【湘教版】2019年春八年级数学下册学案设计1.2 第2课时 勾股定理的实际应用
- 格式:doc
- 大小:1.24 MB
- 文档页数:3
湘教版数学八年级下册1.2《勾股定理的实际应用》教学设计一. 教材分析《勾股定理的实际应用》是湘教版数学八年级下册第1章第2节的内容。
本节课的主要内容是让学生掌握勾股定理并能应用于解决实际问题。
教材通过引入直角三角形三边关系,引导学生探究并证明勾股定理,进而运用勾股定理解决实际问题。
教材内容由浅入深,循序渐进,使学生在掌握知识的同时,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、勾股定理的初步认识以及直角三角形的性质。
但对于如何将勾股定理应用于实际问题,解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生运用已有知识解决实际问题,提高学生的动手操作能力和解决问题的能力。
三. 教学目标1.知识与技能目标:让学生掌握勾股定理,并能运用勾股定理解决实际问题。
2.过程与方法目标:通过观察、操作、探究、验证等过程,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:让学生掌握勾股定理,并能应用于解决实际问题。
2.教学难点:如何引导学生运用勾股定理解决实际问题,提高学生的解决问题的能力。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.合作学习法:学生进行小组讨论,培养学生的团队合作意识,提高学生的解决问题能力。
3.引导发现法:教师引导学生发现问题、解决问题,培养学生的独立思考能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学活动。
2.学生准备:预习教材内容,了解勾股定理的初步认识。
3.教学资源:多媒体教学设备、教学课件、练习题等。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如测量旗杆高度、计算三角形面积等,引发学生对勾股定理的兴趣,激发学生的学习动机。
湘教版八下数学1.2直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用教学设计一. 教材分析《湘教版八下数学1.2直角三角形的性质和判定(Ⅱ)》第2课时主要讲解勾股定理的实际应用。
这部分内容是在学生已经掌握了直角三角形的性质和判定方法的基础上进行教学的。
通过本节课的学习,使学生掌握勾股定理的应用,提高解决实际问题的能力。
教材通过丰富的情境素材,引导学生探究、发现并掌握勾股定理,进而应用于实际问题的解决。
二. 学情分析学生在学习本节课之前,已经掌握了直角三角形的性质和判定方法,具备了一定的观察、思考、探究能力。
但部分学生在解决实际问题时,可能还不太会运用勾股定理,对于一些复杂点的实际问题,可能会感到困惑。
因此,在教学过程中,要注意引导学生运用已有知识解决实际问题,提高他们的实践能力。
三. 教学目标1.知识与技能目标:让学生掌握勾股定理,并能应用于实际问题的解决。
2.过程与方法目标:通过观察、思考、探究,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:勾股定理的掌握和应用。
2.难点:如何将实际问题转化为数学问题,运用勾股定理进行解决。
五. 教学方法1.情境教学法:通过丰富的情境素材,引导学生观察、思考、探究,激发学生的学习兴趣。
2.案例教学法:分析典型实例,使学生掌握勾股定理的应用。
3.小组合作学习:培养学生团队合作精神,提高他们的实践能力。
六. 教学准备1.教学课件:制作课件,展示勾股定理的实例和应用。
2.教学素材:收集一些实际问题,作为教学案例。
3.教学工具:直角三角板、测量工具等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形实例,如建筑物、家具等,引导学生观察、思考,引出本节课的主题——勾股定理的实际应用。
2.呈现(10分钟)展示勾股定理的证明过程,让学生了解勾股定理的来历。
然后,通过一些典型实例,讲解勾股定理的应用,让学生学会如何将实际问题转化为数学问题,运用勾股定理进行解决。
1.2直角三角形的性质和判定(Ⅱ)物以类聚,人以群分。
《易经》原创不容易,【关注】店铺,不迷路!第2课时勾股定理的实际应用【知识与技能】1.勾股定理从边的方面进一步刻画直角三角形的特征,学生将在原有的基础上对直角三角形有更深刻的认识和理解.2.掌握直角三角形三边关系——勾股定理及直角三角形的判别条件——勾股定理的逆定理.【过程与方法】1.放手学生从多角度地了解勾股定理.2.提高学生亲自动手的能力.【情感态度】1.学会运用勾股定理来解决一些实际问题,体会数学的应用价值.2.尽可能的给学生提供有关勾股定理的材料,给予交流的机会,并在与他人交流的过程中,敢于发表不同的见解,在交流活动中获得成功的体验.【教学重点】应用勾股定理有关知识解决有关问题.【教学难点】灵活应用勾股定理有关知识解决有关问题.一、创设情境,导入新课问题勾股定理的内容是什么?它揭示了直角三角形三边之间的关系,今后我们来看看这个定理的应用.【教学说明】教师创设问题,有针对性地复习了勾股定理,对本节课的应用勾股定理解决实际的问题打下了坚实的基础.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的应用思考教材第12页“动脑筋”【教学说明】提出问题,提供学生参与数学活动的时间与空间,调动学生的观察能动性,引导学生建立数学模型,提高学生分析问题、解决问题的能力.例:教材第12页例2【教学说明】以古代的数学问题为背景,一方面及时巩固勾股定理的运用,另一方面让学生感受到数学文化.三、运用新知,深化理解1.直角三角形中已知其中的两条边长是4和5,则第三条边等于()A.3B. 41C.3或41D.无法确定2.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.①已知a=5,b=12,求c;②已知a=20,c=29,求b.3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所能走的最短路线的长度.【教学说明】由学生独完成,以加深对知识的理解和运用,便于了解学生掌握情况,给有困难的学生给予指导,及时纠正他们出现的错误,并改正强化,在完成上述题目后,教师引导学生完成练习册中本课时的对应训练部分.答案:1.C3.解:将曲面沿AB展开,如图,过C作CE⊥AB于E,在Rt△ECF中,∠E=90°,EF=18-1-1=16(cm),CE=1/2×60=30(cm),由勾股定理,得CF=223016+=34(cm)+=22CE EF四、师生互动,课堂小结通过本节课的学习,给同学们谈谈你的收获是什么?你认为自己还在哪些问题上存在疑问?与大家共同交流.【教学说明】学生自已总结归纳加深印象.引导学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.1.布置作业:习题1.2中的第5、9题.2.完成练习册中本课时练习的作业部分.就练习的情况来看,一方面学生简单机械地套用了a2+b2=c2,没有分析问题的质所在;另一方面对于曲面转化为平面问题和在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训提高,以达到全面提高.【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。
湘教版数学八年级下册1.2《勾股定理的逆定理》教学设计一. 教材分析《勾股定理的逆定理》是湘教版数学八年级下册第1章第2节的内容。
这部分内容是在学生已经掌握了勾股定理的基础上进行教学的,主要是让学生了解并证明勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过引入生活中的实例,激发学生的学习兴趣,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理,对直角三角形的性质有一定的了解。
但部分学生对证明过程的理解可能还不够深入,对勾股定理的逆定理的应用还需要进一步巩固。
此外,学生的学习兴趣和动机对学习效果有很大影响,因此,教师在教学过程中需要注重启发学生思考,激发学生的学习兴趣。
三. 教学目标1.知识与技能:让学生掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生解决实际问题的能力,培养学生的团队合作精神。
四. 教学重难点1.重点:勾股定理的逆定理的内容和证明过程。
2.难点:如何判断一个三角形是否为直角三角形,以及如何运用逆定理解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,让学生主动思考,发现问题,解决问题。
2.互动法:教师与学生进行互动,让学生在交流中学习,提高学生的表达能力。
3.实践法:让学生通过实际操作,加深对知识的理解和记忆。
六. 教学准备1.教材、教案、课件等教学资料。
2.三角板、直尺等学习工具。
3.相关的生活实例图片或视频。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如建筑物、家具等,引导学生观察其中的直角三角形,让学生感受到直角三角形在生活中的重要性。
然后提出问题:“如何判断一个三角形是否为直角三角形?”引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师介绍勾股定理的逆定理的内容,并通过几何画板或实物模型展示逆定理的证明过程,让学生理解并掌握逆定理。
1.2 直角三角形的性质和判定(Ⅱ)第1课时 勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并应用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理已知:如图,在△ABC 中,∠ACB=90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ; (3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12(cm);(2)∵S △ABC =12CB ·AC =12×5×12=30(cm 2);(3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013(cm).方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,根据面积相等得出一个方程,再解这个方程即可. 【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况:(1)当△ABC 为锐角三角形时,如图①所示,在Rt △ABD 中,BD =AB 2-AD 2=152-122=9,在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示,在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为:15+13+4=32,∴△ABC 的周长为32或42.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理与等腰三角形的综合如图所示,已知△ABC 中,∠B=22.5°,AB 的垂直平分线分别交BC 、AB 于D 、F 点,BD =62,AE ⊥BC 于E ,求AE 的长.解析:欲求AE ,需与BD 联系,连接AD ,由线段垂直平分线的性质可知AD =BD .可证△ADE 是等腰直角三角形,再利用勾股定理求AE 的长.解:如图所示,连接AD .∵DF 是线段AB 的垂直平分线,∴AD =BD =62,∴∠BAD =∠B =22.5°.∵∠ADE =∠B +∠BAD =45°,AE ⊥BC ,∴∠DAE =45°,∴AE =DE .由勾股定理得AE 2+DE 2=AD 2,∴2AE 2=(62)2,∴AE =622=6.方法总结:22.5°虽然不是特殊角,但它是特殊角45°的一半,所以经常利用等腰三角形和外角进行转换.直角三角形中利用勾股定理求边长是常用的方法.探究点二:勾股定理与图形的面积探索与研究: 方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,即S△ABC+S△ACD=S△ABD +S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的应用3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可设计拼图活动,并自制精巧的课件让学生从图形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。
第2课时 勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究 探究点一:勾股定理在实际生活中的应用【类型一】 勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC 、AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米,6秒后,BC =13-0.5×6=10米,则AB =BC 2-AC 2=53米,则船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】 含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A 市测得沙尘暴中心在A 市的正西方向300km 的B 处,以107km/h的速度向南偏东60°的BF 方向移动,距沙尘暴中心200km 的范围是受沙尘暴影响的区域,问:A 市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A 市受沙尘暴影响的时间.解析:过点A 作AC ⊥BF 于C ,然后求出∠ABC =30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC =12AB ,从而判断出A 市受沙尘暴影响,设从D点开始受影响,此时AD =200km ,利用勾股定理列式求出CD 的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A 作AC ⊥BF 于C ,由题意得,∠ABC =90°-60°=30°,∴AC =12AB =12×300=150(km),∵150<200,∴A 市受沙尘暴影响,设从D 点开始受影响,则AD =200km.由勾股定理得,CD =AD 2-AC 2=2002-1502=507(km),∴受影响的距离为2CD =1007km ,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半”这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理在几何图形中的应用【类型一】 利用勾股定理解决最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分三种情况比较最短距离: 如图①(将正面与上面展开)所示,AM =102+(20+5)2=529,如图②(将正面与右侧面展开)所示,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm ;如图③(将正面与左侧面展开)所示,AM =(20+10)2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型二】 运用勾股定理与方程解决有关计算问题如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:设AM =x ,连接BM ,MB ′,在Rt △ABM 中,AB 2+AM 2=BM 2,在Rt △MDB ′中,B ′M 2=MD 2+DB ′2,∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x =2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】 勾股定理与数轴如图所示,数轴上点A 所表示的数为a ,则a 的值是()A.5+1 B .-5+1 C.5-1 D. 5 解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A 所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A 的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2”,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.。
第2课时勾股定理的实际应用古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春举世不师,故道益离。
柳宗元 "田墩中心小学何龙1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米,6秒后,BC=13-0.5×6=10米,则AB=BC2-AC2=53米,则船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A市受沙尘暴影响的时间.解析:过点A作AC⊥BF于C,然求出∠ABC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12AB,从而判断出A市受沙尘暴影响,设从D点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A作AC⊥BF于C,由题意得,∠ABC=90°-60°=30°,∴AC=12AB=12×300=150(km),∵50<200,∴A市受沙尘暴影响,设从D点开始受影响,则D=200km.由勾股定理得,CD=AD2-AC2=2002-1502=507 (km),∴受影响的距离为2CD=1007km,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的半”这一性质,知道方向角如何在图上表示,作辅助线构造直三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理几何图形中的应用【类型一】利用勾股定理解决最短距问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH 上,且CM=cm,一只蚂蚁如果要着长方体的表面从点A爬到点M需要爬行的最短距离是少?解:分三种情况比较最短距离:如图①(将正面与上面展开)所示,AM=102+(20+5)2=529,如图②(将正面与右侧面展开)所示,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm如图③(将正面与左侧面展开)所示,AM==537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型二】运用勾股定理与方程解决有关计算问题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是( ) A.1.5 B.2C.2.25 D.2.5解析:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是( )A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2”,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.【素材积累】1、冬天是纯洁的。
第2课时勾股定理的实际应用
学习目标:
1.会把立体图形展开成平面图形
2.运用勾股定理及直角三角形的判别条件解决简单的生活实际问题
重点:运用勾股定理及直角三角形的判别条件解决简单的生活实际问题
学习过程:
一、课前准备
1.知识链接
(1)勾股定理:它的作用:
(2)如何判断一个三角形是直角三角形?
(3)长方体的侧面展开图形状是_______,展开图相邻的两边中其中一边长是长方体的___________,另一边是长方体的__________。
(4)在同一平面内,两点之间______最短。
(5)圆柱体的侧面展开图形状是______,展开图相邻的两边中其中一边长是圆柱体的_____________,另一边是圆柱体的__________。
2.预习检测
(1)将直角三角形三边扩大同样的倍数,得到的三角形()
A、直角三角形
B、锐角三角形
C、钝角三角形
D、不能确定
(2)观察下列几组数据:①8,15,17 ②7,12,15 ③12,15,20 ④0.3,0.4,0.5其中是勾股数的有()组
A、1组
B、2组
C、3组
D、4组
(3)三角形的三边长a、b、c,满足(a+b)2=c2+2ab,则这个三角形是()
A、等边三角形
B、锐角三角形
C、钝角三角形
D、直角三角形
(4)如果线段a、b、c能组成直角三角形,则它们的比可能是()
A、1:2:4
B、1:3:5
C、3:4:7
D、5:12:13
(5)△ABC中,a:b:c=3:4:5,且a+b+c=24,则a= b= c=
(6)已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为 .
二、学习过程
探究1
1.如图,有一个圆柱形的盒子,它的底面半径为3厘米,高为8厘米,在盒子下底面的A
点处有一只蚂蚁沿圆柱形盒子的表面爬行,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?
变式:如果将底面半径为3厘米改为底面周长为12厘米,其他条件不变呢?
2.一只蚂蚁从圆柱体的底面上一点A爬到另一底面上与A相对的点B,已知圆柱体的底面半径为r,高为h,则爬行的最短距离为AB2 = ( _____ )2 + ( ______ )2
3.如图,要在一个圆柱体盒子里放一根吸管AB,已知圆柱体的半径为2㎝,高为3㎝,则最长可放置多长的吸管?
三、达标测试
1.一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口90分钟后相距()
A、30海里
B、40海里
C、 25海里
D、45海里
2.一架长为25dm的梯子,斜立在一竖直的墙上,这时梯距墙底端7dm,若梯子顶端下滑4dm,梯子平移滑过 dm.
3.旗杆于离地面3m处断裂,杆顶落于离杆底4m处,旗杆断前高 m.
4.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
5.有一根长24㎝的筷子,置于底面直径为5㎝,高为12㎝的圆柱形水
杯中,如图,设筷子露在杯子外面的长为h,则求h的取值范围.。