最新整理湘教版八年级上册数学教案(全套)汇总
- 格式:pdf
- 大小:3.07 MB
- 文档页数:171
八年级上册数学教案湘教版教案即教学方案,是教育者引领学生分析、探究、处理、整合知识信息的指导和组织方案。
它与整体的教育教学思想、环境条件紧密相关,与教师个体素质条件直接相联。
下面是小编为大家精心整理的xx,仅供参考。
八年级上册数学教案湘教版(一)1.2分式的乘法和除法1.2.1分式的乘除法(第3课时)教学目标1 通过类比得出分式的乘除法则,并会进行分式乘除运算。
2 了解约分、最简分式的概念,会对分式的结果约分。
重点、难点重点:分式乘除法则及运用分式乘除法则进行计算难点:分式乘除法的计算八年级上册数学教案湘教版(二)教学过程一创设情境,导入新课1 分数的乘除法复习2924计算:(1)⨯;(2÷分数乘法、除法运算的法则是什么? 310392 类比:把上面的分数改为分式:(1)fufu⨯,(2)÷(u≠0)怎样计算呢? gvgv这节课我们来学习----分式的乘除法(板书课题)二合作交流,探究新知1 分式的乘除法则(1)fuf⋅ufufvf⋅v⨯=,(2)÷=⋅=(u≠0) gvg⋅vgvgug⋅u你能用语言表达分式的乘除法则吗?分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分母的公因式。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2 分式乘除法则的初步应用及分式的约分和最简分式的概念2x2y23x22x例 1 计算:(1)学生独立完成,教师点评⋅3;(2)÷5yxx-1x-1点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。
分子、分母没有公因式的分式叫最简分式。
(2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。
三应用迁移,巩固提高1 需要分解因式才能约分的分式乘除法x+14x28x26x⋅2;(22÷例2 计算:(1) 2xx-1x+2x+1x+1点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。
第1章分式1.1 分式第1课时分式的概念【知识与技能】1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.【过程与方法】让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.【情感态度】培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分【知识与技能】使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.【过程与方法】通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.【情感态度】让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】 掌握分式的基本性质. 【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知 1.分数的基本性质是什么?2.31=62的依据是什么? 【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34a a 相等吗?分式22a b ab 与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h ≠0). 【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分.分子和分母没有公因式的分式叫作最简分式.三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法【知识与技能】理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.【过程与方法】经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.【情感态度】通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方【知识与技能】1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.【过程与方法】经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.【情感态度】体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法【知识与技能】了解同底数幂的除法的运算性质,并能解决一些实际问题.【过程与方法】经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.【情感态度】发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2零次幂和负整数指数幂【知识与技能】1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.【过程与方法】通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【情感态度】通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mmaa=0a(a≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a=1(a≠0)【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1.2.试试看:填空:3.探究:负整数指数幂的意义.(1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a -=1n a(a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则). 3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为(A ) A .-204000 B .-0.000204 C .-204.000D .-20400 3.用科学记数法表示下列各数. (1)30920000(2)0.00003092(3)-309200(4)-0.000003092【分析】用科学记数法表示数时,关键是确定a和n的值.解:(1)30920000=3.092×710(2)0.00003092=3.092×510-(3)-309200=-3.092×510(4)-0.000003092=-3.092×610-6.已知9m÷223m+=1 3n(),求n的值8.把下列各式写成分式形式:2x-,32xy-解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则【知识与技能】会用整数指数幂的运算法则熟练进行计算. 【过程与方法】通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则. 【情感态度】发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5)(nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a≠0、b≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m·a n=m na+(a≠0,m、n都是正整数)(2)()n m mna a=(a≠0,m、n都是正整数)(3))a b a b=(a≠0,n是整数)··(n n n2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减【知识与技能】理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.【过程与方法】类比同分母分数加减法的法则归纳出同分母分式的加减法法则.【情感态度】通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时通分、最简公分母的概念【知识与技能】会找最简公分母,能进行分式的通分.【过程与方法】认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.【情感态度】通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知 1.见教材P26例3、例4. 2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减【知识与技能】理解并掌握异分母分式加减法的法则.【过程与方法】经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.【情感态度】培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按。
1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点)3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x2y,x2x中的分式有( ) A .1个 B .2个 C .3个 D .4个解析:a +2a -1,3x 2y ,x 2x 中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式. 探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x |x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数 解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C.方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12. 错误!探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1 解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式错误! 在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.1.1 分式第1课时 分式的概念教学目标一、知识与技能1.理解分式的含义,能区分整式与分式。
湘教版八年级数学上册教学计划(通用12篇)湘教版八年级数学上册教学计划篇1一、指导思想海淀区是基础教育新课程改革国家级教改实验区,承担着教改的重任。
作为实验区的数学实验教师,我们应当认真学习和研究《基础教育课程改革纲要(试行)》以及《全日制义务教育数学课程标准》。
我们需深入研究社会和教育发展的趋势,掌握现代教育理念。
明确《基础教育课程改革纲要》中提出的三个目标维度在数学学科中的体现:知识与技能;过程与方法;情感态度与价值观。
明确《全日制义务教育数学课程标准》的基本理念,以及课程标准对数学课程的学习内容,着重强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、应用意识和推理能力。
在教学过程中,强调改善学生的学习方法,引导学生学会学习,使其具有适应终生学习的基本知识、基本技能和方法,学会生存、学会做人。
二、重点工作1. 借课改东风,全面提升教学水平在推进课程改革的过程中,我们要树立三个意识:第一,要树立保底意识,使每一节课都尽可能作到精心准备。
这是教师最基本的职业道德和责任,是推进课程改革的根本保证。
第二,增强优化意识,改进和提高常规教学质量。
常规课体现了大多数教师、大多数课的实际水平,对教学质量影响最大,提高的潜力也最大。
我们需作到勤于反思,善于学习,不满足于目前的教学现状,适应教改新形势,在新的教学理念的指导下,把常规课上得更好。
优化与改进常规课的过程是教学改革过程的重要组成部分。
第三,强化改革意识,积极探索课改优质课。
教师在教学过程中需尽力作到与学生积极互动,共同发展。
使学生能够充满自信地学习,使数学教学活动成为师生共同探究未知的过程。
我们需注意改善和研究教学方法,尽快适应新课标与新教材的需要。
2. 调整角色、科学地发挥教师的作用课程改革的成败关键在于教师。
教师在教学中的重要作用是不容忽视的。
再先进的思想、再完善的课程、再优秀的教材,也要通过教师的教学行为具体实施。
我们则需注意调整角色,学会关注学生的智力类型、关注学生的生活经验、关注学生的学习方式、关注学生的处境与感受。
八年级数学上册免费湘教教案湘教版八年级数学上册免费教案一、教学目标1. 知识与技能:使学生掌握三角形、四边形的概念及其性质,能够正确地应用所学知识解决一些实际问题。
2. 过程与方法:通过观察、操作、探究等活动,培养学生的思维能力、实践能力以及创新意识。
3. 情感态度价值观:让学生在学习过程中感受到数学的美,激发学生学习数学的兴趣,培养学生的合作意识和探索精神。
二、教学内容1. 三角形的概念及性质2. 四边形的概念及性质3. 三角形、四边形的应用三、教学难点与重点难点:理解三角形、四边形的性质及其应用。
重点:掌握三角形、四边形的概念及性质。
四、教具和多媒体资源1. 黑板2. 投影仪3. 教学软件:几何画板等五、教学方法1. 激活学生的前知:通过提问、复习等方式,激活学生对三角形、四边形的已有认识。
2. 教学策略:采用讲解、示范、小组讨论等多种教学策略,引导学生自主学习、合作学习。
3. 学生活动:设计各种探究活动,让学生在实践中学习和掌握知识。
六、教学过程1. 导入:通过提问导入新课,引起学生的兴趣。
2. 讲授新课:讲解三角形、四边形的概念及性质,引导学生理解并掌握。
3. 巩固练习:设计一些实际问题,让学生运用所学知识解决,巩固所学内容。
4. 归纳小结:对本节课所学内容进行总结,引导学生自我反思。
七、评价与反馈1. 设计评价策略:通过课堂测试、小组讨论等方式,评价学生的学习效果。
2. 为学生提供反馈:根据评价结果,为学生提供针对性的反馈和建议,帮助学生改进学习。
八、作业布置1. 完成教学软件上的相关练习。
2. 收集生活中的三角形、四边形物品,下节课进行展示和讨论。
湘教版八年级优秀的数学教案5篇湘教版八年级优秀的数学教案1《一次函数的图象应用》教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值. 重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运二、随堂练习,巩固深化课本P119练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:湘教版八年级优秀的数学教案2《梯形》教案教学目标:情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
湘教版八年级上册数学教案(全套)八年级(上)数学科计划一、指导思想以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他学科提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。
对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。
数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
湘教版八年级数学上册教学计划湘教版八年级数学上册教学计划精选2篇(一)教学方案:湘教版八年级数学上册第一单元:分式与整式运算1. 知识点:整数的除法、分子为整数、分母为整数的分式2. 学习目的:a. 掌握整数的除法运算规那么b. 理解分式的概念,可以进展分式的加减乘除运算3. 教学内容:a. 整数的除法运算b. 分式的加减乘除运算4. 教学活动:a. 提供一些整数的除法计算题目,引导学生掌握整数的除法规那么b. 引导学生通过详细问题,引入分式的概念,进展相关分式的加减乘除运算5. 教学用具:教材、黑板、多媒体投影仪等第二单元:加法和减法的应用1. 知识点:整式的加法和减法2. 学习目的:a. 掌握整式的加法和减法运算规那么b. 可以运用整式进展实际问题的求解3. 教学内容:a. 整式的加法和减法b. 运用整式解决实际问题4. 教学活动:a. 通过例题演示整式的加法和减法运算b. 引导学生运用整式解决一些实际问题5. 教学用具:教材、黑板、多媒体投影仪等第三单元:一次函数与图像1. 知识点:一次函数的概念、斜率与截距、一次函数的图像2. 学习目的:a. 理解一次函数的概念,理解一次函数的各个要素b. 可以画出一次函数的图像,并解读图像中的意义3. 教学内容:a. 一次函数的概念、斜率与截距b. 一次函数的图像4. 教学活动:a. 通过详细例子引入一次函数的概念和要素,并进展相关计算b. 引导学生画出一次函数的图像,并分析图像中的斜率和截距5. 教学用具:教材、黑板、多媒体投影仪等第四单元:图形的相似与等腰三角形1. 知识点:相似三角形的断定、相似比与相似比例、等腰三角形的性质2. 学习目的:a. 掌握相似三角形的断定方法,并可以运用相似比例进展计算b. 理解等腰三角形的概念和性质3. 教学内容:a. 相似三角形的断定方法、相似比例计算b. 等腰三角形的概念和性质4. 教学活动:a. 通过比拟图形的各个角和边的比值,引导学生断定相似三角形,进展相似比例的计算b. 引入等腰三角形的概念,并进展相关性质的讲解和实例演示5. 教学用具:教材、黑板、多媒体投影仪等第五单元:直角三角形与勾股定理1. 知识点:直角三角形的概念与性质、勾股定理2. 学习目的:a. 理解直角三角形的概念和性质,可以运用根本三角函数解决问题b. 纯熟运用勾股定理解决直角三角形的计算问题3. 教学内容:a. 直角三角形的定义和性质、三角函数的概念和计算b. 勾股定理的概念和应用4. 教学活动:a. 介绍三角函数的概念和计算方法,通过实例演示运用三角函数解决实际问题b. 引导学生理解勾股定理的概念,并通过实例计算验证其正确性5. 教学用具:教材、黑板、多媒体投影仪等以上为湘教版八年级数学上册的教学方案,希望对您有所帮助。
1.1 分式(第1课时)【教学目标】1、 了解分式的基本概念并能用分式表示现实生活中的数量关系,会判断一个代数式是否为分式;2、 会求使一个分式有意义的条件;会判断分式的值是否为零,会求分式的值;3、 通过类比学习,经历分式的概念形成过程,初步学会运用类比转化的数学思想方法研究数学问题;4、 感受事物之间的联系,培养良好的辩证思维,严谨的科学态度。
【教学重点】理解分式的概念,掌握分式有意义的条件,会求分式的值。
【教学难点】掌握分式有意义的条件,分式值为零的条件。
【教学过程】一、 情境引入1、(1)某长方形的面积为S m 2,长为4m,则它的宽为 m; (2)某长方形的面积为12 m 2,长为x m,则它的宽为 m; (3)某三角形的面积为3 m 2,底为x m,则它的高为 m; (4)苹果a 元/千克,梨子b 元/千克,小明买了2千克苹果,n 千克梨子,共花元;(5)一个数除以这个数与2的差,设这个数为x ,则可以列式表示;(6)在一次数学考试中,小亮得m 分,小明得n 分,小红是小亮与小明得分和的一半,则小红得分。
2、将上面所列的分数式进行分类,说说你的分类标准(不用拘泥于按整式与分式分类,但老师在引导中,要引出整式与分式的分类,由此引出课题)二、 自主学习1、自学教材,回答下列问题:什么叫作分式?⒉下列代数式,哪些是分式?哪些是整式?3132,,,,,,3,3522x a x m n x x y x a y x y π--+-++-分式有:整式有:3、思考:分式5x x+中x 取任何实数都可以吗?为什么? 4、小结知识:一个整式f 除以一个非零整式g (g 中含有字母),所得的商记作f g ,把代数式f g叫作分式,其中f 是分式的分子,g 是分式的分母,0g ≠。
三、典例精析例1:当x 取什么值时,分式34-+x x 的值,⑴不存在;⑵等于0。
(让学生独立思考,给出答案后再交流,教师参与给予适当指导。
1.1 分式 第1课时 分式的概念【学习目标】1、能识别一个代数式是否为分式,会正确区分整式与分式。
2、学会判断一个分式是否有意义,会求一个分式的有意义、无意义及分式的值为零的条件。
3、会灵活应用分式的定义,掌握分式有意义的条件。
【重点难点】:理解并掌握分式有意义的的条件,分数值为零的条件. 【情景导入】: 计算:7÷6=67类似地:z ÷(x +y )=y x z【自主探究】:1、在教材动脑筋中得出的三个代数式有什么异同点?2、阅读教材第2页中分式的定义,试找出定义中的关键词和分式的分母需要满足的条件。
3、想一想:分式有意义、无意义、分式的值为零的条件: (1)当分母 时,分式才有意义。
(2)当分母 时,分式无意义。
(3)当 时,分式的值为零。
【基础演练】:1、下列式子中是分式的有 (只填序号) (1)x 4 (2)3y x + (3)yx xy - (4)y x 22- (5)2a π 2、当x 时,分式32-x 无意义;当x __________时,分式223x x -- 的值等于0.3、当x 时,分式33+-x x 的值为零。
4、若分式122-x x有意义,则x 的取值范围是 。
5、当x 为任意实数时,下列分式中,一定有意义的是 ( )A 、221xx + B 、112--x x C 、112++x x D 、11+-x x 6、要使分式)3)(1()3)(1(-++-x x x x 有意义,则必须满足下列条件( )A .1≠x 或3-≠xB .1-≠x 或3≠xC .1≠x 且3-≠xD .1-≠x 且3≠x 7、求分式6312-+x x 的值。
(1)、3=x ;(2)、52-=x 。
【综合提升】: 8、当x 为何值时,分式6522++-x x x 的值为零?9、已知,4-=x 分式a x b x +-无意义,2=x 时,分式ax bx +-的值为零,求b a -的值。
湘教版数学八年级上册教案1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点) 3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x 2y ,x2x 中的分式有( )A .1个B .2个C .3个D .4个 解析:a +2a -1,3x 2y ,x2x中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式.探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x|x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C. 方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12.方法总结:分式无意义的条件是分母等于0.探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式⎩⎪⎨⎪⎧分式的概念分式有无意义的条件⎩⎪⎨⎪⎧分式有意义:分母≠0分式无意义:分母=0分式的值⎩⎪⎨⎪⎧分式的值为0:分子=0且分母≠0求分式的值在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.第2课时 分式的基本性质1.通过与分数的类比学习,掌握这一基本而常用的数学思想方法;2.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)3.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式.(重点)一、情境导入1.我们学过下列分数:12,24,36,它们是否相等?为什么?2.请叙述分数的基本性质.3.类比分数的基本性质,你能猜想分式的基本性质吗?二、合作探究探究点一:分式的基本性质【类型一】 分式基本性质的应用填空:(1)3xy =( )3ax 2y ;(2)x 2-y 2(x -y )2=x +y( ). 解析:(1)小题中,分母由xy 变为3ax 2y ,只需乘以3ax ,根据分式的基本性质,分子也应乘以3ax ,所以括号中应填9ax .(2)小题中,分子由x 2-y 2变为x +y ,只需除以x -y ,根据分式的基本性质,分母也应除以x -y ,所以括号中应填x -y .方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.【类型二】 分式的符号法则下列各式从左到右的变形不正确的是( )A.-23y =-23y B.-y -6x =y 6xC .-8x 3y =8x -3yD .-a -b y -x =b -a x -y解析:选项A 中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B 中,同时改变分式的分子、分母的符号,其值不变,正确;选项C 中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D 中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变.探究点二:分式的约分【类型一】 运用约分,化简分式约分:(1)8x 2yz 3-32xyz 5; (2)a 2+ab a 2+2ab +b 2. 解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz 3,(2)小题先因式分解,分子与分母的公因式是(a +b ).解:(1)原式=x ·8xyz 34z 2·(-8xyz 3)=-x4z2; (2)原式=a (a +b )(a +b )2=aa +b. 方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式;②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分;③约分一定要彻底,约分的结果应是最简分式或整式.【类型二】 运用约分,化简求值先约分,再求值:2a 2-ab4a 2-4ab +b 2,其中a =-1,b =2.解:原式=a (2a -b )(2a -b )2=a2a -b. 当a =-1,b =2时,a 2a -b =-12×(-1)-2=14.方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算.探究点三:最简分式下列分式是最简分式的是( ) A.2a 3a 2b B.aa 2-3aC.a +b a 2+b 2D.a 2-ab a 2-b 2解析:选项A 中的分子、分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子、分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子、分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子、分母能约去公因式(a -b ),故选项D 不是最简分式.方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式.当分子、分母是多项式时,一般要进行因式分解,以便判断是否能约分.三、板书设计 分式的基本性质:f g =f ·hg ·h ,f g =f ÷hg ÷h(h ≠0)↓约分 (找出分子与分母的公因式) ↓最简分式 (分子与分母无公因式)本节课利用类比分数的基本性质学习了分式的基本性质,在学习过程中,应注重让学生在学法上的迁移,突出分式基本性质中的的两个关键词:“都”、“同”,尽量避免符号出错.1.2 分式的乘法和除法第1课时 分式的乘除1.理解并掌握分式的乘、除法法则;2.会用分式的乘、除法法则进行运算.(重点,难点)一、情境导入1.请同学们计算: (1)34×52; (2)13÷25. 2.根据上述分数的乘、除法运算,你能猜想下面这两个式子的运算结果吗? (1)f g ·u v ; (2)f g ÷u v.二、合作探究探究点一:分式的乘法运算【类型一】 分子、分母都是单项式计算: (1)16xy y 2·y 22x ; (2)5a 3bc 22x 2y ·-8x 2y 310a 2bc2.解析:分式乘分式,用分子的积作积的分子,分母的积作积的分母,然后再约分. 解:(1)16xy y 2·y 22x =16xy ·y 2y 2·2x=8y ;(2)5a 3bc 22x 2y ·-8x 2y 310a 2bc 2=-5a 3bc 2·8x 2y 32x 2y ·10a 2bc2=-2ay 2.方法总结:分式乘法运算的方法:①注意运算顺序及解题步骤,注意符号问题,不要漏乘负号;②整式与分式的运算,根据题目的特点,可将整式化为分母为“1”的分式;③运算中及时约分、化简;④注意运算律的正确使用;⑤结果应化为最简分式或整式.【类型二】 分子、分母中有多项式计算:m 2-4n 2m 2-mn ·m -nm 2-2mn.解析:观察分式的特点,分子与分母含有多项式,应先将多项式因式分解,再应用分式乘法法则运算.解:m 2-4n 2m 2-mn ·m -n m 2-2mn =(m +2n )(m -2n )m (m -n )·m -n m (m -2n )=m +2n m2.方法总结:分式中含多项式的乘法运算的一般步骤:①运用分式乘法的法则,用分子之积作为新分子,用分母之积作为新分母;②确定分子与分母的公因式;③约分,化为最简分式或整式.探究点二:分式的除法运算【类型一】 分子、分母都是单项式计算:2m 5n ÷4m2-10n2.解析:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 解:2m 5n ÷4m 2-10n 2=-2m 5n ·10n 24m 2=-n m. 方法总结:进行分式的除法运算时,先把分式的除法转化成乘法,然后按照乘法法则进行计算,要注意结果的符号.【类型二】 分子、分母中有多项式计算:(1)x 2-1y ÷x +1y2;(2)(xy -x 2)÷x -yxy; (3)x 2-6x +99-x 2÷2x -6x 2+3x. 解析:(1)小题中,先把除法转化为乘法,把x 2-1因式分解,再约分.(2)小题中,把xy -x 2看作是分母是1的分式,把除法转化为乘法,因式分解,再约分.(3)小题中,把除法转化为乘法,把各个分子、分母因式分解,再约分.解:(1)原式=(x +1)(x -1)y ·y2x +1=y (x -1);(2)原式=x (y -x )·xy x -y=-x 2y ; (3)原式=(x -3)2-(x +3)(x -3)·x (x +3)2(x -3)=-x2.方法总结:分式的除法计算首先要转化为乘法运算,若除式是整式,应将这个整式看作是分母为“1”的分式,然后对式子进行化简.化简时如果分子、分母有多项式,一般应先进行因式分解,然后再约分.分式的乘除运算实际就是分式的约分.三、板书设计1.分式的乘法:f g ·u v =fu gv.2.分式的除法:f g ÷u v =f g ·v u =fv gu(u ≠0).本节课学习了分式的乘、除法运算,通过观察、比较、猜想、分析,类比分数的乘、除法运算,得出分式的乘、除法运算法则.在运算中,把除法转化为乘法,分子、分母有多项式的要先因式分解,同时要注意避免符号出错.第2课时 分式的乘方1.理解并掌握分式的乘方法则,并会运用分式的乘方法则进行分式的乘方运算;(重点) 2.进一步熟练掌握分式乘、除法的混合运算.(难点)一、情境导入1.计算:(35)2,(35)3,(35)n;2.类似地,请你计算:(fg)n.二、合作探究探究点一:分式的乘方计算: (1)(3y 2x 2)2; (2)(-x 2y 2z 2xyz)3.解析:把分式的分子、分母分别乘方,(2)小题还可以先约分,再乘方. 解:(1)(3y 2x 2)2=(3y )2(2x 2)2=9y 24x 4;(2)(-x 2y 2z 2xyz )3=(-x 2y 2z )3(2xyz )3=-x 3y38. 方法总结:分式的乘方,把分子、分母各自乘方,运算时要注意符号,明确“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”,还要注意最后结果是最简分式或整式.探究点二:分式的乘除、乘方混合运算计算:(1)(-2a 2b cd 3)3÷2a d 3·(c a)3;(2)(ab 3)2·(-b a2)3÷(-b a)4;(3)a -b a ·(b b -a )2÷b 2a2.解析:先算乘方,再把除法转化为乘法,然后约分. 解:(1)(-2a 2b cd 3)3÷2a d 3·(c a )3=-8a 6b 3c 3d 9·d 32a ·c 3a 3=-4a 2b 3d6;(2)(ab 3)2·(-b a 2)3÷(-b a )4=a 2b 6·(-b 3a 6)·a 4b4=-b 5;(3)a -b a ·(b b -a )2÷b 2a 2=a -b a ·b 2(a -b )2·a 2b 2=aa -b. 方法总结:进行分式的乘除、乘方混合运算时,先算乘方,再算乘除,最后结果应化成最简分式或整式,通常情况下,计算得到的最后结果要使分子和分母第一项的符号为正号.对于含负号的分式,奇次方为负,偶次方为正.三、板书设计1.分式的乘方法则:(f g )n =f ngn .2.分式乘除、乘方的混合运算:先算乘方,再算乘除.本节课学习了分式的乘方及分式的乘除、乘方混合运算,在教学中应注重激发学生的积极性,勇于尝试.本节课的混合运算是一个难点,也是学生常出错的地方,教学时要引导学生注意运算顺序,优先确定运算符号,提高运算的准确率.1.3整数指数幂1.3.1同底数幂的除法1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.会用同底数幂的除法法则进行运算.(重点,难点)一、情境导入传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔.这位聪明的大臣跪在国王面前说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍.国王说:“你的要求不高,会如愿以偿的.”说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了……还没到第二十小格,袋子已经空了,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的诺言.问题1:国王应该给发明者多少粒麦子?问题2:假如一粒麦子是0.02克,用计算器算出国王应奖励给发明者的麦子总质量大约多少克?问题3:假如每个人每顿吃250克,一天三顿饭,一年365天,这些粮食可供1010(10亿)人食用多少年?二、合作探究探究点一:同底数幂的除法【类型一】底数是单项式计算:(1)(-a)3÷(-a)2; (2)(a3)2÷a5;(3)(xy3)3(-xy3)2; (4)-x3n+2x3n-1.解析:根据同底数幂的除法法则,即a m÷a n=a m-n进行运算.(3)小题可先确定符号,再按同底数幂的除法法则计算.解:(1)原式=(-a)3-2=-a;(2)原式=a 6÷a 5=a6-5=a ;(3)原式=(xy 3)3(xy 3)2=xy 3;(4)原式=-x 3.方法总结:进行同底数幂的除法运算时,只有底数相同时,才能把指数相减.因此计算时首先必须确定底数是否相同,如果底数是互为相反数,可以通过符号变化把底数化为相同.【类型二】 底数是多项式计算:(1)(x -y )8÷(y -x )6;(2)(a -b )3(b -a )2n ÷(a -b )2n -1.解析:底数为多项式时,可把多项式看作一个整体,再根据同底数幂的除法法则计算.解:(1)原式=(y -x )8÷(y -x )6=(y -x )2;(2)原式=(a -b )3(a -b )2n ÷(a -b )2n -1=(a -b )3+2n -(2n -1)=(a -b )4.方法总结:两数(式)互为相反数,则它们的偶次幂相等,奇次幂仍是互为相反数.即:(b -a )2n =(a -b )2n ,(b -a )2n +1=-(a -b )2n +1.(n 是正整数)探究点二:逆用同底数幂的性质已知a m =3,a n =4,求a 2m -n的值.解析:首先应用含a m 、a n 的代数式表示a 2m -n ,然后将a m 、a n的值代入即可求解.解:∵a m =3,a n=4,∴a2m -n=a 2m ÷a n =(a m )2÷a n =32÷4=94.方法总结:逆用同底数幂的除法法则:a m÷a n=a m -n,可以得到a m -n=a m÷a n.解决这类问题的关键在于把要求的式子a m -n 分别用a m 和a n来表示.这类题一般同时考查两个知识点:同底数幂的除法,幂的乘方,解题时应熟练掌握运算性质并能灵活运用.探究点三:同底数幂除法的实际应用某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?解析:根据题意可知2升液体中有2×1012个有害细菌,而1滴可杀死109个此种有害细菌,把两个量相除即可求得答案.解:∵液体中每升含有1012个有害细菌,∴2升液体中的有害细菌有2×1012个,又∵杀虫剂1滴可杀死109个此种有害细菌,∴用这种杀虫剂的滴数为2×1012÷109=2×103=2000滴. 方法总结:本题主要考查同底数幂的除法及学生阅读理解题意的能力,是数学与生活相结合的例子.解决这类问题的方法是:先列出解决问题的式子,再根据同底数幂的除法法则进行计算.三、板书设计 同底数幂的除法a m=a m-n(a≠0).即:同底数幂相除,底数不变,指数相减.a n本节课学习了同底数幂的除法法则及运用法则进行计算.易错点有两个:一是理解法则错误,认为同底数幂相除,底数不变,指数相除;二是对于底数是互为相反数的指数幂的除法运算,容易出现符号错误.在课堂上,让学生把这些错误展示在黑板上,大家共同分析产生错误的原因以及怎样避免错误的发生.1.3.2 零次幂和负整数指数幂1.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;(重点,难点) 2.会用科学记数法表示绝对值较小的数.(重点)一、情境导入上节课我们学习了同底数幂的除法法则:a m a n =a m -n,其中a ≠0,m ,n 是正整数,且m >n .在这里,如果m =n 或m =0,又会出现什么结果呢?二、合作探究 探究点一:零次幂【类型一】 零次幂有意义的条件已知(3x -2)0有意义,则x 应满足的条件是________.解析:根据零次幂的意义可知:(3x -2)0有意义,则3x -2≠0,x ≠23.故填x ≠23.方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.【类型二】 零次幂的运算计算: (1)30; (2)(-2)0;(3)(-12)0; (4)-22+|4-7|+(3-π)0.解析:(1),(2),(3)小题根据零次幂的意义计算;(4)小题先分别求乘方、绝对值、零次幂,再计算.解:(1)30=1;(2)(-2)0=1;(3)(-12)0=1;(4)-22+|4-7|+(3-π)0=-4+3+1=0.方法总结:①任何不等于零的数的零次幂等于1.零次幂式子的特征是:底数不等于0,指数等于0,要注意的是结果等于1而不等于0.②零次幂与其他运算相结合时,要分别计算.计算-22时,易错误的计算为-22=4,因此要正确理解-22和(-2)2的意义.【类型三】 零次幂的综合运用若(x -1)x +1=1,求x 的值.解析:由于任何不等于零的数的零次幂等于1,1的任何次幂都等于1,-1的偶数次幂等于1,故应分三种情况讨论.解:①当x +1=0,即x =-1时,原式=(-2)0=1;②当x -1=1,x =2时,原式=13=1;③x -1=-1,x =0,0+1=1不是偶数.故舍去. 故x =-1或2.方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.探究点二:负整数指数幂【类型一】 负整数指数幂的意义与运算计算:(1)3-3; (2)(-2)-2; (3)(-23)-4.解析:根据负整数指数幂的意义知,一个数的负整数指数幂的结果,底数是原来底数的倒数,指数是原来指数的相反数.解:(1)3-3=133=127;(2)(-2)-2=1(-2)2=14;(3)(-23)-4=(-32)4=8116.方法总结:求负整数指数幂的方法:把底数取倒数,指数变为相反数.【类型二】 运用零次幂和负整数指数幂来计算计算:|-5|-(π-1)0+(12)-2.解析:本题涉及零次幂、负整数指数幂、绝对值三个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据运算法则计算.解:|-5|-(π-1)0+(12)-2=5-1+22=5-1+4=8.方法总结:此题主要考查了学生的综合运算能力,是中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零次幂、绝对值等考点的运算.【类型三】 运用零次幂和负整数指数幂来化简、求值已知a x=3,求a 2x -a -2xa x -a-x 的值.解析:根据负整数指数幂的意义先化简分式,然后代入求值.解:a 2x -a -2x a x -a -x =(a x )2-(a -x )2a x -a -x=a x +a -x =3+3-1=103. 方法总结:求值时,把要求的式子根据负整数指数幂的意义用已知的式子表示出来是解题的关键.探究点三:用科学记数法表示绝对值小于1的数一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A.6.5×10-5 B.6.5×10-6C.6.5×10-7 D.65×10-6解析:把0.0000065的小数点向右移动6位变成6.5×0.000001=6.5×10-6,故选B.方法总结:绝对值很小的数用科学记数法表示时,先把小数点向右移动n位,使这个数变成一个整数数位只有一位的数a,再在后面乘以10-n.即用科学记数法把一个绝对值很小的数写成a ×10-n的形式时,n等于第一个非零数前面零的个数(包括小数点前面的零).三、板书设计1.零次幂2.负整数指数幂3.科学记数法:a×10-n(1≤|a|<10,n等于第一个非零数前面所有零的个数).本节课学习了零次幂和负整数指数幂,在学习中,以正整数指数幂为基础,探究零次幂和负整数指数幂的运算法则.本节课的易错点一是误认为零次幂等于0,二是用科学记数法表示绝对值小于1的数:a×10-n,误认为一定是负数.在课堂教学中,老师应让学生积极参与,主动练习,从练习中发现问题,纠正错误.1.3.3 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】 乘积形式的整数指数幂的运算计算:(1)(-a )3÷a -1÷(a -2)-2;(2)(a -2b -3)-3·(a 2b )-2;(3)(2x -3y 2z -2)-2(3xy -3z 2)2;(4)(-2a -3)2b 3÷2a -6b -2.解:(1)原式=-a 3÷a -1÷a 4=-a 4÷a 4=-1;(2)原式=a 6b 9·a -4b -2=a 2b 7;(3)原式=(2-2x 6y -4z 4)(32x 2y -6z 4)=2-2·32x 8y-10z 8=9x 8z 84y10;(4)原式=4a -6b 3÷2a -6b -2=2b 5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】 商形式的整数指数幂的运算计算:(1)(x 2+x x 2+2x +1)-1÷(x x +1)-2;(2)[(2a -3b -2c 3a -4b -2)-1]-2;(3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=xx +1;(2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c29;(3)原式=(a -b )6(a +b )-6(a +b )-4(a -b )4=(a -b )2(a +b )2.方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】 逆用幂的运算法则求值已知a -m =3,b n =2,则(a -m b -2n )-2=________.解析:(a -m b-2n )-2=(a -m )-2·b 4n =(a -m )-2(b n )4=3-2×24=169.故填169.方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4.解:(278)x -1·(23)3x -4=(32)3x -3·(23)3x -4=(23)3-3x ·(23)3x -4=(23)3-3x +3x -4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m ,宽8m ,高3m 的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升).答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a ×10-n中n 的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a m ·a n =a m +n(a ≠0,m ,n 都是整数);(2)幂的乘方:(a m )n =a mn(a ≠0,m ,n 都是整数);(3)积的乘方:(ab )n =a n ·b n(a ≠0,b ≠0,n 是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.1.4 分式的加法和减法第1课时 同分母分式的加减1.理解同分母分式的加减法的法则,会进行同分母分式的加减法运算;(重点) 2.会把分母互为相反数的分式化为同分母分式进行加减运算.(难点)一、情境导入市场上有A ,B 两种电脑,花10000元可以买A 型电脑a 台,花8000元可以买B 型电脑a 台,A 型电脑比B 型电脑每台贵多少元?二、合作探究探究点一:同分母分式的加减法计算: (1)3a -2b 3ab -3a +3b 3ab ;(2)1a -1+-a 2a -1; (3)x -2x -1-2x -3x -1. 解析:根据同分母分式加减法的法则,把分子相加减,分母不变.注意(1),(3)两小题属于同分母分式的减法运算,减式的分子要变号.解:(1)原式=3a -2b -3a -3b 3ab =-5b 3ab =-53a ;(2)原式=1-a 2a -1=-(a +1)(a -1)a -1=-a -1;(3)原式=x -2-2x +3x -1=-x +1x -1=-1.方法总结:同分母分式相加减,分母不变,分子相加减,最后结果要化为最简分式或整式.探究点二:分式的符号法则计算: (1)2x 2-3y 2x -y +x 2-2y 2y -x ;(2)2a +3b b -a +2b a -b -3b b -a.解析:(1)先把第二个分式的分母y -x 化为-(x -y ),再把分子相加减,分母不变; (2)先把第二个分式的分母a -b 化为-(b -a ),再把分子相加减,分母不变. 解:(1)原式=2x 2-3y 2x -y -x 2-2y2x -y=2x 2-3y 2-(x 2-2y 2)x -y=x 2-y 2x -y =(x +y )(x -y )x -y=x +y ; (2)原式=2a +3b b -a -2b b -a -3b b -a=2a +3b -2b -3b b -a=2a -2b b -a =-2(b -a )b -a=-2. 方法总结:分式的分母是互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法的法则:f g ±h g =f ±hg.2.分式的符号法则:f g =-f -g ,-f g =f -g =-f g.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.第2课时 分式的通分1.会确定几个分式的最简公分母;2.会根据分式的基本性质把分式进行通分.(重点,难点)一、情境导入 1.通分:12,23.2.分数通分的依据是什么? 3.类比分数,怎样把分式通分? 二、合作探究探究点一:最简公分母分式1x 2-3x 与2x 2-9的最简公分母是________. 解析:∵x 2-3x =x (x -3),x 2-9=(x +3)(x -3),∴最简公分母为:x (x +3)(x -3). 方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.探究点二:分式的通分【类型一】 分母是单项式分式的通分通分.(1)c bd ,ac2b2; (2)b 2a 2c ,2a 3bc2; (3)45y 2z ,310xy 2,5-2xz2. 解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b 2d ,c bd =2bc 2b 2d ,ac 2b 2=acd 2b 2d; (2)最简公分母是6a 2bc 2,b 2a 2c =3b 2c 6a 2bc 2,2a 3bc 2=4a36a 2bc2;(3)最简公分母是10xy 2z 2,45y 2z =8xz 10xy 2z 2,310xy 2=3z 210xy 2z 2,5-2xz 2=-25y210xy 2z2.方法总结:通分时,先确定最简公分母,然后根据分式的基本性质把各分式的分子、分母同时乘以一个适当的整式,使分母化为最简公分母.【类型二】 分母是多项式分式的通分通分.(1)a 2(a +1),1a 2-a; (2)2mn 4m 2-9,3m 4m 2-6m +9. 解析:先把分母因式分解,再确定最简公分母,然后再通分. 解:(1)最简公分母是2a (a +1)(a -1),a 2(a +1)=a 2(a -1)2a (a +1)(a -1),1a 2-a =2(a +1)2a (a +1)(a -1); (2)最简公分母是(2m +3)(2m -3)2,2mn 4m 2-9=2mn (2m -3)(2m +3)(2m -3)2,3m 4m 2-6m +9=3m (2m +3)(2m +3)(2m -3)2. 方法总结:①确定最简公分母是通分的关键,通分时,如果分母是多项式,一般应先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母的商.三、板书设计 1.最简公分母 2.通分:(1)依据:分式的基本性质;(2)方法:先确定最简公分母,再把各分式的分母化为最简公分母.本节课学习了分式的通分,方法可类比分数的通分.在教学中应注意循序渐进,先让学生学会确定最简公分母,再让学生学习通分.通分时,一要注意避免符号错误,二要注意通分不改变分式的值,即分母乘了一个整式,分子也要乘以同样的一个整式.。
2023年新版湘教版八年级上册数学教案
全册
教材概述
- 本教材为2023年新版湘教版八年级上册数学教材。
- 适用于八年级学生,旨在帮助他们提高数学学科知识和技能。
- 整本教材共分为若干个单元,每个单元涵盖不同的数学主题。
教案内容
- 每个单元教案包含了教学目标、教学重点、教学过程、教学
资源等内容。
- 教学目标明确了本单元希望学生能够掌握的知识和技能。
- 教学重点突出了本单元中需要重点讲解和强化的内容。
- 教学过程详细列出了每节课的教学步骤和教师应进行的教学
活动。
- 教学资源提供了辅助教学的素材和工具,如教学PPT、练题等。
使用建议
- 教师应仔细研读教案,了解每节课的教学目标和重点,以便
有针对性地进行教学准备。
- 教师可根据自己的实际教学情况,对教案中的教学过程进行
适当调整和补充。
- 学生应按照教案的要求进行研究和练,做好笔记和作业。
以上为对2023年新版湘教版八年级上册数学教案全册的简要
介绍。
该教材旨在有效地提高学生的数学学科能力,教案内容详尽,教师和学生应充分利用教案进行教学和学习。
第一章 实数1.1平方根(1课时)编写时间: 年 月 日 执行时间: 年 月 日 总序第 个教案【教学目标】1、了解平方根的概念,会用根号表示数的平方根。
2、了解开方与乘方互为逆运算,会用平方根求某些非负数的平方根。
【教学重点难点】了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根【教学方法】观察、比较、合作、交流、探索.【设计思路】本节课通过问题情景使学生在计算、探索、交流的过程中能感悟到平方根的意义,并且能够知道正负数以及0的平方根的规律。
在教学中要让每个学生都参与到活动中去,感受学习的乐趣,提高学习数学的兴趣,教学千万不能在走老路,先告诉规律,然后讲例题,在做练习。
【教学过程】(一)创设情景,感悟新知情景一:在等式a x =2中 ,已知3-=x ,你能求a 吗?已知5=a ,你能x 求吗?(二)探索规律,揭示新知问题一:认真观察下面的式子,积极思考,互相讨论:.25.0)5.0(,25.05.0,91)31(,91)31(,4)2(,42222222=-==-==-=请你举例与上面的式子类同的式子;你得到什么结论?(分小组讨论,老师适当参与给予帮助。
)如果一个数的平方等于a ,那么这个数叫做的a 平方根(square root),也称为二次方根。
如果a x =2,那么x 就叫做a 的平方根。
【设计说明:所选的题目都具有代表性,学生通过做题后思考讨论交流,能够较好接受平方根的概念】问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。
)(()()()()()()().4,0,10,5;21,41,25,922222222-========一个正数的平方根有2个,它们互为相反数。
一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。
这两个平方根合起来记作“a ±”,读作“正,负根号a ”.【设计说明:通过对具体的数的平方根的讨论交流,使学生自己总结出正数、0、负数的平方根的情况,让学生经历探索规律的过程,加深对规律的理解】 问题三:从问题二中,你得到了什么结论?【设计说明:在讨论的过程中,不同层次的学生可能会遇到不同的困难,我们教师要给与适当的帮助,要给与鼓励】(三)尝试反馈,领悟新知例1 求下列各数的平方根:25;(2)8116(3)15;(4)()22-。
1.1 分 式第1课时 分式的概念1.理解分式的概念,并能用分式表示现实生活中的量;2.掌握分式有、无意义的条件及分式的值为0的条件;(重点,难点)3.会求分式的值.一、情境导入埃及金字塔相传是古埃及法老的陵墓,是世界公认的“古代世界七大奇迹”之一.其中最大、最有名的是祖孙三代金字塔——胡夫金字塔、哈夫拉金字塔和门卡乌拉金字塔.胡夫金字塔底部边长230公尺,高146公尺,重大约650万吨,共用了x 万块石头,那么平均每块石头重多少吨?二、合作探究探究点一:分式的概念代数式-13x 2,a +2a -1,35,x -2π,3x2y,x2x中的分式有( ) A .1个 B .2个 C .3个 D .4个解析:a +2a -1,3x 2y ,x 2x 中的分母含有字母,是分式.其他的代数式分母不含字母,不是分式.故选C.方法总结:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.特别注意π是常数,不是字母,因此x -2π不是分式.另外对于分式的判断是针对式子的形式,而不是化简之后的结果,如x2x不能约分后再判断,其分母中含有字母即为分式. 探究点二:分式有、无意义的条件 【类型一】 分式有意义的条件若分式2x |x |-1有意义,则( )A .x ≠-1B .x ≠1C .x ≠1且x ≠-1D .x 可为任何数 解析:当分母不等于0时,分式有意义,即|x |-1≠0,∴x ≠1且x ≠-1.故选C.方法总结:分式有意义的条件是分母不等于0.【类型二】 分式无意义的条件当a 为何值时,分式a -12a +1无意义?解:分式无意义,则2a +1=0,∴a =-12. 错误!探究点三:分式的值【类型一】 分式值为0的条件若分式x 2-1x -1的值为0,则( )A .x =1B .x =-1C .x =±1D .x ≠1 解析:由x 2-1=0解得:x =±1,又∵x -1≠0即x ≠1,∴x =-1,故选B.方法总结:分式的值为0应同时具备两个条件:①分子为0;②分母不为0.应特别注意后一个条件.【类型二】 求分式的值当a =3时,求分式a 2-3a +3的值.解:当a =3时,a 2-3a +3=32-33+3=1.方法总结:求分式的值与求代数式的值的方法一样,用数值代替分式中的字母,再化简计算即可.三、板书设计分式错误! 在教学过程中,通过生活中的情境导入,引导学生观察、类比(分数)、猜想、归纳,经历数学概念的生成过程.通过实例强调分式的值为0应同时具备两个条件:分子等于0而分母不等于0,这样突出重点,突破难点.1.1 分式第1课时 分式的概念教学目标一、知识与技能1.理解分式的含义,能区分整式与分式。
2024年湘教版八年级数学上册教学计划一、教学目标:本教学计划主要针对湘教版八年级数学上册,旨在培养学生的数学思维能力和解决问题的能力,提高学生的数学学习兴趣和成绩,培养学生的数学创造力和创新意识。
二、教学内容:1. 数的四则运算及其应用2. 一元一次方程与一次方程应用3. 四边形的性质与判定4. 实数的四则运算(加减乘除)5. 两点间的距离与重点连接线6. 线性方程组的解和应用7. 平面图形的相似性质与判定8. 一元一次不等式及其应用三、教学方法:1. 理论教学:教师通过讲解、示范等方式,向学生传授数学知识和数学解题技能。
2. 实践教学:组织学生上台板书,设计实验等,加强学生的实际操作能力和动手能力。
3. 互动教学:通过小组活动、讨论等方式,激发学生的学习兴趣,培养学生的合作和交流能力。
4. 激发学生兴趣:通过设置趣味数学问题、数学游戏等方式,激发学生的学习兴趣和主动性。
四、教学安排第一周:数的四则运算及其应用1. 复习整数的四则运算。
2. 引入有理数,讲解有理数的定义和性质。
3. 练习有理数的加减法。
4. 练习有理数的乘除法。
5. 应用:解决实际问题。
第二周:一元一次方程与一次方程应用1. 复习等式的基本性质。
2. 引入一元一次方程的概念,解释方程的意义。
3. 讲解一元一次方程的解法和转化思路。
4. 练习一元一次方程的解题方法。
5. 应用:解决实际问题。
第三周:四边形的性质与判定1. 复习几何图形的基本概念。
2. 讲解四边形的定义和基本性质。
3. 引入平行四边形、矩形、菱形、正方形的概念和性质。
4. 判定四边形的方法。
5. 应用:解决实际问题。
第四周:实数的四则运算(加减乘除)1. 复习有理数的四则运算。
2. 引入无理数的概念和性质。
3. 讲解实数的定义和性质。
4. 练习实数的加减法。
5. 练习实数的乘除法。
第五周:两点间的距离与重点连接线1. 复习直线和线段的定义和性质。
2. 引入坐标系和平面直角坐标系。
湘教版八年级上册数学教案(全套)八年级(上)数学科计划一、指导思想以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他学科提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。
对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。
数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、学生情况分析。
本期任教八年级数学,共有学生67人。
2010年上期学生总体来看,成绩较差。
学生到八年级对学习数学的兴趣表现为:基础好的同学学习兴趣大,进取心强,学习自觉主动;而基础较差的同学学习兴趣不浓,上课爱走神,参与意识弱,不愿动脑筋,对自己缺乏信心;处于中等成绩的学生学习缺乏主动,需要不时鞭策、激励。
八年级的学生处于一个认为自己已经长大了,有叛逆心理,自尊心强,初步展露自己个性的时期。
学生学习基础分析七年级上学期学习了有理数,这学期将学习无理数,有理数和无理数通称实数;在七年级上学期学习了用字母表示数,这学期将学习用字母表示变量,学习用来描述现实世界中一些量之间确定性依赖关系的数学模型――函数,着重学习描述均匀变化现象的数学模型――一次函数;在七年级下学期学习了平移和轴反射,这学期将学习旋转,并且运用平移、轴反射和旋转得出判断两个三角形全等的方法,进而学习直角三角形的性质和判定,以及勾股定理;在七年级上、下学期学习了数据的收集与描述,数据的分析与比较,这学期将学习数据组的频数分布和频率分布。
在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。
在学习能力上,学生课外主动获取知识的能力较差。
在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。
学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致志学习的习惯,主动纠正(考试、作业后)错误的习惯,较多的学生需要教师的督促才能做。
陶行知说:教育就是培养习惯。
培养学生良好的数学学习的习惯这是本期教学中重点予以关注的。
三、教材分析1)教学建议1.努力为学生营造一个生动具体的学习情境2.教学中要注意引导学生独立思考与合作交流3.让学生去说去做,逐步培养学生解决问题的能力和初步的应用意识2)评价建议1.关注对学生学习过程的评价2.恰当评价学生基础知识和基本技能的理解和掌握3.重视对学生发现问题和解决问题能力的评价4.评价结果以定性描述的方式呈现3)教材内容说明为了让同学们了解现实生活中的一些事情,设立了“课题学习”栏目;为了让同学们感受数学的作用和受到文化的熏陶,设立了“数学与文化”栏目。
前者需要实施,后者不必在课堂上讲,供有兴趣的同学自己阅读。
4)教材每章分析第一章实数本章的主要内容是平方根、立方根的概念和求法;实数的概念与相关性质及运算;平面直角坐标系的构建与应用。
让学生经历探索实数性质及其运算规律的过程,发展学生的抽象思维,培养学生的概括能力和解决问题的能力。
本章教学内容实现了两个知识的迁移和首先是由乘方到开方的迁移,乘方与开方互为逆运算;其次是数轴上的点和全体实数迁移到平面直角坐标系中的点和有序实数对;一个扩展是无理数的引入,完成了有理数到实数的扩展。
因此本章在初中数学教材中占有重要的地位,起着重要的作用,为进一步学习二次根式、一元二次方程、函数等奠定了基础。
本章共分四节:第一节介绍了平方根和算术平方根的定义、表示方法、性质及求法,包括用计算器求非负数的算术平方根。
第二节介绍了立方根的定义、表示方法、性质及求法,包括用计算器求有理数的立方根。
第三节介绍了无理数、实数的概念,实数的性质及运算,以及实数与数轴上的点的一一对应关系。
第四节介绍了平面直角坐标系的构建与有关概念,理解点的坐标与坐标平面内的点一一对应关系及对称点的坐标特征。
本章学法指导1、学习本章的关键是正确理解与运用平方根、立方根、实数的概念及性质,在学习过程中要抓住新旧知识的联系,灵活运用乘方、开方、实数、平面直角坐标系的知识,实现知识的迁移,并使新旧知识融会贯通。
2、在本章的学习中,要深刻理解并掌握类比的方法,使学生清楚新旧知识的区别与联系,同时,要启发学生动手、动脑、积极思考、参加实践,使学生明确数学来源于生活,又服务生活。
第二章一次函数本章的主要内容是函数的概念,图像的意义与画法。
理解一次函数、正比例函数的图像和性质,利用图像求方程、方程组的解。
学习用待定系数法确定函数关系式,并能应用函数解决实际问题。
从新旧知识的联系上看,由列代数式到确定函数的解析式,由一次方程、方程组和不等式到一次函数,本章的不少内容都是我们学过的数、式、方程为基础而拓展开的,同时在应用旧知识的过程中,也起了复习、巩固和提高的作用,从数学自身发展的过程看,函数概念的引入标志着数学由初等数学向变量数学的迈进,一次函数的图像加强了代数与几何的联系;函数的交点又与解方程、方程的思想建立了联系;函数的应用又时时与物理、化学等学科交织在一起。
本章共分三节:第一节介绍了函数和它的表示法,结合实例,介绍了常量、变量的意义,函数的概念和三种表示法。
第二节介绍了一次函数和它的图像,结合具体情况描绘一次函数的意义,画出其图像,探索其性质。
第三节介绍建立一次函数模型,主要用一次函数解决实际问题及根据一次函数的图像求二元一次方程组的近似值。
本章学法指导:本章概念较多,知识较抽象,学习过程中要注意从实例出发,领会概念的含义,把握关键的字、句的特殊之处,逐步由感性认识上升到理性认识,同时要注意用对比方法,反复比较类似或有从属关系的概念的异同,理解概念之间的区别和联系;要注意运用数形结合的思想帮助我们理解和分析实际问题,从而培养学生对图形的观察能力,学生的分析问题、解决问题的能力,学会转化的数学思想。
第三章全等三角形本章主要学习旋转及其性质,全等三角形的性质及其识别方法,直角三角形的性质、直角三角形的识别方法以及勾股定理,尺规作图作一个三角形与已知三角形全等。
本章是本册书中篇幅最多的一章,内容较多,但各部分部分知识之间联系比较密切,三角形全等的性质及其识别方法是本章的重要内容。
利用三角形进行图案设计以及作三角形,都是以三角形全等为基础,而作三角形又反过来帮助我们认识三角形全等的几个条件。
通过本章的学习可以丰富和加深对已学图形的认识,增强空间观念和几何直觉,培养逻辑思维能力,也是今后学好四边形、圆的基础。
本章共分七节:第一节介绍了旋转变换及其性质。
第二节介绍了利用图形变换进行图案设计。
第三节介绍全等三角形概念、表示方法及其性质。
第四节介绍了一般三角形全等的判定方法第五节介绍直角三角形的性质和判定及直角三角形全等的判定。
第六节介绍了勾股定理及其逆定理的内容和应用。
第七节介绍了尺规作图中已知三边或两边及其夹角或两角及其夹边作三角形。
本章学法指导:1、教材上本章安排了不少有关“说一说”“动脑筋”等内容,这为我们发现知识、较好地理解知识指出了可行之路。
2、本章有关定理、识别方法、图形的性质等知识比较多,要准确地理解、把握知识,建立数学模型,切不可单靠机械记忆、死记硬背,学习中应注意获得知识的过程,通过亲身经历,发现规律,增强记忆,逐步加强推理能力,达到灵活运用的目的。
第四章频数与频率本章主要通过实例学习频数与频率的知识,理解频数、频率的概念,明确频数、频率在现实生活中的意义,会列频数分布表,会画频数分布直方图。
本章是在已经学习了众数、中位数、平均数、方差等概念基础上进一步学习的,是对统计思想的进一步深化与综合,通过本章学习,能初步解决频数与频率分布的实际问题,对加强学生的实践能力,分析、解决问题能力有着重要作用,也为进一步学习统计知识打好了基础。
本章共分两节:第一节通过具体实例介绍了频数与频率的概念,讲解了频率的意义与频数的应用。
第二节介绍数据的分布知识,包括数据组的频数分布和频率分布,及编制频数分布表和画频数分布直方图的具体步骤和方法。
本章学法指导:本章与第三章相比,知识点相对较少,但本章的知识与现实生活息息相关,这就要求学生在学习过程中,注意从实际出发,领会概念的形成背景,逐步由感性认识提高到理性认识。
要注意运用表格、图形对有关问题进行直观的说明,帮助我们理解和分析问题。