Chap6Sec1 常微分方程的数值解法1n
- 格式:ppt
- 大小:466.00 KB
- 文档页数:23
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
常微分方程的数值求解在数学中,常微分方程是一类重要的数学模型,通常用来描述物理、化学、生物等自然现象中的变化规律。
对于一些复杂的微分方程,无法通过解析方法进行求解,这时候就需要借助数值方法来近似求解。
本文将介绍常微分方程的数值求解方法及其应用。
一、数值求解方法常微分方程的数值求解方法主要包括欧拉法、改进的欧拉法、龙格-库塔法等。
欧拉法是最简单也是最常用的数值求解方法,其基本思想是根据微分方程的导数近似求解下一个时间步上的解,并通过逐步迭代来得到整个解的数值近似。
改进的欧拉法在欧拉法的基础上做出了一定的修正,提高了数值求解的精度。
而龙格-库塔法则是一种更加精确的数值求解方法,通过考虑多个点的斜率来进行求解,从而减小误差。
二、应用领域常微分方程的数值求解方法在科学研究和工程实践中有着广泛的应用。
在物理学中,通过数值求解微分方程可以模拟天体运动、粒子运动等现象;在生物学领域,可以模拟生物种群的增长和变化规律;在工程领域,可以通过数值求解微分方程来设计控制系统、优化结构等。
三、实例分析以一个简单的一阶常微分方程为例:dy/dx = -y,初始条件为y(0) = 1。
我们可以用欧拉法来进行数值求解。
将时间间隔取为0.1,通过迭代计算可以得到y(1)的近似值为0.367。
而利用改进的欧拉法或者龙格-库塔法可以得到更加精确的数值近似。
这个例子展示了数值方法在解决微分方程问题上的有效性。
四、总结常微分方程是求解自然界中变化规律的重要数学工具,而数值方法则是解决一些难以解析求解的微分方程的有效途径。
通过本文的介绍,读者可以了解常微分方程的数值求解方法及其应用,希望可以对相关领域的研究和实践有所帮助。
至此,关于常微分方程的数值求解的文章正文部分结束。
第8章常微分方程的数值解法8.4单步法的收敛性与稳定性8.4.1相容性与收敛性上面所介绍的方法都是用离散化的方法,将微分方程初值问题化为差分方程初值问题求解的.这些转化是否合理?即当h →∞时,差分方程是否能无限逼近微分方程,差分方程的解n y 是否能无限逼近微分方程初值问题的准确解()n y x ,这就是相容性与收敛性问题.用单步法(8.3.14)求解初值问题(8.1.1),即用差分方程初值问题100(,,)()n n n n y y h x y h y x y ϕ+=+⎧⎨=⎩(8.4.1)的解作为问题(8.1.1)的近似解,如果近似是合理的,则应有()()(,(),)0 (0)y x h y x x y x h h hϕ+--→→(8.4.2)其中()y x 为问题(8.1.1)的精确解.因为0()()lim ()(,)h y x h y x y x f x y h→+-'==故由(8.4.2)得lim (,,)(,)h x y h f x y ϕ→=如果增量函数(,(),)x y x h ϕ关于h 连续,则有(,,0)(,)x y f x y ϕ=(8.4.3)定义8.3如果单步法的增量函数(,,)x y h ϕ满足条件(8.4.3),则称单步法(8.3.14)与初值问题(8.1.1)相容.通常称(8.4.3)为单步法的相容条件.满足相容条件(8.4.3)是可以用单步法求解初值问题(8.1.1)的必要条件.容易验证欧拉法和改进欧拉法均满足相容性条件.一般地,如果单步法有p 阶精度(1p ≥),则其局部截断误差为[]1()()(,(),)()p y x h y x h x y x h O h ϕ++-+=上式两端同除以h ,得()()(,,)()p y x h y x x y h O h hϕ+--=令0h →,如果(,(),)x y x h ϕ连续,则有()(,,0)0y x x y ϕ'-=所以1p ≥的单步法均与问题(8.1.1)相容.由此即得各阶龙格-库塔法与初值问题(8.1.1)相容.定义8.4一种数值方法称为是收敛的,如果对于任意初值0y 及任意固定的(,]x a b ∈,都有lim () ()n h y y x x a nh →==+其中()y x 为初值问题(8.1.1)的精确解.如果我们取消局部化假定,使用某单步法公式,从0x 出发,一步一步地推算到1n x +处的近似值1n y +.若不计各步的舍入误差,而每一步都有局部截断误差,这些局部截断误差的积累就是整体截断误差.定义8.5称111()n n n e y x y +++=-为某数值方法的整体截断误差.其中()y x 为初值问题(8.1.1)的精确解,1n y +为不计舍入误差时用某数值方法从0x 开始,逐步得到的在1n x +处的近似值(不考虑舍入误差的情况下,局部截断误差的积累).定理8.1设单步法(8.3.14)具有p 阶精度,其增量函数(,,)x y h ϕ关于y 满足利普希茨条件,问题(8.1.1)的初值是精确的,即00()y x y =,则单步法的整体截断误差为111()()p n n n e y x y O h +++=-=证明由已知,(,,)x y h ϕ关于y 满足利普希茨条件,故存在0L >,使得对任意的12,y y 及[,]x a b ∈,00h h <≤,都有1212(,,)(,,)x y h x y h L y y ϕϕ-≤-记1()(,(),)n n n n y y x h x y x h ϕ+=+,因为单步法具有p 阶精度,故存在0M >,使得1111()p n n n R y x y Mh ++++=-≤从而有111111111()()()(,(),)(,,)()(,(),)(,,)n n n n n n n p n n n n n n p n n n n n n e y x y y x y y y Mh y x h x y x h y h x y h Mh y x y h x y x h x y h ϕϕϕϕ+++++++++=-≤-+-≤++--≤+-+-1(1)p nMh hL e +≤++反复递推得11111101110(1)(1)1(1)(1)(1)(1)1(1)p p n n n p n n p n e Mh hL Mh hL e hL hL Mh hL e hL Mh hL e hL+++-+++++⎡⎤≤++++⎣⎦⎡⎤≤+++++++⎣⎦+-≤++因为00()y x y =,即00e =,又(1)n h b a +≤-,于是ln(1)1()(1)(1)b a b a hL n L b a h h hL hL e e --++-+≤+=≤所以()11()p L b a p n M e h e O h L -+⎡⎤≤-=⎣⎦推论设单步法具有p (1p ≥)阶精度,增量函数(,,)x y h ϕ在区域G :, , 0a x b y h h ≤≤-∞<<+∞≤≤上连续,且关于y 满足利普希茨条件,则单步法是收敛的.当(,)f x y 在区域:,D a x b y ≤≤-∞<<+∞上连续,且关于y 满足利普希茨条件时,改进欧拉法,各阶龙格-库塔法的增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,因而它们都是收敛的.关于单步法收敛的一般结果是:定理8.2设增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,则单步法收敛的充分必要条件是相容性条件(8.4.3).8.4.2稳定性稳定性与收敛性是两个不同的概念,收敛性是在假定每一步计算都准确的前提下,讨论当步长0h →时,方法的整体截断误差是否趋于零的问题.而稳定性则是讨论舍入误差的积累能否对计算结果有严重影响的问题.定义8.6若一种数值方法在节点值n y 上有一个大小为δ的扰动,于以后各节点()m y m n >上产生的偏差均不超过δ,则称该方法是稳定的.我们以欧拉法为例进行讨论.假设由于舍入误差,实际得到的不是n y 而是n n n y y δ=+,其中n δ是误差.由此再计算一步,得到1(,)n n n n y y hf x y +=+把它与不考虑舍入误差的欧拉公式相减,并记111n n n y y δ+++=-,就有[]1(,)(,)1(,)n n n n n n y n nh f x y f x y hf x δδηδ+⎡⎤=+-=+⎣⎦其中y f f y∂=∂.如果满足条件1(,)1y n hf x η+≤,(8.4.4)则从n y 到1n y +的计算,误差是不增的,可以认为计算是稳定的.如果条件(8.4.4)不满足,则每步误差将增大.当0y f >时,显然条件(8.4.4)不可能满足,我们认为问题本身具有先天的不稳定性.当0y f <时,为了满足稳定性要求(8.4.4),有时h 要很小.一般的,稳定性与方法有关,也与步长h 的大小有关,当然也与方程中的(,)f x y 有关.为简单起见,通常只考虑数值方法用于求解模型方程的稳定性,模型方程为y y λ'=(8.4.5)其中λ为复数.一般的方程可以通过局部线性化转化为模型方程,例如在(,)x y 的邻域(,)(,)(,)()(,)()x y y f x y f x y f x y x x f x y y y '==+-+-+略去高阶项,再作变量替换就得到u u λ'=的形式.对于模型方程(8.4.5),若Re 0λ>,类似以上分析,可以认为方程是不稳定的.所以我们只考虑Re 0λ<的情形,这时不同的数值方法可能是数值稳定的或者是数值不稳定的.当一个单步法用于试验方程y y λ'=,从n y 计算一步得到1()n n y E h y λ+=(8.4.6)其中()E h λ依赖于所选的方法.因为通过点(,)n n x y 试验方程的解曲线(它满足,()n n y y y x y λ'==)为[]exp ()n n y y x x λ=-,而一个p 阶单步法的局部截断误差在()n n y x y =时有1111()()p n n n T y x y O h ++++=-=,所以有1exp()()()p n n y h E h y O h λλ+-=(8.4.7)这样可以看出()E h λ是h e λ的一个近似值.由(8.4.6)可以看到,若n y 计算中有误差ε,则计算1n y +时将产生误差()E h λε,所以有下面定义.定义8.7如果(8.4.6)式中,()1E h λ<,则称单步法(8.3.14)是绝对稳定的.在复平面上复变量h λ满足()1E h λ<的区域,称为方法(8.3.14)的绝对稳定区域,它与实轴的交称为绝对稳定区间.在上述定义中,规定严格不等式成立,是为了和线性多步法的绝对稳定性定义一致.事实上,()1E h λ=时也可以认为误差不增长.(1)欧拉法的稳定性欧拉法用于模型方程(8.4.5),得1(1)n n y h y λ+=+,所以有()1E h h λλ=+.所以绝对稳定条件是11h λ+<,它的绝对稳定区域是h λ复平面上以(1,0)-为中心的单位圆,见图8.3.而λ为实数时,绝对稳定区间是(2,0)-.Im()h λRe()h λ2-1-O 图8.3欧拉法的绝对稳定区域(2)梯形公式的稳定性对模型方程,梯形公式的具体表达式为11()2n n n n h y y y y λλ++=++,即11212n nh y y h λλ++=-,所以梯形公式的绝对稳定区域为12112h h λλ+<-.化简得Re()0h λ<,因此梯形公式的绝对稳定区域为h λ平面的左半平面,见图8.4.特别地,当λ为负实数时,对任意的0h >,梯形公式都是稳定的.Im()h λRe()h λO 图8.4梯形公式的绝对稳定区域(3)龙格-库塔法的稳定性与前面的讨论相仿,将龙格-库塔法用于模型方程(8.4.5),可得二、三、四阶龙格-库塔法的绝对稳定区域分别为211()12h h λλ++<23111()()126h h h λλλ+++<2341111()()()12624h h h h λλλλ++++<当λ为实数时,二、三、四阶显式龙格-库塔法的绝对稳定区域分别为20h λ-<<、2.510h λ-<<、 2.780h λ-<<.例8.5设有初值问题21010101(0)0xy y x x y ⎧'=-≤≤⎪+⎨⎪=⎩用四阶经典龙格-库塔公式求解时,从绝对稳定性考虑,对步长h 有何限制?解对于所给的微分方程有2100,(010)1f x x y xλ∂==-<≤≤∂+在区间[0,10]上,有201010max ||max51t x x λ<<==+由于四阶经典龙格-库塔公式的绝对稳定区间为 2.7850h λ-<<,则步长h 应满足00.557h <<.。
第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。
在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。
(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。
(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。
定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。
收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。
则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。
第六章常微分方程的数值解法第六章常微分方程的数值解法在自然科学研究和工程技术领域中,常常会遇到常微分方程的求解问题。
传统的数学分析方法仅能给出一些简单的、常系数的、经典的线性方程的解析表达式,不能处理复杂的、变系数的、非线性方程,对于这些方面的问题,只能求诸于近似解法和数值解法。
而且在许多实际问题中,确确实实并不总是需要精确的解析解,往往只需获得近似的解或者解在若干个点上的数值即可。
在高等数学课程中介绍过的级数解法和逐步逼近法,能够给出解的近似表达式,这一类方法称为近似解法。
还有一类方法是通过计算机来求解微分方程的数值解,给出解在一些离散点上的近似值,这一类方法称作为数值方法。
本章主要介绍常微分方程初值问题的数值解法,包括Euler 方法、Runge-Kutta 方法、线性多步法以及微分方程组与高阶微分方程的数值解法。
同时,对于求解常微分方程的边值问题中比较常用的打靶法与有限差分法作了一个简单的介绍。
§1 基本概念1.1 常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求解满足如下条件的函数,,b x a x y ≤≤)(=<<=α)(),(a y bx a y x f dxdy, (1.1) 其中),(y x f 是已知函数,α是给定的数值。
通常假定上面所给出的函数),(y x f 在给定的区域},),{(+∞<≤≤=yb x a y x D 上面满足如下条件:(1) 函数),(y x f 在区域D 上面连续;(2) 函数),(y x f 在区域D 上关于变量y 满足Lipschitz(李普希茨)条件:212121,),(),(y y b x a y y L y x f y x f ?≤≤?≤?,, (1.2)其中常数L 称为Lipschitz(李普希茨)常数。
由常微分方程的基本理论可以知道,假如(1.1)中的),(y x f 满足上面两个条件,则常微分方程初值问题(1.1)对于任意给定的初始值α都存在着唯一的解,,b x a x y ≤≤)(并且该唯一解在区间[a,b]上是连续可微的。