人教A版数学必修一淄博一中—第一学期期中模块考试
- 格式:doc
- 大小:124.16 KB
- 文档页数:5
2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R ,集合M ={x |﹣1<x ≤3},则∁R M =( ) A .{x |﹣1<x <3} B .{x |x ≤﹣1或x >3}C .{x |x <﹣1或x >3}D .{x |x ≤﹣1或x ≥3}2.函数f (x )=√4−x 2x−1的定义域为( )A .[﹣2,2]B .(﹣2,3)C .[﹣2,1)∪(1,2]D .(﹣2,1)∪(1,2)3.已知函数f (x )={f(x −1),x >−2x 2+2x −3,x ≤−2,则f (f (1))=( )A .5B .0C .﹣3D .﹣44.不等式﹣3x 2+7x ﹣2<0的解集为( ) A .{x|13<x <2} B .{x|x <13或x >2} C .{x|−12<x <−13}D .{x |x >2}5.已知函数是f (x )定义在R 上的偶函数,则“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.给出下列命题:①若a <b ,c <0,则c a≤cb;②若ac ﹣3>bc ﹣3,则a >b ;③若a >b 且k ∈N +,则a k >b k;④若c >a >b >0,则ac−a>b c−b.其中真命题的个数( )A .1B .2C .3D .47.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则当x <0时,f (x )的解析式为( ) A .﹣x 2﹣2x B .﹣x 2+2x C .x 2+2xD .以上都不对8.已知函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则实数a 的取值范围是( ) A .[﹣4,﹣3)B .(﹣∞,﹣3)C .[﹣4,0)D .(﹣4,0)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.下列各组函数是同一函数的有( )A .f(x)=x 3x 与g (x )=x 2B .f (x )=|x |与g(x)=√x 2C .f (x )=x 0与g (x )=1D .f(x)=√1+x ×√1−x 与g(x)=√1−x 210.下列说法中正确的有( )A .命题p :∃x 0∈R ,x 02+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B .“|x |>|y |”是“x >y ”的必要条件C .命题“∀x ∈Z ,x 2>0”的是真命题D .“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件 11.下列选项中正确的是( ) A .若正实数x ,y 满足x +2y =1,则2x+1y≥8B .当x ≥2时,不等式x +4x+1的最小值为3C .不等式a +b ≥2√ab 恒成立D .存在实数a ,使得不等式a +1a≤2成立 12.已知函数f(x)=xx+1,则下列说法正确的是( ) A .f (x )的定义域为{x |x ≠﹣1} B .f (x )的值域为RC .f (x )在区间(﹣1,+∞)上单调递增D .f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)的值为40452三、填空题:本大题共4个小题,每小题5分,共20分.13.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },则 (∁R A )∩B = .若A ⊆C ,则a 的取值范围是 .14.若不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则实数a 的取值范围是 .15.已知函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增,则m 的取值范围是 . 16.已知函数f (x )在R 上为奇函数,f (x )在(0,+∞)上单调递增,f (﹣3)=0,则不等式xf (x )>0的解集为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |﹣2<x <5},B ={x |m +1≤x ≤2m ﹣1}.(1)当m =3时,求(∁R A )∪B ; (2)若A ∪B =A ,求实数m 的取值范围.18.(12分)请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数m 存在,求出m 的取值范围;若不存在,说明理由.已知集合A ={x |x 2﹣4x ﹣12≤0},B ={x |x 2﹣2x +1﹣m 2≤0,m >0}. (1)求集合A ,B ;(2)若x ∈A 是x ∈B 成立的 ______条件,判断实数m 是否存在? 19.(12分)已知关于x 的不等式2ax 2+ax >2x +1(a ∈R ). (1)若不等式的解集为{x|−12<x <−13},求a 的值; (2)解关于x 的不等式.20.(12分)2023年,8月29日,华为Mate 60Pro 在华为商城正式上线,成为全球首款支持卫星通话的大众智能手机.其实在2019年5月19日,华为被美国列入实体名单,以所谓科技网络安全为借口,对华为施加多轮制裁.为了进一步增加市场竞争力,华为公司计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本300万,每生产x (千部)手机,需另投入成本R (x )万元,且R(x)={10x 2+100x ,0<x <50701x +10000x−9450,x ≥50由市场调研知此款手机售价0.7万元,且每年内生产的手机当年能全部销售完.(1)求出2020年的利润w (x )(万元)关于年产量x (千部)的表达式; (2)2020年年产量为多少(千部)时,企业所获利润最大?最大利润是多少? 21.(12分)已知幂函数f (x )=(m ﹣1)2•x 2m﹣1在(0,+∞)上单调递增.(1)求f (x )的值域; (2)若∀x >0,f(x)x 2≥2−a 2x,求a 的取值范围.22.(12分)已知函数f(x)=ax−b1+x 2是定义在[﹣1,1]上的奇函数,且f (1)=﹣1. (1)求函数f (x )的解析式;(2)判断f (x )在[﹣1,1]上的单调性,并用单调性定义证明; (3)解不等式f (t ﹣1)+f (t 2)>f (0).2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R,集合M={x|﹣1<x≤3},则∁R M=()A.{x|﹣1<x<3}B.{x|x≤﹣1或x>3}C.{x|x<﹣1或x>3}D.{x|x≤﹣1或x≥3}解:因为全集U=R,集合M={x|﹣1<x≤3},所以∁R M={x|x≤﹣1或x>3}.故选:B.2.函数f(x)=√4−x2x−1的定义域为()A.[﹣2,2]B.(﹣2,3)C.[﹣2,1)∪(1,2]D.(﹣2,1)∪(1,2)解:要使函数有意义,须满足{4−x 2≥0x−1≠0,解得﹣2≤x≤2,且x≠1,故函数f(x)的定义域为[﹣2,1)∪(1,2],故选:C.3.已知函数f(x)={f(x−1),x>−2x2+2x−3,x≤−2,则f(f(1))=()A.5B.0C.﹣3D.﹣4解:∵函数f(x)={f(x−1),x>−2 x2+2x−3,x≤−2,∴f(1)=f(0)=f(﹣1)=f(﹣2)=﹣3,∴f(f(1))=f(﹣3)=0.故选:B.4.不等式﹣3x2+7x﹣2<0的解集为()A.{x|13<x<2}B.{x|x<13或x>2}C.{x|−12<x<−13}D.{x|x>2}解:由﹣3x2+7x﹣2<0,得3x2﹣7x+2>0,即(3x﹣1)(x﹣2)>0,解得x<13或x>2,所以该不等式的解集为{x|x<13或x>2}.故选:B.5.已知函数是f (x )定义在R 上的偶函数,则“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为f (x )是偶函数,所以f (﹣4)=f (4).由f (x )是(﹣∞,0)上的减函数,则f (﹣2)<f (﹣4),即f (﹣2)<f (4); 反之,对于函数f(x)={x ,x >21|x|,−2≤x ≤2,且x ≠0−x ,x <−2,显然,f (x )是偶函数,且f(−2)=12<f (4)=4,但是f (x )不是(﹣∞,0)上的减函数. 故“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的充分不必要条件. 故选:A .6.给出下列命题:①若a <b ,c <0,则c a ≤cb;②若ac ﹣3>bc ﹣3,则a >b ;③若a >b 且k ∈N +,则a k >b k ;④若c >a >b >0,则ac−a>b c−b.其中真命题的个数( )A .1B .2C .3D .4解:①中,因为a <b ,c <0,因为a ,b 的符号不定,所以1a,1b的大小关系不定, 所以ca,cb 的大小关系不定,所以①错;②中,ac ﹣3>bc ﹣3,若c <0,则a <b ,所以②错;③中,若a >b 且k ∈N +,例如:a =﹣2,b =﹣3,k =2,此时a k <b k ,所以③错; ④中,若c >a >b >0,则0<c ﹣a <c ﹣b ,1c−a>1c−b>0,又a >b >0,所以ac−a>b c−b,所以④正确.所以只有1个命题正确. 故选:A .7.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则当x <0时,f (x )的解析式为( ) A .﹣x 2﹣2x B .﹣x 2+2x C .x 2+2xD .以上都不对解:根据题意,设x <0,则﹣x >0,函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则f (x )=﹣f (﹣x )=﹣[(﹣x )2﹣2(﹣x )]=﹣(x 2+2x )=﹣x 2﹣2x .8.已知函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则实数a 的取值范围是( ) A .[﹣4,﹣3)B .(﹣∞,﹣3)C .[﹣4,0)D .(﹣4,0)解:根据题意,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则f (x )在R 上为减函数,又由函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,则有{ a <01a ≤1a +3<0a −2−a ≤a +3−1,解可得﹣4≤a <﹣3,即a 的取值范围为[﹣4,﹣3). 故选:A .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.下列各组函数是同一函数的有( ) A .f(x)=x 3x与g (x )=x 2 B .f (x )=|x |与g(x)=√x 2C .f (x )=x 0与g (x )=1D .f(x)=√1+x ×√1−x 与g(x)=√1−x 2解:对于A ,f(x)=x 3x的定义域为{x |x ≠0},g (x )=x 2的定义域为R ,故错误;对于B ,f (x )=|x |的定义域为R ,g(x)=√x 2=|x|的定义域为R ,故正确; 对于C ,f (x )=x 0的定义域为{x |x ≠0},g (x )=1的定义域为R ,故错误; 对于D ,f(x)=√1+x ×√1−x =√1−x 2定义域为[﹣1,1], g(x)=√1−x 2定义域为[﹣1,1],故正确. 故选:BD .10.下列说法中正确的有( )A .命题p :∃x 0∈R ,x 02+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B .“|x |>|y |”是“x >y ”的必要条件C .命题“∀x ∈Z ,x 2>0”的是真命题D .“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件 解:对于A ,命题p 的否定是∀x ∈R ,x 2+2x +2≥0,故A 正确;对于B ,|x |>|y |不能推出x >y ,例如|﹣2|>|1|,但﹣2<1;x >y 也不能推出|x |>|y |,例如2>﹣3,而|2|所以“|x |>|y |”是“x >y ”的既不充分也不必要条件,故B 错误; 对于C ,当x =0时,x 2=0,故C 错误;对于D ,关于x 的方程x 2﹣2x +m =0有一正一负根⇔{4−4m >0m <0⇔⇔m <0,所以“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件,故D 正确. 故选:AD .11.下列选项中正确的是( ) A .若正实数x ,y 满足x +2y =1,则2x +1y≥8B .当x ≥2时,不等式x +4x+1的最小值为3C .不等式a +b ≥2√ab 恒成立D .存在实数a ,使得不等式a +1a≤2成立 解:对于A ,若正实数x ,y 满足x +2y =1,则2x+1y =(2x+1y)⋅(x +2y)=4+4y x+x y≥4+2√4y x⋅x y=8,当且仅当4y x=xy,即x =12,y =14时等号成立,故A 正确;对于B ,x ≥2时,x +1≥3,则有x +4x+1=x +1+4x+1−1≥2√(x +1)⋅4x+1−1=3, 当且仅当x +1=4x+1时,即x =1时等号成立,所以不等式x +4x+1的最小值不为3,故B 错误; 对于C ,不等式a +b ≥2√ab 恒成立的条件是a ≥0,b ≥0,比如取a =﹣1,b =﹣1时,不等式不成立,故C 错误;对于D ,取a =﹣1,不等式显然成立,故D 正确. 故选:AD .12.已知函数f(x)=xx+1,则下列说法正确的是( ) A .f (x )的定义域为{x |x ≠﹣1} B .f (x )的值域为RC .f (x )在区间(﹣1,+∞)上单调递增D .f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)的值为40452解:对于A ,由x +1≠0,得函数f(x)=x 的定义域为{x |x ≠﹣1},A 正确;对于B ,由f(x)=x x+1=1−1x+1,得f (x )≠1,即f (x )的值域为(﹣∞,1)∪(1,+∞),B 错误; 对于C ,f (x )在区间(﹣1,+∞)上单调递增,C 正确;对于D ,f(x)+f(1x )=x x+1+1x 1x +1=x x+1+1x+1=1,又f(1)=12,则f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)=40452,D 正确. 故选:ACD .三、填空题:本大题共4个小题,每小题5分,共20分.13.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },则 (∁R A )∩B = {2<x <3或7≤x <10} .若A ⊆C ,则a 的取值范围是 a ≥7 .解:∵A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }, ∴∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={2<x <3或7≤x <10}, ∵A ⊆C ,∴a 的范围是a ≥7,故答案为:{2<x <3或7≤x <10};a ≥714.若不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则实数a 的取值范围是 (﹣16,0] . 解:不等式2ax 2+ax ﹣2<0对一切实数x 都成立, 当a =0时,﹣2<0恒成立;当a ≠0时,要使不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则{2a <0Δ=a 2+16a <0,解得﹣16<a <0,综上所述,实数a 的取值范围是(﹣16,0]. 故答案为:(﹣16,0].15.已知函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增,则m 的取值范围是 (﹣∞,﹣3] .解:函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增, 则有−(m−1)2≥2,解得m ≤﹣3,则m 的取值范围是(﹣∞,﹣3]. 故答案为:(﹣∞,﹣3].16.已知函数f (x )在R 上为奇函数,f (x )在(0,+∞)上单调递增,f (﹣3)=0,则不等式xf (x )>0的解集为 (﹣∞,﹣3)∪(3,+∞) .解:因为函数f (x )是R 上的奇函数,所以f (3)=﹣f (﹣3)=0, 又因为f (x )在(0,+∞)上单调递增,所以当0<x <3时,f (x )<f (3)=0,当x >3时,f (x )>f (3)=0, 注意到函数f (x )是R 上的奇函数,所以当x <﹣3时,有﹣x >3,﹣f (x )=f (﹣x )>f (3)=0,此时f (x )<0, 当﹣3<x <0时,有0<﹣x <3,﹣f (x )=f (﹣x )<f (3)=0,此时f (x )>0, x ,f (x ),xf (x )的符号随x 的变化情况如下表所示:由上表可知不等式xf (x )>0的解集为(﹣∞,﹣3)∪(3,+∞). 故答案为:(﹣∞,﹣3)∪(3,+∞).四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |﹣2<x <5},B ={x |m +1≤x ≤2m ﹣1}. (1)当m =3时,求(∁R A )∪B ; (2)若A ∪B =A ,求实数m 的取值范围.解:(1)当m =3时,可得集合A ={x |﹣2<x <5},B ={x |4≤x ≤5}, ∴∁R A ={x |x ≤﹣2或x ≥5}, ∴(∁R A )∪B ={x |x ≤﹣2或x ≥4}; (2)由A ∪B =A ,可得B ⊆A ,①当B =∅时,可得m +1>2m ﹣1,解得m <2;②当B ≠∅时,则满足{m +1≤2m −1m +1>−22m −1<5,解得2≤m <3,综上实数m 的取值范围是(﹣∞,3).18.(12分)请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数m 存在,求出m 的取值范围;若不存在,说明理由.已知集合A ={x |x 2﹣4x ﹣12≤0},B ={x |x 2﹣2x +1﹣m 2≤0,m >0}. (1)求集合A ,B ;(2)若x ∈A 是x ∈B 成立的 ______条件,判断实数m 是否存在?解:(1)由x 2﹣4x ﹣12≤0得﹣2≤x ≤6,故集合A ={x |﹣2≤x ≤6}, 由x 2﹣2x +1﹣m 2=0得x 1=1﹣m ,x 2=1+m , 因为m >0,故集合B ={x |1﹣m ≤x ≤1+m }; (2)若选择条件①,即x ∈A 是x ∈B 成立的充分不必要条件,集合A 是集合B 的真子集, 则有{1−m ≤−21+m ≥6,解得m ≥5,所以,实数m 的取值范围是[5,+∞).若选择条件②,即x ∈A 是x ∈B 成立的必要不充分条件,集合B 是集合A 的真子集, 则有{1−m ≥−21+m ≤6,解得0<m ≤3,所以,实数m 的取值范围是(0,3].若选择条件③,即x ∈A 是x ∈B 成立的充要条件,则集合A 等于集合B , 则有{1−m =−21+m =6,方程组无解,所以,不存在满足条件的实数m19.(12分)已知关于x 的不等式2ax 2+ax >2x +1(a ∈R ). (1)若不等式的解集为{x|−12<x <−13},求a 的值; (2)解关于x 的不等式.解:(1)不等式2ax 2+ax >2x +1可化为2ax 2+(a ﹣2)x ﹣1>0, 由题意知−12和−13是方程2ax 2+(a ﹣2)x ﹣1=0的两个根, 所以−12a=(−12)×(−13),解得a =﹣3.(2)不等式2ax 2+(a ﹣2)x ﹣1>0可化为(2x +1)(ax ﹣1)>0. ①当a =0时,原不等式可化为2x +1<0,解得x <−12.②当a >0时,原不等式可化为(2x +1)(x −1a)>0,解得x >1a或x <−12. ③当a <0时,原不等式化为(2x +1)(x −1a )<0. 若1a <−12,则﹣2<a <0,解得1a<x <−12,当1a =−12,即﹣2=a ,解得无解,当1a>−12,即a <﹣2,解得−12<x <1a ,综上,a =0时,不等式的解集为{x|x <−12};a >0时,不等式的解集为{x|x >1a 或x <−12};﹣2<a <0时,不等式的解集为{x|1a <x <−12};a =﹣2时,不等式的解集为∅;a <﹣2时,不等式的解集为{x|−12<x <1a }.20.(12分)2023年,8月29日,华为Mate 60Pro 在华为商城正式上线,成为全球首款支持卫星通话的大众智能手机.其实在2019年5月19日,华为被美国列入实体名单,以所谓科技网络安全为借口,对华为施加多轮制裁.为了进一步增加市场竞争力,华为公司计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本300万,每生产x (千部)手机,需另投入成本R (x )万元,且R(x)={10x 2+100x ,0<x <50701x +10000x −9450,x ≥50由市场调研知此款手机售价0.7万元,且每年内生产的手机当年能全部销售完.(1)求出2020年的利润w (x )(万元)关于年产量x (千部)的表达式;(2)2020年年产量为多少(千部)时,企业所获利润最大?最大利润是多少?解:(1)当0<x <50时,w (x )=700x ﹣(10x 2+100x )﹣300=﹣10x 2+600x ﹣300,当x ≥50时,w(x)=700x −(701x +10000x −9450)−300=−(x +10000x)+9150, ∴w(x)={−10x 2+600x −300,0<x <50−(x +10000x )+9150,x ≥50; (2)若0<x <50,w (x )=﹣10(x ﹣30)2+8700,当x =30时,w (x )max =8700万元,若x ≥50,w(x)=−(x +10000x )+9150≤9150−2√x ⋅10000x =8950, 当且仅当x =10000x时,即x =100时,w (x )max =8950万元, 因为8950>8700,∴2020年年产量为100(千部)时,企业所获利润最大,最大利润是8950万元.21.(12分)已知幂函数f (x )=(m ﹣1)2•x 2m﹣1在(0,+∞)上单调递增. (1)求f (x )的值域;(2)若∀x >0,f(x)x 2≥2−a 2x ,求a 的取值范围.解:(1)因为f (x )=(m ﹣1)2•x 2m ﹣1为幂函数,所以(m ﹣1)2=1,即m =0或m =2,当m =0时,f (x )=x ﹣1在(0,+∞)上单调递减,不符合题意,当m =2时,f (x )=x 3在(0,+∞)上单调递增,符合题意,故函数的值域为R ;(2)若∀x >0,f(x)x 2≥2−a 2x ,则x ≥2−a 2x , 即a ≥4x ﹣2x 2在x >0时恒成立,故a ≥(4x ﹣2x 2)max ,根据二次函数的性质可知,当x =1时,4x ﹣2x 2取得最大值2,故a ≥2,所以a 的取值范围为{a |a ≥2}.22.(12分)已知函数f(x)=ax−b 1+x 2是定义在[﹣1,1]上的奇函数,且f (1)=﹣1. (1)求函数f (x )的解析式;(2)判断f (x )在[﹣1,1]上的单调性,并用单调性定义证明;(3)解不等式f (t ﹣1)+f (t 2)>f (0).解:(1)函数f(x)=ax−b 1+x 2是定义在[﹣1,1]上的奇函数, f (﹣x )=﹣f (x );−ax−b 1+x 2=−ax−b 1+x 2,解得b =0, ∴f(x)=ax 1+x 2,而f (1)=﹣1,解得a =﹣2, ∴f(x)=−2x 1+x 2,x ∈[﹣1,1]. (2)函数f(x)=−2x 1+x 2在[﹣1,1]上为减函数; 证明如下:任意x 1,x 2∈[﹣1,1]且x 1<x 2,则f(x 1)−f(x 2)=−2x 11+x 12−−2x 21+x 22=−2(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22) 因为x 1<x 2,所以x 1﹣x 2<0,又因为x 1,x 2∈[﹣1,1],所以1﹣x 1x 2>0,所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x 1)>f (x 2)在[﹣1,1]上为减函数.(3)由题意,f (t ﹣1)+f (t 2)>f (0),又f (0)=0,所以f (t ﹣1)+f (t 2)>0, 即解不等式f (t 2)>﹣f (t ﹣1),所以f (t 2)>f (1﹣t ),所以{−1≤t 2≤1−1≤t −1≤1t 2<1−t,解得0≤t <√5−12,所以该不等式的解集为[0,√5−12).。
山东省淄博第一中学2021-2022高一数学上学期期中模块考试试题一.选择题(本题共12个小题,每小题5分,共60分.下列各题的四个选项中只有一个正确,请选出)1.已知全集U={0,1,2,3,4},且集合B={1,2,4},集合A={2,3},则B ∩(C U A)=( )A .{1,4}B .{1}C .{4}D .φ 2.下列各命题中,真命题是( )A .∀x ∈R,1-x 2<0B .∀x ∈N,x 2≥1C .∃x ∈Z,x 3<1D .∃x ∈Q,x 2=23.若不等式x 2+ax+b<0(a,b ∈R)的解集为{x|2<x<5},则a,b 的值为( )A .a=-7,b=10B .a=7,b=-10C .a=-7,b=-10D .a=7,b=104.“k>0”是“一次函数y=kx+b(k,b 是常数)是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若集合A={x|x 2-3x<0},B={x|x 2≥1},则图中阴影部分表示的集合为( ).A.{x|x>0}B.{x|0<x ≤1}C.{x|1≤x<3}D.{x|0<x<1或x ≥3} 6.若不等式-x 2+ax-1≤0对一切x ∈R 恒成立,则实数a 的取值范围为( ).A .{a|-2≤a ≤2}B .{a|a ≤-2或a ≥2}C .{a|-2<a<2}D .{a|a<-2或a>2}7.如果函数y=x 2+(1-a)x+2在区间(-∞,4]上单调递减,那么实数a 的取值范围是( )A .a ≤-7B .a ≤-3C .a ≥5D .a ≥9 8.设集合A={x|-1≤x<3},集合B={x|0<x ≤2},则“a ∈A ”是“a ∈B ”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.下列函数中,在其定义域内既是奇函数又是增函数的是( )A.y=x+1B.y=-x 3C.y=x|x|D.y=1x10.已知a=20.4,b=30.2,c=50.2,则( )A.a<b<cB.b<a<cC.b<c<aD.c<a<b11.小王从甲地到乙地和从乙地到甲地的时速分别为a 和b(a>b),其全程的平均时速为v,则( )A .a<v<abB .b<v<abC .ab<v<a +b 2D .v =a +b2 12.若函数f(x)=x+1x-2(x>2)在x=n 处取得最小值,则n=( )A. 52 B .72 C .4 D .3二.填空题(本题共4个小题,每小题5分,共20分.请将结果直接填在题中横线上) 13.若命题“∃x ∈R,x 2-3ax+9≤0”为假命题,则实数a 的取值范围是_______.14.函数y=11-x 2的定义域为_______.15.若a>0,b>0,且满足1a +1b =1,则2a+b 的最小值为_____.16.已知f(x)=⎩⎨⎧x 2+1 (x ≥0)-2x (x<0),若f(x)=10,则x=______.三.解答题(本题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本题12分)已知集合A={x|0≤x ≤4},集合B={x|m+1≤x ≤1-m},且A ∪B=A,求实数m 的取值范围18.(本题12分)已知集合A={x|x 2+x-2=0},集合B={x|x 2+ax+a+3=0},若A B=B,求实数a 的取值集合.19.(本题12分)已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数,若f(1-a 2)+f(1-a)<0,求实数a 的范围.20.(本题12分)要制作一个体积为32m 3,高为2m 的长方体纸盒,怎样设计用纸最少?21.(本题10分)已知二次函数f(x)=x 2-2ax+a-1在区间[0,1]上有最小值-2,求实数a 的值.22.(本题12分) 已知函数f(x)=x+2x . (1)求它的定义域和值域(2)用单调性的定义证明:f(x)在(0,2)上单调递减.高2021级2021—2021度第一学期期中模块考试数学试题参考答案一.选择题 ACAC CADB CBBD二.填空题13. -2<a<2; 14.(-1,1); 15. 3+22; 16. 3或-5三.解答题17.解:由A ∪B=A 得B ⊆A 2分 当m+1>1-m,即m>0时,B=φ,显然B ⊆A 5分 当B ≠φ时,由B ⊆A 得⎩⎪⎨⎪⎧m+1≤1-m m+1≥01-m ≤4,解得-1≤m ≤0 10分综上可知,m ≥-1 12分18.解:A={-2,1}, 2分 由A B=B 得B ⊆A,当a 2-4(a+3)<0,a 2-4a-12<0,即-2<a<6时,B=φ,显然B ⊆A; 4分 当B ≠φ时,由B ⊆A 得B={-2},{1},{-2,1}若B={-2},则⎩⎨⎧a 2-4(a+3)=04-2a+a+3=0,即⎩⎨⎧a=-2或a=6a=7,φ; 6分 若B={1},则⎩⎨⎧a 2-4(a+3)=01+a+a+3=0,即⎩⎨⎧a=-2或a=6a=-2,a=-2; 8分若B={-2,1},则⎩⎪⎨⎪⎧a 2-4(a+3)>0-a=-1a+3=-2,即⎩⎪⎨⎪⎧a<-2或a>6a=1a=-5,φ; 10分综上可知,实数a 的取值集合为{a|-2≤a<6} 12分19.解:由题意得⎩⎨⎧-1≤1-a 2≤1-1≤1-a ≤1,解得⎩⎨⎧0≤a 2≤20≤a ≤2,即0≤a ≤ 2 5分由f(1-a 2)+f(1-a)<0得f(1-a)<-f(1-a 2) ∵函数y=f(x)是奇函数∴-f(1-a 2)=f(a 2-1)∴f(1-a)<f(a 2-1) 8分 又∵函数y=f(x)在定义域[-1,1]上是减函数∴1-a>a 2-1,a 2+a-2<0,解得-2<a<1 10分由⎩⎪⎨⎪⎧0≤a ≤2-2<a<1得,0≤a<1 12分20.解:由题意得,长方体纸盒的底面积为16m 2, 1分 设长方体纸盒的底面一边长为xm,则另一边长为16x m,长方体纸盒的全面积为ym 2, 2分 则由题意得y=2(2x+32x +16)=4(x+16x )+32(x>0) 6分 ∵x>0∴x+16x ≥8,当且仅当x=16x ,即x=4时,等号成立∴当x=16x =4时,y 的最小值为64 10分 答:当长方体纸盒的底面是边长为4m 的正方形时,用纸最少为64m 2. 12分21.解:二次函数f(x)=x 2-2ax+a-1图像的对称轴是x=a 当a ≤0时,f(x)在区间[0,1]上单调递增∴f(x)min =f(0)=a-1=-2,解得a=-1; 3分 当a ≥1时,f(x)在区间[0,1]上单调递减∴f(x)min =f(1)=1-2a+a-1=-2,解得a=2; 6分 当0<a<1时,f(x)min =f(a)=a 2-2a 2+a-1=-2,即a 2-a-1=0,解得a=1±52,不合题意,舍去; 9分综上可得,a=-1或a=2 10分22.(1)解:函数的定义域是{x|x ≠0} 1分 当x>0时,x+2x ≥22,当且仅当x=2x 即x=2时等号成立; 3分 当x<0时,-x>0,-x+2-x )≥22,当且仅当-x=2-x 即x=-2时等号成立; 5分∴函数f(x)的值域是(- ,-22]∪[22,0) 6分 (2)证明:设0<x 1<x 2<2,则f(x 1)-f(x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2 9分 ∵0<x 1<x 2< 2∴x 1-x 2<0,0<x 1x 2<2 ∴x 1x 2-2<0∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2) 11分 ∴f(x)在(0,2)上单调递减 12分。
CBAU高中数学学习材料唐玲出品潮阳黄图盛中学2013-2014学年度第一学期期中考试高一数学(必修一模块)时间:120分钟 总分:150分命题人:曹祖志 命题时间:2013-10-21一、选择题:本大题共10小题,每小题5分,合计50分;每小题有四个选择支,有且仅有一个选择支正确,请将您的答案填写在指定的答题区域内。
1、设全集⎭⎬⎫⎩⎨⎧<<-∈=541513|*x N x U ,()(){}041|=--∈=x x R x A ,{}7,5,3,1=B ,则(A ∪B )=()A.{}4,1B.{}8,6,2C.{}8,6,4,2D.{}8,6,4 2、下列集合运算中,能正确表示右侧Venn 图中阴影部分的是()A. (A ∪B )B. (A ∪B )C.(A ∩B ) D.(A ∩B )3、函数()()2243xx x x f --=的定义域是 ( )A.{}20|<<x xB.{}20|≤≤x xC.⎭⎬⎫⎩⎨⎧≠<<34,20|x x x 且D.⎭⎬⎫⎩⎨⎧≠≤≤34,20|x x x 或 4、若函数()x f y =是R 上的偶函数,则函数()1+=x f y 的图像()A.关于直线1=x 对称B.关于直线1-=x 对称C.关于点()0,1对称D.关于点()0,1-对称5、若函数()x f 是定义在R 上的奇函数,且在区间[)+∞,0上单调递增,则()x f 在区间[]2,5--上是( )A.减函数,且有最小值()5-fB.减函数,且有最大值()5-fC.增函数,且有最小值()2-fD.增函数,且有最大值()2-f6、设18.0log ,18.0,55518.0===c b a ,则c b a ,,的大小是()A.c a b >>B.a c b >>C.b a c >>D.c b a >>7、若b a ,均为不等于1的正数,且满足b a b a nm821,22==⎪⎭⎫⎝⎛=,且,则=+221n m()A.3B.-3C.()b a -2logD.()b a +2log8、已知函数y =f (x )是R 上的奇函数,且()01=f ,则()x f 的图象与x 轴交点个数可能有()A.1B.2C.3D.49、函数()())1,0(21log 2≠>--+=-a a x ax f a x 的图象必经过点()A.()1,2-B.()1,2C.()2,1D.()2,1-10、某工厂八年来产品总产量C (即前t 年年产量之和)与时间t (年)的函数图象如图,下列四种说法: ①前三年中,产量增长的速度越来越快;②前三年中,产量增长的速度越来越慢; ③第三年后,这种产品停止生产; ④第三年后,年产量保持不变;其中,说法正确的是 ( ) A.②③ B.②④ C.①③ D.①④二、填空题:本大题共4小题,每小题5分,合计20分;请将正确答案填写在指定的答题区域内。
高中数学学习材料鼎尚图文*整理制作高一数学参考答案一.填空题(1){2} (2) 3 (3) -1 (4)(1,+∞) (5)3(6)(-5,-1) (7)(3,4) (8)0 (9)352x -- (10)3(11)【2,5】 (12)c,a,b (13)0 (14)a ≥2二.解答题:15. A=【-2,1】………………………………………………3分B=(-∞,a )………………………………………………3分(1)【-2,0)………………………………………………3分(2)a >1………………………………………………5分16.(1)251±=a ………………………………………4分 31)(2221=+∴=---aa a a ………………………………………4分 (2) 0)2)(1(2322>--=+-∴>m m m m m ,即232->m m ,x x f 2log )(= 是增函数。
)23(l o g l o g 222->∴m m , 即m m 22log 2)23(log <-…………………………………………6分……………………………………………3分17. (Ⅰ)即1(040)80y t t =<≤ ……………………………………………… 3分2800(40)y t t =>……………………………………3分 y 关于t 的函数是y =21,04080800,40t t t t⎧≤≤⎪⎪⎨⎪>⎪⎩ …………………………………… 2分 (Ⅱ)由题意知,28000.08x ≤, 解得100x ≥或100x ≤-(舍)……………5分 又1004060-=(天) 答:按这个标准,这个家庭在装潢后60天方可入住. …………… 2分18.(1)奇函数,证明略. ………………………………………………5分(2)单调减,证明略. ………………………………………………5分(3)由题意知方程211x x x x +=+等价于310x x ++= 设3()1g x x x =++则(1)0,(0)0g g -<>,所以方程在(1,0)-上必有根 又因为1(1)()02g g -⋅-<,所以方程在1(1,)2--上必有一根。
2022-2023学年山东省淄博市淄博第一中学高一上学期期中数学试题一、单选题1.已知集合 {}{21}2101A x x B =-<≤=--∣,,,,, 则 A B =( )A .{2,1,0,1}--B .{1,0,1}-C .{1,0}-D .{}2,1,0--【答案】B【分析】由交集的定义即可得出答案.【详解】因为{}{21}2101A xx B =-<≤=--∣,,,,, 则 A B ={1,0,1}-. 故选:B.2.已知命题2:,32>0p x x x ∀∈--R ,则p ⌝为( ) A .2,320x x x ∀∈--≤R B .2,320x x x ∃∉--≤R C .2,320x x x ∃∈--≤R D .2,32>0x x x ∃∈--R【答案】C【分析】根据全称命题的否定是特称命题这一性质进行修改即可.【详解】由于全称命题的否定是特称命题,故p ⌝为,2,320x x x ∃∈--≤R . 故选:C3.设x R ∈,则“|1|2x -< “是“2x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必条件【答案】B【解析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案. 【详解】由|1|2x -<,得13x -<<,又由2x x <,得01x <<, 因为集合{|01}{|13}x x x x <<⊂-<<, 所以“|1|2x -<”是“2x x <”的必要不充分条件. 故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法. 4.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( )A .(]2-∞,B .[)2+∞,C .[)3+∞,D .(]3-∞,【答案】D【分析】由题意当1x >时,不等式11x a x +≥-恒成立,由于11x x +-的最小值等于3,可得3a ≤,从而求得答案.【详解】当1x >时,不等式11x a x +≥-恒成立, 11a x x ∴≤+-对1x >均成立. 由于111121311x x x x +=-++≥+=--, 当且仅当2x =时取等号, 故11x x +-的最小值等于3, 3a ∴≤,则实数a 的取值范围是(]3-∞,. 故选:D .5.设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为( )A .2x =-B .3x =-C .=2xD .=3x【答案】A【分析】由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩,解方程即可得出答案.【详解】因为1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩, 解得2x =-. 故选:A .6.函数y = ) A .{}24x x ≤≤ B .{}02x x ≤≤C .{}28x x ≤≤D .{}08x x ≤≤【答案】C【分析】利用二次根式被开方数非负可求得原函数的定义域.【详解】对于函数y 210160x x -+-≥,即210160x x -+≤,解得28x ≤≤.所以,函数y {}28x x ≤≤. 故选:C.7.已知a 、b 、c 满足c b a <<且0ac <,则下列选项中不一定能成立的是( ) A .ab ac > B .()0c b a ->C .cb ca <D .()0ac a c -<【答案】C【分析】利用不等式的基本性质逐项判断,可得出合适的选项. 【详解】因为c b a <<且0ac <,则0a >,0c <,b 的符号不确定, 对于A 选项,由不等式的基本性质可得ab ac >,A 中的不等式一定成立; 对于B 选项,0b a -<,则()0c b a ->,B 中的不等式一定成立; 对于C 选项,由不等式的性质可得cb ca >,C 中的不等式一定不成立;对于D 选项,0a c ->,由不等式的基本性质可得()0ac a c -<,D 中的不等式一定成立. 故选:C. 8.已知4()f x x x=+,2()1g x x ax =-+,若对1[1,3]x ∀∈,2[1,3]x ∀∈,使得()()12f x g x ≥,则实数a 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞C .(,2]-∞-D .(,2]-∞【答案】B【分析】将对1[1,3]x ∀∈,2[1,3]x ∀∈,使得()()12f x g x ≥转化为214x ax -+≤对于任意[1,3]x ∈恒成立,利用分离参数法以及函数单调性即可求解. 【详解】∵4()f x x x=+,[1,3]x ∈∴4()4f x x x =+≥,当且仅当4x x =,即2x =时取等号.∴当[1,3]x ∈时,min ()4f x =.∴对1[1,3]x ∀∈,2[1,3]x ∀∈,使得()()12f x g x ≥等价于()4g x ≤对于任意[1,3]x ∈恒成立,即214x ax -+≤对于任意[1,3]x ∈恒成立∴3a x x≥-对任意[1,3]x ∈恒成立∵函数3y x x =-在[1,3]上为增函数∴max 3312a x x ⎛⎫≥-=-= ⎪⎝⎭,即2a ≥.故选:B.二、多选题9.已知集合{}21,3,A m =,{}1,B m =.若A B A ⋃=,则实数m 的值为( )A .0B .1C .-3D .3【答案】AD【分析】根据并集结果得到B A ⊆,从而讨论得到0m =或1m =或3m =,根据集合中元素的互异性排除不合要求的结果.【详解】因为A B A ⋃=,所以B A ⊆.因为{}21,3,A m =,{}1,B m =,所以2m m =或3m =,解得0m =或1m =或3m =;当0m =时,{}1,3,0A =,{}1,0B =,符合题意;当1m =时,集合A 不满足集合元素的互异性,不符合题意; 当3m =时,{}1,3,9A =,{}1,3B =,符合题意; 综上,0m =或3. 故选:AD10.已知函数()y f x =是定义在R 上的偶函数,当0x ≤时,1f x x x ,则下列说法正确的是( )A .函数()f x 有3个单调区间B .当0x >时,()()1f x x x =-C .函数()f x 有最小值14-D .不等式()0f x <的解集是()1,1-【答案】BC【分析】利用奇偶性求出()y f x =的表达式,再逐项求出单调区间、最值以及不等式的解集即可判断.【详解】解:当0x >时,0x -<,因为0x ≤时,1f x x x所以1fx xx ,又因为()y f x =是定义在R 上的偶函数所以0x >时,21f x x x x x即()()()2200x x x f x x x x ⎧->⎪=⎨+≤⎪⎩如图所示:对A ,由图知,函数()f x 有4个单调区间,故A 错误;对B ,由上述分析知,当0x >时,()2f x x x =-,故B 正确;对C ,由图知,当11212x =-=-⨯或11212x -=-=⨯时,函数()f x 取得最小值()111224min f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭-,故C 正确;对D ,由图知,不等式()0f x <的解集是()()1,00,1-,故D 错误.故选:BC.11.已知函数()2+10,1=1,>1x kx x f x k x x -≤-⎧⎪⎨⎪⎩是R 上的减函数,则实数k 的可能的取值有( )A .4B .5C .6D .7【答案】ABC【分析】根据题意可得121>01+101k k k k ≥--≥-⎧⎪⎪⎨⎪⎪⎩,解之即可得解.【详解】因为函数()f x 是R 上的减函数,所以121>01+101k k k k ≥--≥-⎧⎪⎪⎨⎪⎪⎩ 解得26k ≤≤. 故ABC 正确,D 错误 故选:ABC.12.已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( ) A .()34xf x x+=- B .()f x =C .()25243f x x x =-+D .()f x x =【答案】BC【分析】根据题意计算每个函数的值域,再分析是否有界即可. 【详解】对于A ,()()47371444x x f x x x x--++===-+---,由于704x ≠-,所以()1f x ≠-, 所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令24u x =-,则0u ≥,()f u =0x =时,u 取得最大值4,所以[]0,4u ∈,所以()[]0,2f x ∈,故存在正数2,使得()2f x ≤成立.对于C ,令()22243211u x x x =-+=-+,则()5f u u =,易得1u ≥,所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =则0t ≥,24x t =-,则()()221174024f t t t t t ⎛⎫=-++=--+≥ ⎪⎝⎭,易得()174f x ≤,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立. 故选:BC三、填空题13.设()2421f x x x +=+,则()3f =________.【答案】6【分析】先求出()f x 的解析式,再将3x =代入求解即可. 【详解】∵()()()224242222121111f x x x x x x x x +=+=++--=+-+令21t x =+(1t ≥),∴()2f t t t =-(1t ≥),即()2f x x x =-(1x ≥)当3x =时,()23336f =-=故答案为:6.14.已知0x >,则423x x--的最大值是_________【答案】2-2-【分析】直接利用基本不等式求最大值.【详解】0x,则44232322⎛⎫--=-+≤-=- ⎪⎝⎭x x x x当且仅当43x x =即x =故答案为:2-15.对任意R x ∈,给定()()25,(1)f x x g x x =-+=+,记函数()()(){}max ,M x f x g x =,例如,()()(){}{}2max 2,2max 3,99M f g ===,则()M x 的最小值是__________.【答案】4【分析】根据题意求()M x 的解析式,根据分段函数的性质先求每个部分的最小值,再求整个函数的最小值.【详解】若()()f x g x ≥,即25(1)x x -+≥+,解得41x -≤≤ 若()()f x g x <,即25(1)x x -+<+,解得1x >或4x <-∴()()(){}()()()[]2+1,,41,+=max ,=+5,4,1x x M x f x g x x x ∈-∞-⋃∞-∈-⎧⎪⎨⎪⎩当()(),41,x ∈-∞-+∞时,则()()()2114M x x M =+>=当[]4,1x ∈-时,则()()514M x x M =-+≥= ∴()M x 的最小值是4. 故答案为:4.16.若正数a ,b 满足46ab a b =++,则a b +的最小值是______. 【答案】3【分析】由基本不等式和条件可得()246ab a b a b =++≤+,然后解出此不等式可得答案.【详解】由基本不等式可得()24a b ab +≤,所以()246ab a b a b =++≤+,即()()260a b a b +-+-≥, 解得3a b +≥或2a b +≤-(舍),当且仅当32a b ==时等号成立, 所以a b +的最小值是3, 故答案为:3.四、解答题17.已知非空集合{|121}P x a x a =+≤≤+,{|25}Q x x =-≤≤. (1)若3a =,求R ()P Q ⋂;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围. 【答案】(1)R ()[2,4)P Q =- (2)[0,2]【分析】(1)由交集,补集的概念求解, (2)转化为集合间关系后列式求解,【详解】(1)当3a =时,[4,7]P =,{|25}Q x x =-≤≤,则R (,4)(7,)P =-∞+∞,R ()[2,4)P Q =-, (2)由题意得P 是Q 的真子集,而P 是非空集合,则12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩且12a +=-与215a +=不同时成立,解得02a ≤≤, 故a 的取值范围是[0,2]18.已知幂函数()23()39m f x m m x -=--在()0,∞+上单调递减.(1)求m 的值;(2)若(21)(2)m m a a ->+,求a 的取值范围. 【答案】(1)2m =- (2)111,,3322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由幂函数的定义可得2391m m --=,解出m 的值,然后再验证其单调性. (2) 由(1),即(21)(2)m m a a ->+,由其定义域和单调性可得答案. 【详解】(1)因为()f x 是幂函数,所以2391m m --=, 所以23100m m --=,即(2)(5)0m m +-=, 解得2m =-或5m =.因为()f x 在()0,∞+上单调递减,所以30m -<,即3m <,则2m =-. (2)由(1)可知2m =-,则(21)(2)m m a a ->+等价于2211(21)(2)a a >-+,所以22(21)(2)21020a a a a ⎧-<+⎪-≠⎨⎪+≠⎩,即23830122a a a a ⎧--<⎪⎪≠⎨⎪≠-⎪⎩,解得1132a -<<或132a <<. 故a 的取值范围是111,,3322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y (千辆/h )与汽车的平均速度()/v km h 之间的函数关系式为()22400201600vy v v v =>++.(I )若要求在该段时间内车流量超过2千辆/h ,则汽车在平均速度应在什么范围内?(II )在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?【答案】(I )如果要求在该时段内车流量超过2千辆/h ,则汽车的平均速度应该大于20/km h 且小于80/km h .(II )当40/v km h =时,车流量最大,最大车流量约为2.4(千辆/h ). 【分析】(I )直接列出关于汽车的平均速度()/v km h 的不等式求解即可;(II )2240240160020160020v y v v v v==++++,根据基本不等式求解即可.【详解】(I )由条件得22402201600vv v >++,整理得到210016000v v -+<,即()()20800v v --<,解得2080v <<.(II)由题知,22402402402.4160020160010020v y v v v v==≤==++++. 当且仅当1600v v=即40v =时等号成成立. 所以max 2.4y =(千辆/h ).答:(I )如果要求在该时段内车流量超过2千辆/h ,则汽车的平均速度应该大于20/km h 且小于80/km h .(II )当40/v km h =时,车流量最大,最大车流量约为2.4(千辆/h ). 20.已知关于x 的不等式2730ax x -+>的解集为{<x x b 或}>3x . (1)求a ,b 的值;(2)求关于x 的不等式()21202ax c b x c -++<的解集.【答案】(1)12,2a b ==; (2)答案见解析【分析】(1)将不等式的解集转化为方程的两个根,结合韦达定理求出a ,b 的值;(2)在(1)的前提下,对不等式变形为()()10x c x --<,对c 分类讨论,求解不等式的解集. 【详解】(1)易知0a ≠,由题意得b ,3是关于x 的方程2730ax x -+=的两个不相等的实数根,所以237?3+3=07+3=a b a -⎧⎪⎨⎪⎩, 解得:=21=2a b ⎧⎪⎨⎪⎩, 所以12,2a b ==. (2)由(1)得()()()2110x c x c x c x -++=--<,当=1c 时,不等式无解;当1c <时,解得:1c x <<;当1c >时,解得:1x c <<.综上,当=1c 时,不等式的解集为∅;当1c <时,不等式的解集为{}|1x c x <<;当1c >时,不等式的解集为{}|1x x c <<.21.函数()29ax b f x x -=-是定义在()3,3-上的奇函数,且()118f =. (1)确定()f x 的解析式;(2)判断()f x 在()3,3-上的单调性,并证明你的结论;(3)解关于t 的不等式()()10f t f t -+<.【答案】(1)()29x f x x =- (2)增函数,证明见解析 (3)12,2⎛⎫- ⎪⎝⎭【分析】(1)根据(0)=0f ,1(1)8f =得到,a b 的方程,解之即可求得;(2)根据单调性的定义证明即可;(3)根据单调性先去f ,再解不等式组即可,注意化简不等式时要补定义域.【详解】(1)解:()2=9ax b f x x --是定义在()3,3-上的奇函数, ()0==09bf -∴,=0b ∴,又由()1188a f ==, =1a ∴∴ ()2=9x f x x -. 2()()9x f x f x x --==--, ∴()f x 奇函数,故1,0a b ==符合题意,为所求解.(2)解:()2=9xf x x -在区间()3,3-上为增函数.证明:设123<<<3x x -.而()()()()()()12121212222212129+==9999x x x x x x f x f x x x x x -------, 由123<<<3x x -,得221212129+>0,9>0,9>0,<0x x x x x x ---,()()()()121222129+<099x x x x x x -∴--,即()()12<0f x f x -,()()12<f x f x ∴.故函数()f x 在()3,3-上为增函数.(3)解:由函数为奇函数且在()3,3-上为增函数知: ()()()()1+<01<f t f t f t f t -⇒--,3<1<33<<31<t t t t --⎧⎪∴--⎨⎪--⎩, 解得:12<<2t -. 故不等式的解集为12,2-⎛⎫ ⎪⎝⎭. 【点睛】本题的难点在(2)中判断1()f x 与2()f x 的大小,通分后要对分子进行因式分解;易错点为在(3)中化简不等式时不补定义域.22.已知a 0>,若函数()21f x ax x =--在区间[1,2]上的最小值为()g a(1)求()g a 的函数表达式;(2)若11,,42a ⎡⎤∈⎢⎥⎣⎦求()g a 的最大值. 【答案】(1)()12,21111,442143,04a a g a a aa a ⎧->⎪⎪⎪=--≤≤⎨⎪⎪-<<⎪⎩; (2)32-.【分析】(1)利用二次函数的性质分类讨论即得;(2)利用函数的单调性即得.【详解】(1)∵()22111124f x ax x a x a a ⎛⎫=--=--- ⎪⎝⎭,0a >, ∴当1012a <<,即12a >时,函数()f x 在[]1,2上单调递增, 当1x =时,函数()f x 有最小值()12f a =-,即()2g a a =-, 当1122a ≤≤,即1142a ≤≤时,当12x a =时,函数()f x 有最小值11124f a a ⎛⎫=-- ⎪⎝⎭,即()114g a a =--, 当112a>,即102a <<时,函数()f x 在[]1,2上单调递减, ∴当2x =时,函数()f x 有最小值()243f a =-,即()43g a a =-,综上,()12,21111,442143,04a a g a a aa a ⎧->⎪⎪⎪=--≤≤⎨⎪⎪-<<⎪⎩; (2)∵()12,21111,442143,04a a g a a aa a ⎧->⎪⎪⎪=--≤≤⎨⎪⎪-<<⎪⎩, 当11,42a ⎡⎤∈⎢⎥⎣⎦时,()1312,42g a a ⎡⎤=--∈--⎢⎥⎣⎦,故()g a 在11,42⎡⎤⎢⎥⎣⎦上的最大值为32-.。
山东省淄博市淄川第一中学2016-2017学年高一数学上学期期中试题一.选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅ 2.下列函数中与函数y =x 表示同一函数的是( )A .y =(x )2B .y =xa alog C .y =3x 3D .y =x 2x3.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53)B .[0,53] C .[1,53)D .[1,53]4.已知f(x)=ax 7-bx 5+cx 3+2,且f(-5)=m ,则f(5)+f(-5)的值为( )A .4B .0C .2mD .-m +45.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0x 2,x <0,则f (f (-2))的值是( )A .4B .-4C .8D .-8 6.函数y =lo g a (x +2)+1的图象过定点( )A .(1,2)B .(2,1)C .(-2,1)D .(-1,1)7.若a>1,则函数y =a x与y =(1-a)x 2的图象可能是下列四个选项中的( )8.幂函数y =x m ,y =x n ,y =x p的图象如图所示,以下结论正确的是( )A .m >n >pB .m >p >nC .n >p >mD .p >n >m9.函数f(x)=2x -1+x -5的零点所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元二.填空题:本大题共5小题,每小题4分,共20分,答案须填在答题卡题中横线上.11.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________.12.log 34log 98=________. 13.若函数f (x )=(m -2)x 2+(m -1)x +2是偶函数,则f (x )的单调递增区间是________. 14.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③0)()(2121>--x x x f x f上述结论中正确结论的序号是______.15.一种专门侵占内存的计算机病毒,开机时占据内存2 KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过______分钟,该病毒占据64 MB 内存(1 MB =210KB). 三.解答题:本大题共5小题,共60分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知全集U ={x ∈Z |-2<x <5}, 集合A ={-1,0,1,2},集合B ={1,2,3,4}; (1)求A ∩B ,A ∪B ; (2)求(∁U A )∩B ,A ∪(∁U B ). 17. (1)计算:(-3)0-120+(-2)-2-1416-;(2)计算:log 49-log 212+5lg210.(3)计算27 23 -2log 23×log 218+log 23×log 34;18. (本小题满分12分)已知f (x )=1x -1,x ∈[2,6]. (1)证明:f (x )是定义域上的减函数; (2)求f (x )的最大值和最小值.19.(本小题满分12分)已知f (x )=log 2x +1x -1; (1)求f (x )的定义域和值域; (2)判断f (x )的奇偶性并证明.20.(本小题满分12分)某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件.经试销调查发现,销售量y (件)与销售单价x (元/件)近似满足一次函数y =kx +b 的关系(图象如图所示).(1)根据图象,求一次函数y =kx +b 的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元,求该公司可获得的最大毛利润,并求出此时相应的销售单价.2016级高一第一学期学分认定考试数学答案1.A2.C3.C4.A5.C6.D7.C8.C9.C 10.D11. (1,4) 12 .4313.(-∞,0] 14. ②③15. 4516.解:(1)∵集合A ={-1,0,1,2},集合B ={1,2,3,4}, ∴A ∩B ={1,2},A ∪B ={-1,0,1,2,3,4};(6分)(2)∵全集U ={x ∈Z |-2<x <5}={-1,0,1,2,3,4}, 集合A ={-1,0,1,2},集合B ={1,2,3,4}, ∴∁U A ={3,4},∁U B ={-1,0}∴(∁U A )∩B ={3,4},A ∪(∁U B )={-1,0,1,2}.18. (1)原式=1-0+1-22-()1442-=1+14-2-1=1+14-12=34.(2)原式=log 23-(log 23+log 24)+2lg510=log 23-log 23-2+25=-85.(3) 原式=27 23 -2 log 23×log 218+log 23×log 34=9-3×(-3)+2=20.19.(1)证明:设2≤x 1<x 2≤6, 则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1x 1-1x 2-1,因为x 1-1>0,x 2-1>0,x 2-x 1>0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )是定义域上的减函数.(2)解:由(1)的结论可得,f (x )min =f (6)=15,f (x )max =f (2)=1.解:(1)由题可得x +1x -1>0,解得x <-1,或x >1, (2分) 所以定义域为()-∞,-1∪(1,+∞).(4分)设u =x +1x -1=1+2x -1,当x ∈(-∞,-1)∪(1,+∞)时,u ∈(0,1)∪(1,+∞),(6分)∴y =log 2u ,u ∈(0,1)∪(1,+∞),∴f (x )的值域为(-∞,0)∪(0,+∞). (8分) (2)f (x )的定义域关于原点对称,(9分)且f (x )+f (-x )=log 2x +1x -1+log 2-x +1-x -1=log 2x +1x -1+log 2x -1x +1=log 2⎝⎛⎭⎪⎫x +1x -1·x -1x +1=log 21=0,∴f (-x )=-f (x ), 所以f (x )为奇函数.(12分)20.解:(1)由图可知所求函数图象过点(600,400),(700,300),得⎩⎪⎨⎪⎧400=k ×600+b300=k ×700+b ,解得⎩⎪⎨⎪⎧k =-1b =1 000,所以y =-x +1 000(500≤x ≤800).(2)由(1)可知S =xy -500y =(-x +1 000)(x -500) =-x 2+1 500x -500 000=-(x -750)2+62 500(500≤x ≤800), 故当x =750时,S max =62 500.即销售单件为750元/件时,该公司可获得最大毛利润为62 500元.。
山东省淄博市临淄中学2013-2014学年高一数学上学期期中试题新人教A 版时间:120分钟 满分:150分一:选择题:(共20个,每题3分)1.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{2..集合A={0,1,2},B={}12x x -<<,则A B =( )A.{0}B.{1}C.{0,1}D.{0,1,2}3.指数式328=化成对数式为 A.3log 28= B. 2log 38=C. ln 28=D. 2log 83=4.函数)1,0(11≠>+=-a a ay x 的图象过定点( )A.(0,0)B.(0,1)C.(1,1)D.(1,2)5.与函数y=|x|有相同图像的一个函数是( )B.y=axa logD.y=log 5x6.函数f (x )=|x -1|的图象是( )7.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C3x y = D x y 5.0=8. 若函数y =(a 2-3a +3)a x是指数函数,则( ) A 、a >1且a ≠1 B 、a =1C 、a =1或a =2D 、a =29.已知函数()f x 为奇函数,且当0x >时,21()f x x x =+,则(1)f -=( )(A) 2- (B) 0 (C) 1 (D) 210.函数243,[0,3]y x x x =-+∈的值域为( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2]11. 已知3.0l og a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是( )A .a c b >>B .c a b >>C .c b a >>D .a b c >> 12.4log 33的值是( ) A. 16 B. 2 C. 3 D. 413.若偶函数)(x f 在]1,(--∞上是增函数,则( ) A .)2()1()5.1(f f f <-<- B .)2()5.1()1(f f f <-<- C .)5.1()1()2(-<-<f f f D .)1()5.1()2(-<-<f f f 14.函数)2(log 32++-=x x y 的定义域为( )A.]3,(-∞B. )3,2(-C. ]3,2(-D. ()[)+∞⋃-∞-,32,15.设11,1,,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R 且为奇函数的所有α值为( ).1A ,3 .1B -,1 1.2C ,3 .1D -,1,3 16..已知集合A ={2,3},B ={x |mx -6=0},若B ⊆A ,则实数m 的值为( )A .3B .2C .2或3D .0或2或317..若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <018..若函数⎩⎨⎧≤>=)0(2)0(log )(3x x x x f x,则)]91([f f 的值是( )A .9B .91C .41D .419.幂函数322)1()(-+--=m m x m m x f 在),0(+∞时是减函数,则实数m 的值为()(A) 2或1- (B) 1- (C) 2 (D) 2-或120.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是( )二:填空题(每题4分,共20分)21. 函数]1,0[在xa y =上的最大值与最小值的和为3,则=a __22已知函数121)(+-=x a x f 为奇函数,则=a .23.已知()f x 是偶函数,且当0x ≥时,()2f x x x =-,则当0x <时,24.若函数)(x f 的反函数是3xy =,则(9)f 的值为 _____25.函数()f x =212log (23)x x --的单调减区间是 .三;解答题: 26.(12分)(1)设{}{}(),1,05,U U R A x x B x x C A B ==≥=<< 求和()U A C B .(2)已知集合A ={x |1<x <2},B ={x |x <a },若A ⊆B ,求实数a 的取值范围27.(10分)(1)已知 2=a , 求)3()12)((656131212132b a b a b a -÷-的值(2)求值5lg 2lg ln 1001lg225log 15++++e28.(12分)求下列函数的定义域和值域 (1)22log (4)y x =-;(2) f (x )=23-x29.(16分)(1)定义在[]1,1-上的函数()y f x =是增函数,且是奇函数,若(1)(45)f a f a -+->,求实数a 的取值范围。
山东省淄博市淄博十一中、淄博一中2025届高三上学期期中学习质量检测数学试题一、单选题1.已知集合{}{N 14},R 3A x x B x x =∈-<<=∈≥∣∣,则下图中阴影部分表示的集合为()A .{13}x x -≤<∣B .{13}x x -<<∣C .{}0,1,2D .{}0,1,2,32.若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±3.已知,R a b ∈,下列命题正确的是()A .若1ab =,则2a b +≥B .若11a b <,则a b>C .若a b >,则()ln 0a b ->D .若0a b >>,则11a b b a+>+4.下面命题正确的是()A .已知R x ∈,则“1x >”是“11x <”的充要条件B .命题“若01x ∃≥,使得202x <”的否定是“21,2x x ∀<≥”C .已知,R x y ∈,则“0x y +>”是“0x >”的既不充分也不必要条件D .已知,R a b ∈,则“30a b -=”是“3ab =”的必要不充分条件5.已知函数()212()log 21f x x ax =-+在(,1)∞--上是增函数,则实数a 的取值范围是()A .[3,)-+∞B .[4,)-+∞C .(,4]-∞-D .(,3]-∞-6.定义在(0,)+∞上的函数()f x 满足1x ∀,2(0,)x ∈+∞且12x x ≠,有()()()12120f x f x x x -->⎡⎤⎣⎦,且()()()f xy f x f y =+,2(4)3f =,则不等式(2)(3)1f x f x -->的解集为().A .(0,4)B .(0,)+∞C .(3,4)D .(2,3)7.已知函数()()21,02ln 1,0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()y f x kx =-有且只有3个零点,则实数k 的取值范围为()A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .()1,+∞D .1,14⎛⎫ ⎪⎝⎭8.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为()A .πB .2πC .3πD .4π二、多选题9.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是()A .若2111n S n n =-+,则212n a n =-B .若()2,n S pn qn p q =+∈R ,则{}n a 是等差数列C .若数列{}n a 为等差数列,10a >,69S S =,则78S S >D .若数列{}n a 为等差数列,150S >,160S <,则8n =时,n S 最大10.已知()31f x +为奇函数,且对任意x ∈R ,都有()()24f x f x +=-,()31f =,则()A .()71f =-B .()50f =C .()111f =-D .()230f =11.已知ABC 的内角,,A B C 的对边分别为,,a b c2sin sin 2A C b A +⋅=⋅,下列结论正确的是()A .π3B =B .若45a b ==,,则ABC 有两解C.当a c -=时,ABC 为直角三角形D .若ABC 为锐角三角形,则cos cos A C +的取值范围是三、填空题12.已知tan 3α=,()()πsin πsin 2πcos πcos 2αααα⎛⎫-+- ⎪⎝⎭⎛⎫+-+ ⎪⎝⎭的值为.13.过点A (2,1)作曲线3()3f x x x =-的切线最多有14.已知数列{}n a 的前n 项和为n S ,且1112,2n n n a S a ++==-.若261n S n n >+,则n 的最小值为.四、解答题15.已知函数()224ln f x kx x =-,其中(]0,e x ∈,0k >.(1)若()329y f x x =+在1x =处取得极值,求k 的值;(2)讨论函数()f x 的单调性.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==,求CD 的长.17.已知数列{}n a 满足:415a =,且()*121n n a a n +=+∈N ,等差数列{}n b 的公差为正数,其前n 项和为n T ,315T =,且1b 、21a +、3b 成等比数列.(1)求1a 、2a 、3a ;(2)求证:数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(3)若11n n n c b b +=,数列{}n c 的前n 项和为n P ,求证:61110n P ≤<.18.已知函数()22cos 1,0,222x x x f x x ωωωω=-+>∈R ,在曲线()y f x =与直线2y =的交点中,若相邻交点的距离为π.(1)求函数()f x 的解析式;(2)若π,π3x ⎡⎤∈⎢⎥⎣⎦,解不等式()f x ≥(3)若π,π3x ⎡⎤∈⎢⎥⎣⎦,且关于x 的方程()()()210f x a f x a -++=有三个不等的实根,求实数a 的取值范围.19.已知函数()()()ln 1cos ,1,πf x x x x x =++-∈-.(1)求曲线=在点()()0,0f 处的切线方程;(2)求()f x 零点的个数.。
高中数学学习材料金戈铁骑整理制作淄博实验中学高一第一学期第一次模块阶段性检测2013.10数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1、设集合M ={x ∈R |x 2≤3},3-=a ,则下列关系正确的是( ) A 、a M B 、a ∉M C 、{a }∈M D 、{a }M2.已知集合A={0,1,2},则集合B={},|A y A x y x ∈∈-中元素的个数是 ( )A .1B .3C .5D .93. 函数232()131=--+x f x x x 的定义域是( ) A. 1[,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-4. 已知A=}|{x y x =, B=}|{2x y y =,则B A ⋂等于( )A. }0|{≥y yB. )}1,1(),0,0{(C.RD.∅5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( ) A. 13 B.13- C.7 D. 7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞) B .(-∞,-23] C .[23,+∞) D .(-∞,23]7. 在函数⎩⎨⎧<+≥-=6),2(6,5)(x x f x x x f ,则=)3(f ( ) A .2 B .3 C .4 D .58.下列四组函数中,表示相等函数的一组是( ) A.2)(|,|)(x x g x x f == B. 22)()(,)(x x g x x f ==C. 1)(,11)(2+=--=x x g x x x f D. 1)(,11)(2-=-⋅+=x x g x x x f 9. 下列四个函数中,既是偶函数又在),0(+∞上为增函数的是( )A. 12)(+=x x fB. 22)(x x f =C. xx f 1)(-= D. ||)(x x f -= 10.设偶函数)(x f 的定义域为R,当),0[+∞∈x 时,)(x f 是增函数,则)3(),(),2(--f f f π的大小关系是( )()()()23 .->->f f f A π B .()()()32->->f f f π()()()23 .-<-<f f f C π D .()()()32-<-<f f f π11. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是( )A. 40≤<mB.10≤≤mC.4≥mD.40≤≤m12. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,那么2|)1(|<+x f 的解集是( )A .(1,4)B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞二、填空题(每题4分,共16分)13.已知A=},065|{2=-+x x x B=},01|{=-ax x 若A B ⊆,则实数a 的值为 .14. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________15. 设)(x f 是R 上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.7(f =16.已知A,B 是非空集合,定义运算},|{B x A x x B A ∉∈=-且}1|{x y x M -==,}11,|{2≤≤-==x x y y N ,则=-N M三、解答题(本大题共6个小题,满分74分. 解答应写出文字说明、证明过程或演算步骤.)17.(本小题12分)设全集为R, 集合A=},0372|{2≥+-x x x 213)(-++=x x x f 的定义域为集合B,求.B A B A ⋃⋂和18、(本小题12分)若{}34A x x =-≤≤,{}211B x m x m =-≤≤+,.B B A =⋂,求实数m 的取值范围。
淄博一中2013—2014学年第一学期期中模块考试
高一数学试卷2013年11月
第Ⅰ卷(选择题60分)
一.选择题:(本大题共12小题.每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如果S={1,2,3,4,5},M={1,3,4},N={2,4,5},那么(C S M)∩(C S N)= ()A、 B、{1,3}C、{4}D、{2,5}
2.已知集合A={-1,0,1},给出下面五个关系式:①A A;②0A;③{0}
A;④0∈A;⑤A其中正确的是()
A、②③④⑤;
B、①③④⑤;
C、③④⑤;
D、④⑤。
3.已知函数(x)在区间[a,b]上连续且单调,且(a)(b)<0,则函数(x)在区间(a,b)内()
A至少有一个零点B至多有一零点
C没有零点D必有唯一零点
4.下列四组函数中,表示同一函数的是()
A 、2
2f (x )ln x ,g(x )ln x ==B 、2
x f (x )x,g(x )x
==
C 、3
322x f (x )log ,g(x )x ==
D 、2f (x )x ,g(x )x ==
5.已知函数⎪⎩
⎪
⎨⎧<=>=)0(,0)0(,1)0(,)(2x x x x x f ,则=-)]3([f f ()
A 、9
B 、-1
C 、0
D 、1
6.已知M={}10|≤≤x x ,N={x|x ≥p},若M ∩N=φ,则p 满足()
A 、1>p
B 、p<0
C 、10<<p
D 、p<1
7.函数f (x )是定义在R 上的奇函数,当x >0时,1f (x )x =-+,则 当x <0时,f (x )等于()。
A 、-x +lB 、-x -1C 、x +lD 、x -l 8.函数2x
y -=
的定义域为() A 、(0,2)B 、(0,1)∪(1,2)C 、(0,2D 、(0,1)∪(1,2
9.函数y=-1
x - 1
的图象是()
AB C
D
10.若函数f(x)=2
x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为()A 、a ≤5B 、a ≥-3C 、a ≤-3D 、a ≥3
x y o 1
y
o x -1
y
x
1
o y x
-1
o
11.如果log a 3>log b 3>0,那么a 、b 间的关系为() A 、0<a <b <1B 、1<b <aC 、0<b <a <1D 、1<a <b
12.某学生离家去学校,为了锻炼身体,一开始跑步前进,跑累了再走余下的路程,若将他从家里出来后离学校的距离d 表示为他出发后时间t 的函数d=f(t),则函数f(t)的大致的图像是下图中的()
第Ⅱ卷(非选择题90分)
二.填空题:(本大题共4小题,每小题4分,共16分)
13.已知函数()221x x x f +=,那么()()=⎪⎭
⎫
⎝⎛++2121f f f ;
14.设6232)2
1(2--<x x
,则x 的取值集合为____________;
15.若幂函数)(x f y =的图象经过点(9,3),则=)25(f _________; 16.下列判断中:
①f(x)是定义在R 上的奇函数,则f(0)=0必成立;
②2x
y =与2y log x =互为反函数,其图象关于直线y x =对称; ③f(x)是定义在R 上的偶函数,则f(x)=f(|x|)=f(-x)必成立; ④当a >0且a ≠l 时,函数2
3x f (x )a
-=-必过定点(2,-2);
A
D
t t
B
C
⑤函数f(x)=lgx 2
,必为偶函数.
其中正确的结论为 ; 三.解答题:(本大题共6个小题,共74分) 17.(本题12分)计算:
(1)若xlog 32=1,求2x +2-x
的值。
(2)2lg5+23lg8+lg5·lg20+(lg2)2。
18.(本题12分)
(1)已知集合A={y|y=log 2x,x ≥1},B={y|y=(12)x
,x ≥0},求A ∩B ,A ∪B ;
(2)已知A=}3|{+≤≤a x a x ,B =}065|{2
>-+x x x . 若=B A I φ,求实数a 的取值范围;
19.(本题12分)
利用单调性的定义证明:函数f(x)=2
x-1在(1,+∞)上是减函数,并求函
数f(x)=
2
x-1
,x ∈[2,6]的最大值和最小值。
20.(本题12分)
已知奇函数()f x 在定义域(-2,2)上单调递减,且满足 不等式(a 2
-2)+(3a-2)<0,求实数a 的取值范围。
21.(本题13分)
已知函数(x)=log2(1+x)-log2(1-x),
(1)求函数(x)的定义域;
(2)判断函数(x)的奇偶性并证明;
(3)解关于x的不等式(x)>log23
22.(本题13分)
设函数f(x)=m-
1
3x+1
(x∈R):
(1)判断并证明函数f(x)的单调性
(2)是否存在实数m使函数f(x)为奇函数?。