+-+-==y y ee ππ所以Y 参数分别为-1, 22服从正态分布。
(2) 当0y ≤,(){}()0Y F y P Y y P φ=≤==,当0y >,由已知条件,2221)(x X ex f -=π,22ln ()()()(ln )(ln )1(ln )1(ln )12X Y t yX F y P Y y P e y P X y eP X y P X y F y dtπ----∞=≤=≤=-≤=≥-=-≤-=--=-⎰求导得 2ln 211,0()20,0;xY e y f y y y π-⎧>⎪=⎨⎪≤⎩(3) 当0y ≤,(){}()0Y F y P Y y P φ=≤==,当0y >,由已知条件2221)(x X ex f -=π,2()()()()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--求导得 21,0()20,0;yY e y f y yy π-⎧>⎪=⎨⎪≤⎩2.23解:(1)已知⎪⎩⎪⎨⎧<<=其他01)(ππx x f X则)()()ln 2()()(22y X yY e F e X P y X P y Y P y F =≤=≤=≤=求导得 )(21))(()(2222yX y y y X Y e f e e e f y f ='=因为当π<<20y e,即πln 2<y 时,π1)(2=y X e f ;当y 取其他值时0)(2=y X e f 。